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Abstract: Background and Objectives: Robotic surgery has been widely adopted in general surgery
worldwide but access to this technology is still limited to a few hospitals. With the recent introduction
of new robotic platforms, several studies reported the feasibility of different surgical procedures. The
aim of this systematic review is to highlight the current clinical practice with the new robotic platforms
in general surgery. Materials and Methods: A grey literature search was performed on the Internet to
identify the available robotic systems. A PRISMA compliant systematic review was conducted for all
English articles up to 10 February 2023 searching the following databases: MEDLINE, EMBASE, and
Cochrane Library. Clinical outcomes, training process, operating surgeon background, cost-analysis,
and specific registries were evaluated. Results: A total of 103 studies were included for qualitative
synthesis after the full-text screening. Of the fifteen robotic platforms identified, only seven were
adopted in a clinical environment. Out of 4053 patients, 2819 were operated on with a new robotic
device. Hepatopancreatobiliary surgery specialty performed the majority of procedures, and the
most performed procedure was cholecystectomy. Globally, 109 emergency surgeries were reported.
Concerning the training process, only 45 papers reported the background of the operating surgeon,
and only 28 papers described the training process on the surgical platform. Only one cost-analysis
compared a new robot to the existing reference. Two manufacturers promoted a specific registry to
collect clinical outcomes. Conclusions: This systematic review highlights the feasibility of most surgical
procedures in general surgery using the new robotic platforms. Adoption of these new devices in
general surgery is constantly growing with the extension of regulatory approvals. Standardization of
the training process and the assessment of skills’ transferability is still lacking. Further studies are
required to better understand the real clinical and economical benefit.

Keywords: robotic surgery; training; new surgical robots; environmental sustainability; colorectal
surgery; hepatobiliary surgery; upper gastrointestinal surgery; abdominal wall surgery; endocrine
surgery; breast surgery

1. Introduction

Twenty-two years after the clinical introduction of the first Intuitive Surgical Da Vinci
system, only a limited percentage of general surgery procedures are performed via robotic
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approach in Western countries [1]. In addition, there is a great disparity between developed
and low-income countries where robotic surgery remains unsustainable despite its potential
technical advantages [1,2].

Historically, AESOP® and ZEUS, both produced by the American Computer Motion,
were the first robotic surgical systems adopted in general surgery [3]. In 2003, after long le-
gal action, American Computer Motion merged with its main competitor, Intuitive Surgical,
which had been founded eight years prior [3]. The company developed several generations
of master-slave multi-arm robots protecting their products thanks to the registration of
more than 7000 patents which was the main barrier for the development of contenders [4,5].
After twenty years, the first registered patents are progressively expiring allowing the
development of competing products [6]. The twenty years monopoly constituted an enor-
mous advantage for the Intuitive Surgical company, whose products were adopted by most
surgical specialties, thanks to the claimed technical advantages over laparoscopy provided
by 3D imaging, magnification, dexterity, tremor filtration, motion scaling and a quick learn-
ing curve [5]. At the beginning of 2023, more than 11 millions robotic surgeries have been
performed worldwide with Intuitive Surgical Da Vinci robots, with over 7500 platforms
installed worldwide [7].

Nevertheless, the scenario is changing because new robotic platforms have been
recently introduced into the market with several new architectures (e.g., modular plat-
forms). Their use appeared to be feasible, but the associated surgical results and clinical
effectiveness still require further investigation [8].

The aim of this systematic review was to evaluate the adoption of these new surgical
robotic systems in general surgery in terms of clinical data, technical aspects, costs, and
learning curve.

2. Materials and Methods
2.1. Search Strategy and Data Sources

The systematic review was performed according to the Cochrane Collaboration-
specific protocol [9] and reported according to the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) statement [10].

A first search was performed in grey literature and on the internet to identify the newly
available robotic platforms, different from the Intuitive Surgical Da Vinci S®/Si®/Xi®/X®

(Intuitive Surgical, Sunnyvale, CA, USA). Studies describing the adoption of new robotic
platforms in general surgery were searched in the following databases up to 10 February
2023: Medline (through PubMed), Embase, and Cochrane Library.

