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Abstract: Background and Objectives: Physical exercise is an important therapeutic modality for treating
and managing diabetes. High-intensity interval training (HIIT) is considered one of the best non-drug
strategies for preventing and treating type 2 diabetes mellitus (T2DM) by improving mitochondrial
biogenesis and function. This study aimed to determine the effects of 12 weeks of HIIT training
on the expression of tumor suppressor protein-p53, mitochondrial cytochrome c oxidase (COX),
and oxidative stress in patients with T2DM. Methods: A total of thirty male sedentary patients aged
(45–60 years) were diagnosed with established T2DM for more than five years. Twenty healthy
volunteers, age- and sex-matched, were included in this study. Both patients and control subjects
participated in the HIIT program for 12 weeks. Glycemic control variables including p53 (U/mL),
COX (ng/mL), total antioxidant capacity (TAC, nmole/µL), 8-hydroxy-2′-deoxyguanosine (8-OHdG,
ng/mL), as well as genomic and mitochondrial DNA content were measured in both the serum
and muscle tissues of control and patient groups following exercise training. Results: There were
significant improvements in fasting glucose levels. HbA1c (%), HOMA-IR (mUmmol/L2), fasting
insulin (µU/mL), and C-peptide (ng/mL) were reported in T2DM and healthy controls. A significant
decrease was also observed in p53 protein levels. COX, 8-OhdG, and an increase in the level of
TAC were reported in T2DM following 12 weeks of HIIT exercise. Before and after exercise, p53;
COX, mt-DNA content, TAC, and 8-OhdG showed an association with diabetic control parameters
such as fasting glucose (FG), glycated hemoglobin (HbA1C, %), C-peptide, fasting insulin (FI), and
homeostatic model assessment for insulin resistance (HOMA-IR) in patients with T2DM. These
findings support the positive impact of HIIT exercise in improving regulation of mitochondrial
biogenesis and subsequent control of diabetes through anti-apoptotic and anti-oxidative pathways.
Conclusions: A 12-week HIIT program significantly improves diabetes by reducing insulin resistance;
regulating mitochondrial biogenesis; and decreasing oxidative stress capacity among patients and
healthy controls. Also; p53 protein expression; COX; 8-OhdG; and TAC and mt-DNA content were
shown to be associated with T2DM before and after exercise training.

Keywords: mitochondria DNA (mt-DNA); p53; cytochrome c oxidase; oxidative stress; diabetes;
high-intensity interval training (HIIT)

1. Introduction

Physical activity and exercise offer a wide range of health benefits. Physical activity
was reported for all ages to minimize cardiovascular risks, improve immune function,
energy balance, psychological status, and improve overall health for all ages [1,2].

Type 2 diabetes mellitus is considered one of the most serious chronic diseases that
often follows obesity. It is characterized by lower cardiorespiratory fitness, a major predictor
of mortality, and severe complications in patients with diabetes [3,4]. Multiple potential
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factors, such as sedentary lifestyle, eating habits, physical inactivity, and obesity have been
strongly associated with higher incidence rates of diabetes worldwide. These factors impose
a substantial burden on healthcare systems and contribute to more severe complications
among diabetic patients, which necessitates new strategies for disease management or
treatment [5–7].

In most diabetic cases, complications such as those affecting microvascular and
macrovascular tissues, and subsequently the pathogenesis of diabetes develop silently
through genetic or other factors affecting glycemic control. Specifically, in cases like type
2 diabetes mellitus, the progression often proceeds with undiagnosed symptoms for several
years [8,9].

Mitochondria in human tissues are considered one of the organelles most responsible
for the aerobic synthesis of molecular ATP, which supplies the required chemical energy
for vital cellular processes [10,11]. Previously, it was reported that the number of mitochon-
dria and their function was significantly reduced in tissues associated with diabetic and
metabolic diseases [12,13]. In patients with diabetes, synthesis of ATP was significantly
reduced or failed in response to insulin infusion owing to the reduction in the number of
mitochondria in skeletal muscle [14,15]. Skeletal muscle was shown to be sensitive and
adaptive to many external stimuli, especially exercise training programs. These adaptations
significantly depend mainly on frequency, intensity, duration, and exercise mode. Mito-
chondrial biogenesis is one of the most important adaptive responses to aerobic exercise
training, which increases the expression of mitochondria mRNA, number, protein synthesis,
and oxidative activity [16–20].