A specific research query was adopted for each database, using the following key-
words: hugo robot; versius robot; da vinci single-port robot; flex robotic system robot;
senhance robot; revo-i robot; microhand robot; hinotori robot; avatera robot; distalmo-
tion robot; maestro robot; bitrack system robot; sport surgical system robot; mira robot;
mantra robot. Due to the adoption of proper commercial names, multiple spellings for each
word were adopted to avoid any missing data related to the improper name typing in the
existing publications.

According to the PICOS format, the following items were used to select the retrieved
articles:

P, population: patients > 18 years undergoing a robotic intervention with a platform
different from Intuitive Surgical multiport Da Vinci S®/Si®/Xi®/X®.
I, intervention: any general surgery intervention with the following exclusions: gynecology,
urology, thoracic surgery, othorinolaringoiatry, plastic surgery, pediatric surgery.
C, comparison: any comparison or no comparison.
O, outcomes: all reported outcomes, such as intraoperative, postoperative, short-term,
long-term, functional, learning-curve, or cost analysis.
S, study design: due to the expected paucity of studies on the topic, all types of study
design were considered, including case reports. Systematic and narrative reviews were
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excluded. Redundant studies were included and highlighted in the results. Abstract or
congress communications were excluded. Only studies in English language were included.

The literature search and selection were performed by two independent reviewers
(FM, LS). According to the PRISMA methodology, all records were first merged into a
single database, then duplicates were removed, and the remaining articles were reviewed
for relevance using the title and abstract. Disagreement was resolved by discussion and
consensus; if no agreement was reached, a third senior author was consulted (NdA) in
assessing study inclusion.

Finally, the two reviewers, supported by three supplemental reviewers (AZ, VL, OM)
performed an independent full-text analysis to finalize the inclusion of pertinent articles.

The protocol has been registered in the International Prospective Register of Systematic
Reviews database (PROSPERO: CRD42023416428).

2.2. Data Extraction and Synthesis

An electronic spreadsheet was filled with data extracted from the selected studies. The
following items were collected: first author’s name, year of publication, country, type of
study design, time frame of the study, pathological state requiring surgical intervention,
number of patients/procedures evaluated, type of surgical intervention, adopted robotic
platform, number of robotic and assistant arms adopted, number of surgeons involved,
surgeon experience, surgical team experience, patient’s age, patient’s sex, intraoperative
surgical outcomes, postoperative surgical outcomes, short-term outcomes, long-term out-
comes, functional outcomes, learning-curve, or cost analysis.

2.3. Quality Assessment

The risk of bias of the included studies was assessed according to the MINORS scoring
system. The MINORS system attributes a score of 0 if the item is not reported, 1 if the item
is reported but inadequate, or 2 if the item is reported and adequate. The global highest
score is 16 for non-comparative studies and 24 for comparative studies. Case reports were
not evaluated due to the high risk of bias by definition.

3. Results

The initial database search identified a total of 1054 studies, of which 266 were du-
plicates. After screening the titles and abstracts of the 788 remaining articles, 681 were
excluded owing to non-pertinent specialty or intervention. After the full-text reading of the
107 eligible articles, a further 4 were excluded since 1 was a review article and 3 did not
have a full-text version available. One-hundred and three studies met the inclusion criteria
and were selected for the qualitative synthesis of the literature (Figure 1).

Among the included studies, 36 were case reports [11–46], 52 were noncompara-
tive studies [47–98], and 15 were comparative studies [99–113]. Only one study was a
randomized controlled trial [103].

The comparator was the Intuitive Surgical Da Vinci robot in ten cases [99–101,103–
107,110,112] and the laparoscopic approach in six cases [102,105,106,108,109,111]. Only one
study compared two different techniques with the same platform [113].

A total of 4053 patients were described, of whom 3099 were operated on with a new
robotic platform. The population consisted of 1526 women (49.2%) and 1569 men (50.6%)
and 4 patients (0.1%) whose sex was not specified. The age of the patients ranged between
15 and 92 years. Several series included the same population reducing the total number to
2819 patients (Table 1).
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Table 1. Number of interventions according to the surgical specialties and the type of robotic
platforms.