Oxidative stress and increased production of reactive oxygen species (ROS) were
shown to be linked with mitochondrial dysfunction in type 2 diabetes mellitus (T2DM),
whereas impaired capacity for glycogen and lipid oxidation and insulin resistance of
peripheral tissue was significantly reported in T2DM patients [21,22]. Previously, it was
reported that the pathogenic mechanism underlying insulin resistance in skeletal muscle
of T2DM was an increment in tissue oxidative stress [23–26], which ultimately leads to
reduction in glucose and fatty acid uptake [22,27,28].

P53 is a well-known tumor suppressor protein that is critical in regulating cell growth
and preventing cancer development. In addition to its role in tumor suppression, p53 also
plays a key role in regulating apoptosis or programmed cell death. When cells are damaged
or undergo stress, p53 is activated to initiate apoptosis and remove the damaged cells from
the body [29–32].

Mitochondrial cytochrome c, on the other hand, is a protein located in the inner
membrane of mitochondria, the organelles responsible for generating energy in cells. In
healthy cells, cytochrome c is sequestered within the mitochondria, but when activating
stress, it is released into the cytoplasm, which triggers the apoptotic pathway by activating
caspase enzymes [29–32]. Studies have shown that p53 and mitochondrial cytochrome c
function together regulate apoptosis and maintain cellular homeostasis. In particular, p53
has been shown to induce cytochrome c release from mitochondria in response to DNA
damage, activating the apoptotic pathway. Additionally, p53 has been shown to regulate
the expression of Bcl-2 family proteins, which play a key role in regulating mitochondrial
membrane permeability and cytochrome c release [29–32]. The dysregulation of p53
and cytochrome c have been implicated in developing and progressing various diseases,
including cancer, neurodegenerative disorders, and cardiovascular disease [29–32].

Moreover, tumor suppressor p53, which functions as a crucial transcription factor, has
been shown to play a direct role in energy metabolism by balancing aerobic respiration
with glycolysis in the cell [33,34]. Studies have also reported that p53 is responsible
for the decline in mitochondrial respiration via mutation in cytochrome oxidase deficient
homolog 2 (SCO2) genes, which suppress assembly of COX (cytochrome c oxidase), a critical
component and the major site of oxygen utilization in the respiratory chain, resulting in
aerobic respiratory failure [35,36]. P53 was shown to improve aerobic exercise capacity and
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augment skeletal muscle mitochondrial DNA content, suggesting that p53 may also increase
mitochondrial oxidation in skeletal muscle by regulating mitochondrial biogenesis [37].

Exercise training of varying modes is considered one of the best non-drug strategies in
the prevention and treatment of T2DM. It showed to play a part in the increment of muscle
oxidative capacity, mitochondrial function, and insulin sensitivity in humans [38–43]. In
metabolically active tissues, physical activity resulting from exercise is one of the best-
known strategies to improve mitochondrial function and human health [44,45]. The in-
volvement of p53 in regulating mitochondrial DNA content, respiration, function and
oxidative stress, and skeletal muscle insulin resistance following regular exercise is fully
elucidated [46–48].

In middle-aged (45–60 years) and older individuals, type 2 diabetes is more prevalent,
with the incidence of the disease increasing with age [49–52]. Overall, selecting the age
range of 45–60 years allows for a more targeted investigation of the effects of exercise
on biological biomarkers in a population that is representative of those most affected by
type 2 diabetes and its complications [49–52]. Therefore, it was proposed in this study
that studying the effects of exercise on some biomarkers in subjects aged 45–60 years can
provide important insights into the potential benefits of exercise in older individuals with
type 2 diabetes.

However, in middle-aged type 2 diabetes, little is known about the effects of high-
intensity interval training (HIIT) on the p53 regulation mechanism and mitochondrial
function in patients with T2DM. Therefore, this study aimed to determine the effects of
a 12-week HIIT program on p53 expression, mitochondrial cytochrome c, and oxidative
stress in patients with T2DM.