Robotic
Platform

Surgical
Specialty

Intuitive
Surgical
Da Vinci

SP®

CMR
Versius®

Asensus
Senhance®

Wego
MicroHand

S/SII

Medrobotics
Flex®

Meerecompany
Revo-i™

Medtronic
Hugo™

RAS

Total
Cases Per
Specialty

Hepatobiliary 386 422 114 96 0 17 0 1035

Colorectal 78 169 251 209 33 0 1 741

Abdominal wall 89 97 345 0 0 0 0 531

Endocrine 298 5 12 0 0 0 0 315

Upper GI 4 69 19 32 0 0 0 124

Breast 73 0 0 0 0 0 0 73

Total cases per platform 928 762 741 337 33 17 1 2819

The authors belonged to institutions located in: South Korea (n = 27), China (n = 16),
North America (n = 13), Lithuania (n = 11), Japan (n = 8), Germany (n = 6), Italy (n = 6),
United Kingdom (n = 6), India (n = 4), United Arab Emirates (n = 2), Taiwan (n = 1), France
(n = 1), Croatia (n = 1), Australia (n = 1).

The reported cases belonged to several specialties: hepatopancreatobiliary surgery [13,
37–39,50–55,78,79,87–97,100–103] (Tables S1 and S2), colorectal surgery [14–36,56–75,88–
91,93–98,104–111] (Tables S1 and S3), abdominal wall surgery [11,12,47–49,87–90,93–95,99]
(Tables S1 and S4), endocrine surgery [76,77,81–83,112,113] (Table S5), upper gastrointestinal
and bariatric surgery [42–45,71,84,86,88,95–98] (Tables S1 and S6), breast surgery [40,41,80]
(Table S7).

The most performed procedure according to the specialty was: cholecystectomy in
hepatobiliary surgery, anterior rectal resection in colorectal surgery, transabdominal pre-
peritoneal hernia repair in abdominal wall surgery, transaxillar hemithyroidectomy in
endocrine surgery, transthoracic esophagectomy in upper gastrointestinal surgery, and
nipple sparing mastectomy in breast surgery.

Perioperative and postoperative outcomes were reported, respectively, in 101 (98.1%) [13–
87,89–113] and 99 (96.1%) [13–18,21–113] studies. Five authors assessed the procedural
learning curve [49,54,83,108,109]. One article investigated the patients’ satisfaction [53].
Functional results were reported in colorectal surgery by five authors only [104–106,108,109].
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No major issues related to the robotic system were reported, except for five cases
with the same robotic system, reported by three different authors, which did not generate
consequent serious clinical events [48–50].

The mean MINORS score was 9 (4–14) and 16 (9–22) for non-comparative and compar-
ative studies, respectively.

3.1. Surgery Setting

Most of the reported cases were elective surgeries (91.2%). Thirteen articles reported on
emergency cases performed via a robotic approach. Two incarcerated hernias [12,88], one
perforated gastric ulcer [96], seven acute appendicitis [91,96], and 99 acute cholecystitis [50–
52,54,87,88,97,100] were described.

3.2. Robotic Platforms

Fifteen different robotic platforms were identified on the internet. Seven robotic
platforms were identified as authorized for clinical use in at least one healthcare system
(Medtronic Hugo™ RAS; Cambridge Medical Robotics Versius®; Intuitive Surgical Da Vinci
SP®; Medrobotics Corp. Flex Robotic System; Asensus Senhance® ALF-X; Meerecompany
Inc. Revo-i™; Wego Micro Hand S) and their clinical results were reported. Five robotic
systems have been authorized but no clinical data were available in scientific literature
(Medicaroid Hinotori™; Avatera Medical Avatera®; Distalmotion Dexter; Moon Surgical
Maestro; Virtual Incision MIRA). Three additional surgical platforms were detected but no
clinical approval nor application was retrieved (Titan Medical Inc ENOS™; SS Innovation
Mantra; Rob Surgical Systems S Bitrack System).

The regulatory approvals and the available information on these platforms are reported
in Table 2.

Table 2. Regulatory approvals and available information of the robotic platforms.