2. Materials and Methods
2.1. Subjects

A total of thirty male sedentary patients aged (45–60 years) diagnosed with established
T2DM for more than five years were invited to participate in this study. In addition, twenty
healthy subjects from a population undergoing a standard annual physical examination
and biological measurements for medical insurance were selected as controls. Patients with
obesity (BMI) ≥ 35 kg/m2), lower fasting blood glucose (<140 mg/dL), and use of drugs
or exogenous insulin, which may affect the data, were excluded from this study. Patients
with chronic diseases such as kidney and liver diseases or severe diabetic complications
such as neuropathy, retinopathy, neuromuscular, cardiopulmonary, and physical disabil-
ity or movement limitations were also excluded from this study. All participants were
sedentary with little or no physical activity during daily routine activities such as work
and transportation. The participants were instructed not to change their normal eating
habits during the entire data collection period. The study was performed between June
and December 2013. The study protocol conformed to the ethical guidelines of the 1975
Declaration of Helsinki. It was reviewed and approved by the Ethics Sub-Committee of
King Saud University, Kingdom of Saudi Arabia, under file number ID: RRC-2013-025.
Demographic and clinical data of the participants are shown in Table 1.
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Table 1. Improvements in adiposity and glycemic markers of control and type 2 DM subjects
participated in HIIT exercise program for 12 weeks.

Parameters

CON
(n = 20; Mean Age; 46.3 ± 2.8 Yrs.)

T2DM
(n = 30; Mean Age: 46.1 ± 3.1 Yrs.)

Pre Post Pre Post

BMI 24.5 ± 2.85 23.1 ± 1.6 * 31.8 ± 3.96 27.6 ± 2.7 **
Waist (cm) 98 ± 1.85 91.3 ± 1.1 * 156 ± 3.9 148.6 ± 2.4 *
Hips (cm) 115 ± 0.75 112 ± 0.81 * 67 ± 3.7 65.5 ± 2.7 *

WHR 0.85 ± 0.95 0.46 ± 0.89 * 2.33 ± 1.2 1.6 ± 0.97 **
Fitness score (VO2max; ml/kg ×min) 25.8 ± 2.5 34.6 ± 4.6 * 21.3 ± 1.9 32.8 ± 2.8 **

Fasting glucose (mg/dL) 85.9 ±7.3 78.5 ± 2.8 * 165.2 ± 2.8 128.6 ± 3.7 **
Serum C-peptide (ng/mL) 3.95 ±1.7 4. 5 ± 3.9 * 2.8 ± 1.5 5.1 ± 1.5 **

HbA1c (%) 4.6 ± 0.45 3.2 ± 0.65 * 7.4 ± 1.6 5.2 ± 2.5 **
Fasting insulin (FI; µU/mL) 26.3 ± 7.9 32.8 ± 3.6 * 18.7 ± 5.8 35.9 ± 2.6 **

IR (mUmmol/L2) 5.3 ± 2.6 2.8 ± 1.9 * 12.9 ± 1.9 5.9 ± 3.4 **

Data expressed as mean ± SD, * p < 0.01. ** p < 0.001 (pre vs. post) level values of control and diabetic patients.
BMI: body mass index; WHR: waist to hip ratio; IR: insulin resistance; VO2 max: maximal oxygen consumption;
CON: control, T2DM: type 2 diabetes mellitus.

2.2. Exercise Training Program

The high-intensity interval training (HIIT) program was entirely performed in the
exercise labs at King Saud University, Kingdom of Saudi Arabia, under the supervision of
specialist physiotherapists. Patients and control subjects participated in the HIIT program
for 40 min/3 sessions/week for 12 weeks by using an electronic treadmill (Vegamax, made
in Taiwan). The HIIT program consisted of 4 × 4 min intervals at 80–85% of HR max, with
3-min active recovery at 70% of HR max between intervals. The participants started a
warm-up for 10 min at 50% of maximal heart rate (HR max) and 5 min cool-down before
initial HIIT program sessions, as previously reported [44]. In this study, the HIIT exercise
program was designed to perform physical activities corresponding to 30–45% of VO2 max
uptake for each participant [45]. To reach for improved fitness, each participant’s heart rate
and the Borg scale of perceived exertion were checked to maintain exercise intensity and
avoid training adaptations throughout the exercise period.