Clinically Adopted Platforms

Company Product Name Country Regulatory Approvals Marketing Information
(n. Procedures/Platform)

Medtronic Hugo™ RAS US

FDA: ongoing
CE-mark: general surgery; urology;

gynecology
Australian TGA: urology;

gynecology
Health Canada: general surgery
MHLW PMDA Japan: urology;

gynecology

NR

Cambridge Medical
Robotics Versius® England

CE-mark: general surgery; urology;
gynecology; thoracic surgery

Australian TGA: general surgery;
urology; gynecology

Anvisa Brazil: general surgery;
urology; gynecology

Other countries: India; Pakistan;
Egypt

10,000 procedures performed
(March 2023) [114]

>100 installed platforms
(November 2022) [115]

Intuitive Surgical Da Vinci SP® US

FDA: urology; transoral procedures
MHLW PMDA Japan: urology;
gynecology; general surgery;

thoracic surgery; transoral
MFDS Korea: urology; general
surgery; gynecology; thoracic

surgery; transoral
NMPA China: yes, not specified

121 installed platform
(December 2022) [116]

A’design award winner 2019

Medrobotics Corp. Flex® Robotic System US

FDA: transoral; colorectal; general
surgery; gynecology; thoracic

surgery
CE-mark: colorectal

Australian TGA: colorectal

Bankrupt of the producing
company
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Table 2. Cont.

Clinically Adopted Platforms

Company Product Name Country Regulatory Approvals Marketing Information
(n. Procedures/Platform)

Asensus
(formerly TransEnterix) Senhance® ALF-X US

FDA: general surgery; gynecology.
Pediatric surgery expected in 2023

CE-mark: general surgery;
gynecology; pediatric surgery
MHLW PMDA Japan: urology;
gynecology; general surgery;

thoracic surgery
Roszdravnadzor—Russia: yes, not

specified
Taiwan: yes, not specified

>10,000 procedures performed
(February 2023)

>49 installed platforms
between 2016 and 2022 [117]

Meerecompany Inc. Revo-i™ South Korea MFDS Korea: urology; gynecology;
general surgery NR

Wego Micro Hand S China NMPA China: general surgery Reddot award winner 2022

Platforms under Clinical Investigation

Company Product Name Country Regulatory Approvals Marketing Information

Medicaroid Hinotori™ Japan MHLW PMDA Japan: urology;
gastrointestinal; gynecology

840 procedures
(December 2022)

28 installed platforms
(September 2022) [118]

Avatera Medical Avatera Germany CE-mark: urology; gynecology Fist clinical procedure in May
2022 [119]

Distalmotion Dexter Switzerland CE-mark: general surgery;
gynecology

4 installed platforms [120]
iF design award 2020

Moon Surgical Maestro US FDA: laparoscopic procedures
CE-mark: laparoscopic procedures 30 procedures performed [121]

Virtual Incision MIRA US
FDA: completed IDE for bowel

resections. De novo classification
pathway ongoing

NR

Titan Medical Inc. ENOS™ (formerly SPORT) Canada FDA: planned in 2023
CE-mark: planned in 2023/24 NR

SS Innovation Mantra India
FDA: planned in 2023

CE-mark: planned in 2023
Other countries: India

5 installed platforms
100 procedures
performed [122]

Rob Surgical Systems S Bitrack System Spain NR First clinical trial
ongoing [123]

US: United States; FDA: food and drug administration; CE: Conformité Europeenne; TGA: Therapeutic Goods
Administration; MHLW PMDA: Ministry of Health, Labour and Welfare Pharmaceuticals and Medical De-
vices Agency; NR: not reported; MFDS: Ministry of Food and Drug Safety; NMPA: National Medical Products
Administration; IDE: Investigational Device Exemption.

3.2.1. Patient Chart Architecture

Five systems (Medtronic Hugo™ RAS; Cambridge Medical Robotics Versius®; Asen-
sus Senhance® ALF-X; Distalmotion Dexter; SS Innovation Mantra) are modular with
independent arms ranging from three to four, including the optical arm.