2.3. Skeletal Muscle Biopsy and Blood Samples

Both muscle biopsy and blood samples were collected from all participants before and
after the HIIT exercise program. Following an overnight fast, serum samples were extracted
using centrifugation for 10 min of the blood samples. In addition, all biopsies were collected
in a fasted state early morning at baseline one week before exercise intervention, to allow the
biopsy wound to heal and any inflammation from the biopsy itself to subside before another
biopsy following 14 h of rest after the last HIIT session, as previously reported [53,54]. In
this technique, a licensed medical general practitioner (GP) with experience in percutaneous
needle biopsies took the muscle biopsies for the study. Biopsies were taken from alternating
legs in randomized order between subjects from vastus lateralis. First, local anesthesia
(2% Carbocain, AstraZeneca, Sodertalje, Sweden) was injected at the biopsy site. A small
incision was made, and approximately 150 mg of wet tissue was removed with a Weil–
Blakesley conchotome or a 5 mm Bergstrom needle with a manually applied suction. Finally,
the GP instructed the subjects to take the Band-Aid off 1 to 2 h post-biopsy and naturally
allow the plasters to remove over time. If there were any abnormalities with healing or
severe pain post-biopsy, the subjects were instructed to communicate with the investigator
or the GP, who helped accordingly.

Both serum and muscle samples were immediately frozen under liquid nitrogen
and stored at −80 ◦C until further analysis of p53 protein, cytochrome c, 8-OHdG, TAC,
genomic, and mitochondrial DNA content [55].
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2.4. Quantification of Mitochondrial DNA Content by Real-Time PCR

Copy numbers of both genomic and mitochondrial DNA per milligram wet tissue
weight were estimated from muscle samples of all participants at baseline and following
the HIIT program for 12 weeks. Total DNA was precipitated from approximately 15 mg
of frozen tissue and concentrations were determined as previously described [56,57]. In
this test, total DNA was precipitated from adipose tissue samples (~10 mg) homogenized
in DNAzol (Molecular Research Center, Cincinnati, OH, USA). The DNA was dissolved
in 100 µL Tris-EDTA pH 8. Five microliters of a 50 times DNA dilution was used for PCR
amplification with QuantiTect SYBR Green PCR Master Mix (Qiagen, Hilden, Germany)
containing 2.5 pmol of each primer in a total volume of 25 µL. Levels of mtDNA were
determined by real-time PCR using an MX3005P QPCR machine (Stratagene, La Jolla, CA,
USA), and the concentration of mtDNA per milligram of tissue was used as an estimate of
the amount of mitochondria per milligram of tissue [56,57].

2.5. Estimation of Glycemic Control Parameters

Pre- and post-HIIT training tests, serum glucose, and c peptide levels were measured
in the routine analysis laboratory using spectrophotometric and chemiluminescent meth-
ods. HPLC determined hbA1c levels in erythrocytes in the same laboratory. Serum levels
of insulin were estimated in all subjects using an ELISA kit (Insulin ELISA kit human,
KAQ1251, Invitrogen Corporation, Camarillo, CA, USA). By using a pre-validated home-
ostasis model assessment of insulin resistance (HOMA-IR), insulin resistance was evaluated
in the fasting state. The results of IR were significantly calculated in the fasting insulin (IF)
and fasting glucose (GF) as follows: HOMA-IRZ (IF × GF)/22.5 [48,49].

2.6. Estimation of Serum Cytochrome c (COX) and p53

Cytochrome c and p53 were measured in both serum and muscle samples with com-
petitive ELISA kits obtained from Chemicon International, Temecula, CA, USA, and Bender
MedSystems, Burlingame, CA, USA, respectively. The procedures of both p53 and cy-
tochrome c ELISA kits were performed according to the manufacturer’s instructions [50].

2.7. Estimation of Oxidative Stress and Antioxidant Capacity

Total antioxidant capacity (TAC) was measured in serum and muscle samples by
Colorimetric Assay Kit (Catalog #K274-100; BioVision Incorporated, Milpitas, CA, USA).
The antioxidant equivalent concentrations were measured at 570 nm as a function of Trolox
concentration according to the manufacturer’s instructions: Sa/Sv = nmol/µL or mM
Trolox equivalent (where Sa is the sample amount (in nmol) read from the standard curve;
Sv is the undiluted sample volume added to the wells). Serum 8-OHdG as a marker of
DNA damage was also estimated in all subjects by using a commercially available ELISA
kit (DNA damage ELISA Kit, Product #: ADI-EKS-350, Enso life sciences Co., Farmingdale,
NY, USA) [51].

2.8. Sample Calculations

A sample comprising 50 subjects was included in this study. G ∗ Power program for
Windows (version 3.1.9.7, Heinrich-Heine-University) was used to measure the power of
the sample size of 50 subjects. Using the t-test with a significance level of 0.05, the total
sample of 50 achieves a power of 95% with an effect size of 0.92, Df = 45.74, critical t = 1.68,
and noncentrality − α = 3.34. Based on the incidence of diabetes, participants were then
divided into two groups: a healthy group (n = 20) and a T2DM group (n = 30).

2.9. Statistical Analysis

Data were expressed as mean ± standard deviation (SD). Repeated measures ANOVA
were performed to evaluate the changes in COX, p53, glycemic control, and oxidative
stress variables pre- and post- HIIT exercise training within and between groups (pre- and
post-study). Statistical analysis was performed using SPSS software (version 16.0). All data
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levels set at p < 0.05 were reported as significant (SPSS statistical 13.0 software version for
Windows; SPSS Inc., Chicago, IL, USA).

3. Results

To study the potential effects of T2DM on muscular mitochondria, p53, COX, and
mitochondrial DNA content as well as oxidative stress parameters, TAC, and 8-OHdG
were estimated as biomarkers of mitochondrial changes in serum and muscle tissues of
patients with T2DM and control subjects (Figure 1). Baseline data showed a significant
increase in the levels of p53, COX, and 8-OHdG (Figure 1A,C), with a decrease in TAC
and mt-DNA content (Figure 1B,D,E) in serum and muscle tissues of diabetic patients (p =
0.001) compared to healthy control subjects.
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TAC (C,D), and muscular mitochondrial DNA content (E) of control and T2DM participants. Data
expressed as mean ± SD. ** p < 0.001 (pre vs. post) level values of control and diabetic patients.
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In this study, the effects of HIIT exercise training for 12 weeks on T2DM and its other
related complications were evaluated both in healthy subjects (n = 20) and T2DM (n = 30)
patients. Thus, adiposity markers (BMI, waist, Hips, and WHR) and glycemic control
parameters (FG, serum C-peptide, FI, HbA1c (%), and IR) were estimated in serum samples
of all subjects pre- and post-HIIT exercise training, as shown in Table 1.

Compared to pre-exercise data, VO2 max values as measures of physical fitness
showed an improvement with a significant decrease in adiposity markers in healthy control
subjects (CON; p = 0.01) and T2DM patients (T2DM; p = 0.001) following 12 weeks of
HIIT exercise training (Table 1). In addition, significant improvement in diabetic control
parameters was reported in healthy subjects (CON; p = 0.01) and type 2 DM patients (T2DM;
p = 0.001) after HIIT exercise training, with a significant decrease in FG, IR, HbA1c (%), and
an increase in the levels of serum FI and c-peptides (Table 1).

The potential effects of HIIT exercise training on p53 protein, COX, TAC, 8-OHdG,
and mt-DNA content were evaluated in all participants following exercise training. Post-
exercise data showed a significant reduction in the expression levels of p53, Cox, and
8-OHdG, with a significant increase in the levels of mt-DNA and TAC in serum and muscle
tissues of control (Figures 2 and 3) and diabetic cases (Figures 4 and 5) following HIIT
exercise training for 12 weeks.
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expressed as mean ± SD. ** p < 0.001 (pre vs. post) level values of diabetic patients. TAC: total
antioxidant capacity; mt-DNA: mitochondrial DNA content; T2DM: type 2 diabetes mellitus.