Five platforms (Meerecompany Inc. Revo-i™; Wego Micro Hand S; Medicaroid
Hinotori™; Avatera Medical Avatera®; Rob Surgical Systems S Bitrack System) have a
multiarm architecture with three to four arms, including the optical arm.

Two systems (Intuitive Surgical Da Vinci SP®; Titan Medical Inc ENOS™) are sin-
gle port surgery platforms endowed with three to four arms, including the optical arm,
characterized by flexible arms.

One robotic platform (Virtual Incision MIRA) shows a new miniaturized architecture
allowing the entrance and the deployment of the two sterile arms and the optics directly
into the body through a single incision.
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One platform (Medrobotics Corp. Flex Robotic System) is a flexible endoscope with
two operating arms.

One system (Moon Surgical Maestro) is intended to hold and position laparoscopes
and laparoscopic instruments during laparoscopic surgical procedures, like an assisted
laparoscopy rather than robotics (Table 3).

Table 3. Summary of the overall characteristics of the robotic platforms.

Robotic
Platform

Patient Chart
Architecture

Console
Architecture

Operative
Arms No. Trocars Instruments Instruments’

Reusability
Advanced

Energy

Medtronic
Hugo™ RAS Modular Open 3 Commercial Wristed

Reusables
(some

disposables)
NA

Cambridge
Medical Robotics

Versius®
Modular Open 3 Commercial Wristed Reusables NA

Intuitive Surgical
Da Vinci SP® Single port Closed 3 Dedicated +

commercial Wristed Reusables NA

Medrobotics
Corp.

Flex® Robotic
System

Flexible system / 2 / Wristed Disposables NA

Asensus
Senhance®

ALF-X
Modular Open 3 Commercial Rigid with a

kit of wristed Reusables Ultrasonic
(rigid)

Meerecompany
Inc.

Revo-i™
Multiarm Closed 3 Commercial Wristed Reusables Ultrasonic

(rigid)

Wego
Micro Hand S Multiarm Open 2 Dedicated Wristed Reusables Ultrasonic

(rigid)

Medicaroid
Hinotori™ Multiarm Semi-open 3 Dedicated Wristed Reusables NA

Avatera Medical
Avatera Multiarm Semi-open 3 NR Wristed Disposables NA

Distalmotion
Dexter Modular

Open (with
laparoscopic

screen)
2 Commercial Wristed Disposables NA

Moon Surgical
Maestro

Multiport
instrument

holder
/ 1 Commercial / / NA

Virtual Incision
MIRA Single port Open 2 NR Wristed Reusables NA

Titan Medical Inc.
ENOS™

(formerly
SPORT)

Single port Open 2 NR Wristed Reusables NA

SS Innovation
Mantra Modular Open 3 Dedicated Wristed Reusables NA

Rob Surgical
Systems S

Bitrack System
Multiarm Open 3 Commercial Wristed Disposables NA

NR: not reported; NA: not available.

3.2.2. Surgeon Console Architecture

The majority (64.3%) of the analyzed systems have an open console (Medtronic Hugo™

RAS; Cambridge Medical Robotics Versius®; Asensus Senhance® ALF-X; Wego Micro Hand
S; Virtual Incision MIRA; Titan Medical Inc. ENOS™; SS Innovation Mantra; Rob Surgical
Systems S Bitrack System; Distalmotion Dexter). One of them (Distalmotion Dexter) does



Medicina 2023, 59, 1264 8 of 18

not have a dedicated viewing system but adopts a laparoscopic screen, considering that the
surgeon console is sterile, and the operating surgeon is in the surgical field.

Two robots have a closed console with a Da Vinci-like architecture (Intuitive Surgical
Da Vinci SP®; Meerecompany Inc. Revo-i™).

Two systems adopt a semi-open console (Avatera Medical Avatera®; Medicaroid
Hinotori™) with an immersive view into a closed viewer but without the bulky system,
reducing the physical isolation of the operating surgeon.

One system (Medrobotics Corp. Flex® Robotic System) does not have a real console
but an open bidimensional screen to drive the endoscope and two mechanical arms directly
controlled by the surgeon with no electromechanical mediation.

One system (Moon Surgical Maestro) is more a holder for laparoscope and instruments
so it does not have a dedicated console (Table 3).