4. Discussion

The present study reported significant improvement in adiposity markers: BMI and
waist-to-hip ratio (WHR) reduced in both control and T2DM patients following 12 weeks of
the HIIT program. In diabetic and control subjects, glycemic control parameters such as FG,
HbA1c (%), HOMA-IR, fasting insulin, and C-peptide showed significant improvements
toward normal control values following exercise training. HIIT training at moderate
interval training was reported to be beneficial for patients with stable post-infarction
heart failure who were undergoing optimal medical treatment, including β-blockers and
angiotensin-converting enzyme inhibitors. In that study, patients who underwent interval
training reported a significant improvement in brachial artery flow-mediated dilation
(endothelial function), while mitochondrial function in lateral vastus muscle increased with
aerobic interval training alone, compared to those who underwent moderate continuous
training. Therefore, it was concluded that exercise intensity with interval training was
an important factor in improving aerobic capacity, endothelial function, and quality of
life in patients [58–60]. Moreover, applying HIIT training at different intervals (lower,
moderate, and high activity) with intermittent bursts of strenuous activity, was shown
to be the most suitable for different physiological adaptations in many diseases, such as
diabetes [61]. Previously, beneficial effects of regular exercise were reported in diabetic
patients with or without complications and/or only insulin resistance [62,63]. It was
reported that HIIT exercises for 8 weeks were shown to improve glycemic control and
pancreatic β Cell function, preserve insulin secretion, and enhance insulin sensitivity of
type 2 diabetes [64,65]. Additionally, interval training exercise was shown to improve free-
living and postprandial glycemic control parameters of diabetic patients when compared
to continuous exercise with matched time duration and oxygen consumption [66].

In addition, HIIT exercise training for 8 weeks was found to significantly reduce total
body fat and visceral adiposity, which confirms our results regarding improvements in
adiposity parameters such as BMI and WHR. Moreover, these results concluded that HIIT
training was found to be superior in reducing more visceral adiposity levels compared
with conventionally applied exercise training programs [67]. It was proposed recently that
HIIT training programs with different intensities enhance glycemic control of diabetic cases
though improved adipose tissue sensitivity of liver insulin, which subsequently leads to a
potential increase in insulin [67–69]. In patients with diabetes, the improvements in diabetic
status depend on the potential adaptation of the patient’s skeletal muscle and sensitivity to
frequency, intensity, duration, and mode of exercise performed [11,12].
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In most cases, diabetic patients are characterized by a failure or reduction in the synthe-
sis of ATP, which may be related to insulin infusion and a lower number of mitochondria in
skeletal muscle [14–18]. Mitochondria constitutes the most important resource for utilizing
molecular ATP needed for vital cellular processes in human tissues [11–13]. Therefore, any
change in the physiological function of mitochondria significantly affects diabetic patients.

This study estimated the p53, mitochondrial COX, and mt-DNA content levels in
serum and muscle tissues of T2DM patients and healthy control participants before and
after HIIT exercise training for 12 weeks. In patients with T2DM, baseline values showed
higher levels of p53, COX, and lower mt-DNA content in the serum and muscle tissues
of patients compared with healthy control subjects. However, a significant decrease in
the levels of p53 and cytochrome c and an increase in mt-DNA levels were reported in
both patients and control subjects following 12 weeks of HIIT exercise. The data obtained
may suggest the role of mitochondria in improving diabetes after exercise by reducing the
expression of p53 protein and COX.

Mitochondrial biogenesis is one of the most important adaptive responses to aerobic
exercise training, which increases the expression of mitochondria mRNA, number, protein
synthesis, and oxidative activity [19–32]. Previously, it was reported that elevated glucose
concentrations induce significant apoptosis in human β–cells due to constitutive expression
of the Fas ligand [70]. Moreover, cytochrome c was released from mitochondria as a result
of the interaction that occurs between apoptotic signals and cell surface receptors. With
the help of some cytosolic proteins [71], the released cytochrome c in the cytoplasm of
apoptotic cells assists caspases enzymes in activating the degradation of cellular DNA by
the action of endonucleases [72]. Consistent with our results, previous studies showed that
increased glucose levels induce apoptosis by expression of p53 protein and activation of
cytochrome c-activated caspase-3 in response to DNA damage and subsequent decrease in
mt-DNA content [73,74].

Previous studies reported that p53 might have a protective role in pancreatic β-cell
death and that the increased expression of p53 was significantly associated with apoptotic
death of pancreatic β–cells [75]. It was further reported that p53 is responsible for a decline
in mitochondrial respiration via mutation in cytochrome oxidase deficient homolog 2
(SCO2) genes, which suppress the assembly of COX (cytochrome c oxidase), a critical
component and the major site of oxygen utilization on the respiratory chain, resulting
in aerobic respiratory failure [35,36]. P53 was also shown to improve aerobic exercise
capacity and augment skeletal muscle mitochondrial DNA content, suggesting that p53
may also increase mitochondrial oxidation in skeletal muscle by regulating mitochondrial
biogenesis [37].

Regarding the effects of the HIIT program on mitochondrial mt-DNA, it was shown
that the increase of mt-DNA content in muscle tissue of diabetic and control subjects
might be related to the regulatory role of p53 in modulating mitochondrial content and
exercise performance [76–78]. In exercise models with acute activity, posttranslational
modifications and subcellular localization of p53 to mitochondria facilitate its role in
controlling contractile-induced mitochondrial biogenesis [78–81]. P53 is clearly involved in
regulating mitochondrial biogenesis, cellular metabolism in the cell, and regulation of mt-
DNA copy number and transcriptional activity [82–85]. In experimental models, exercise
training decreased the level and expression of p53 in skeletal muscles with a subsequent
increase in mitochondrial DNA content in skeletal muscle [82,86].

The suppression of p53 protein expression by HIIT exercise may protect myofibers
from apoptosis, promote cell survival, and relieve insulin resistance and metabolic abnor-
malities associated with DM, providing a qualitatively different mode of p53 function as an
antioxidant defense in cells [83,87]. The decrease in cytochrome c levels following exercise
may be due to the regulation of p53 to ATP-generating pathways such as mitochondrial
biogenesis [88,89], which catalyze the transfer of electrons from reduced cytochrome c to
molecular oxygen. The loss of p53 results in decreased oxygen consumption and aero-
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bic respiration and promotes a switch to glycolysis, thereby reducing endurance during
physical exercise [24,90,91].

It was previously reported that oxidative phosphorylation systems require the expres-
sion and maintenance of nuclear and mitochondrial genomes [92,93]. The expression rates
of mitochondrial DNA (mt-DNA) genomes should be in a regular state to avoid many
pathological syndromes [90–92]. Any change in the mt-DNA expression of human skeletal
muscle by point mutations, deletion, duplication, and depletion of mt-DNA can severely
affect its functionality [93–95].

High-intensity interval training (HIIT) has improved mitochondrial function in indi-
viduals with type 2 diabetes, including changes in mitochondrial parameters such as p53,
COX, and mt-DNA content [96–100]. HIIT has been shown to increase p53 expression in
skeletal muscle, which may help to protect against oxidative stress by activating antioxidant
pathways and promoting mitochondrial biogenesis. Moreover, HIIT has been shown to
increase COX activity and expression in skeletal muscle, as well as increasing of mt-DNA
content in skeletal muscle, which may improve mitochondrial function and enhance cellular
energy production. These changes may also have implications for cellular apoptosis. Mito-
chondria play a key role in regulating cellular apoptosis, and dysfunction of mitochondrial
pathways can contribute to developing chronic diseases, including type 2 diabetes. HIIT
may help to reduce the risk of cellular apoptosis and prevent the development of chronic
diseases, especially in patients with T2DM mellitus, by improving mitochondrial function
and reducing oxidative stress [96–100]. Thus, when implementing HIIT exercise programs
for diabetes management, the benefits of improved glucose control, cardiovascular fitness,
and time efficiency may outweigh the potential risks for many individuals. In addition,
HIIT can be performed using a variety of exercises and can be adapted to different fitness
levels and physical limitations [97–100].

To improve the exercise capacity in patients with type 2 diabetes, non-drug therapies
were postulated to regulate oxidative stress and maintain mitochondrial function [101].
Thus, the effect of oxidative stress on mitochondria was considered in this study. TAC and
8-OHdG were estimated in serum and muscle tissues of control and diabetic patients’ pre-
and post-HIIT program. At baseline, the data showed a significant increase in the levels of
8-OHdG and a decrease in the levels of TAC activity. The data were closely correlated with
a reduction in mt-DNA content in muscle tissue samples. When the patients and control
group participated in the HIIT program for 12 weeks, improvements in the levels of TAC
and lower levels of 8-OHdG oxidative markers of DNA damage were significantly reported
in control and T2DM patients. The data significantly correlated with increased mt-DNA
content in muscular tissues.

Metabolic and cardiovascular disorders associated with diabetes were shown to be
associated with the initiation of free radical oxidative stress and excess ROS production,
which in turn exert significant mitochondrial dysfunction in skeletal muscle and overall
cardiovascular complications [102,103]. Consistent with our results, it was also reported
that mitochondrial dysfunction in tissues might be due to proinflammatory responses and
disturbance in redox homeostasis, which ultimately produces severe cellular damage with
an increment in insulin resistance [79,81,100–102]. Previously, it was reported that increased
mitochondrial DNA content and function were significantly associated with reduced
oxidative stress and improved insulin resistance attenuation by exercise training [98–103].

Finally, the data of this study were aligned with others who reported that p53 improves
aerobic exercise capacity and augments skeletal muscle mitochondrial DNA content [95,96],
suggesting that p53 may also increase mitochondrial oxidation in skeletal muscle by regu-
lating mitochondrial biogenesis and decrease in oxidative stress capacity [82].

4.1. Strength

This study has investigated the effects of high-intensity interval training (HIIT) on
various biomarkers related to apoptosis, oxidative stress, and mitochondrial DNA in
individuals with type 2 diabetes, including middle-aged. There is growing evidence to
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suggest that high-intensity interval training (HIIT) can improve cellular apoptosis and
oxidative stress biomarkers in individuals with diabetes. The study provides some potential
strengths using biomarkers P53, COX, mitochondrial DNA, TAC and 8-OHdG to assess the
effects of HIIT on type 2 diabetes:

(a) Scientific contribution: By inducing cellular stress through high-intensity exercise
bouts, HIIT may activate cellular signaling pathways that improve mitochondrial
function, increase antioxidant capacity, and reduce inflammation.

(b) Objective measurement: Measuring biomarkers such as apoptosis (P53, COX), ox-
idative stress (TAC and 8-OHdG), and mitochondrial DNA can provide an objective
measurement of the effects of HIIT on cellular and molecular processes related to type
2 diabetes.

(c) Mechanistic insights: Measuring biomarkers can help to elucidate the mechanisms
through which HIIT improves glucose control and insulin sensitivity in individuals
with type 2 diabetes.

(d) Personalized medicine: Biomarkers can potentially be used to identify individuals
who are most likely to benefit from HIIT and monitor the effects of HIIT individually.

4.2. Limitations

The selected sample size considerably explained the changes in mitochondrial parame-
ters observed following HIIT training and suggested that this exercise intervention may be
an effective strategy for improving mitochondrial function and reducing the risk of chronic
diseases, including type 2 diabetes. However, further research based on larger cohort
samples of patients with T2DM mellitus is required to fully understand the mechanisms
underlying these changes and their long-term implications for health outcomes.

5. Conclusions

HIIT training for 12 weeks may be an effective exercise intervention for improving
glucose control, insulin sensitivity, cellular apoptosis, regulating mitochondrial biogenesis,
and reducing oxidative stress biomarkers in individuals with T2DM mellitus. HIIT was
suggested as an effective strategy for treating T2DM mellitus. However, further research is
required to fully understand the mechanisms underlying these changes and their long-term
implications for health outcomes.
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