3.2.3. Trocars, Instruments, and Reusability

Seven robotic platforms adopt commercial laparoscopic trocars (Cambridge Medical
Robotics Versius®; Asensus Senhance® ALF-X; Medtronic Hugo™ RAS; Meerecompany
Inc. Revo-i™; Distalmotion Dexter; Moon Surgical Maestro; Rob Surgical Systems S Bitrack
System), while three (Wego Micro Hand S; Medicaroid Hinotori™; SS Innovation Mantra)
opt for a dedicated trocar. One system adopts a dedicated metallic trocar with a disposable
commercial single site access system (Intuitive Surgical Da Vinci SP®)

Medrobotics Corp. Flex® Robotic System is like a coloscope with no need for trocars.
Three platforms (Titan Medical Inc ENOS™; Virtual Incision MIRA; Avatera Medical

Avatera®) did not still specify the adopted access system but two of them (Titan Medical
Inc ENOS™; Virtual Incision MIRA) will probably opt for a single port commercial system.

All the described systems except for two (Asensus Senhance® ALF-X; Moon Surgical
Maestro) have wristed or flexible instruments. As an exception, some papers reported the
adoption of wristed instruments (Radia®) for the the Asensus Senhance® ALF-X [23,72,93].
Furthermore, the Wego Micro Hand S system is equipped by some authors with a rigid
advanced ultrasonic dissector [69,84,96,103,106,109,110].

Nine platforms adopt reusable instruments (Intuitive Surgical Da Vinci SP®; Asensus
Senhance® ALF-X; Cambridge Medical Robotics Versius®; Meerecompany Inc. Revo-i™;
Medicaroid Hinotori™; Wego Micro Hand S; Virtual Incision MIRA; Titan Medical Inc
ENOS™; SS Innovation Mantra). One of them (Virtual Incision MIRA) is totally sterilizable
and portable.

One system is partially sterilizable but adopts disposable instruments (Medrobotics
Corp. Flex® Robotic System).

Three robotic platforms use disposable instruments (Avatera Medical Avatera®; Dis-
talmotion Dexter; Rob Surgical Systems S Bitrack System).

One robotic system (Medtronic Hugo™ RAS) uses sterilizable instruments with some
disposable tools, as the needle driver and the scissor.

One system (Moon Surgical Maestro) does not have robotic tools so laparoscopic
instruments can be adopted (Table 3).

3.2.4. Advanced Energy and Staplers

All the platforms support monopolar and bipolar energy but only three systems
(Asensus Senhance® ALF-X; Wego Micro Hand S; Meerecompany Inc. Revo-i™) offer
advanced ultrasonic energy.

A complete gamma of staplers or advanced energy is not currently available for any
of the investigated platforms (Table 3).

3.3. Training

Forty-five (43.7%) authors reported the surgical background of the operating surgeon
and his previous experience [26,31,33,45,47–59,62,64,67,69,76,77,79,83–92,94,96,99,102–106,
108–110]. A structured training process of the surgical team on the adopted system was
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reported by 28 (27.2%) authors [26,40,47–49,51–54,56,58–60,64,67,76,77,85,87,88,90–93,95,
99,109,110]. Of these, only five (4.8%) articles clearly stated the involvement of the nurses
in the training process [54,64,77,93,99]. Only one (1%) article described the anesthesiologist
as part of the team who underwent the surgical training process [93].

Concerning skill transferability, 26 (25.2%) articles reported a previous experience with
a Da Vinci robot [26,31,33,45,47,53,54,56,62,67,69,77,79,83,85,87–90,96,99,103–106,110].

No article reported a previous experience with a platform different from Intuitive
Surgical Da Vinci.

Three (2.9%) authors declared the existence of a credentialing program for the surgeon
or the hospital [55,56,88]. Proctoring was mentioned by only six (5.8%) papers as part of
the translational training during the first cases [48,56,87,88,93,99].

3.4. Registries

Two manufacturers (Asensus Surgical; Cambridge Medical Robotics) provided the
surgeons with self-established registries whose results were published [94,124].

3.5. Costs

A cost analysis was performed by only one (1%) study [110]. The analysis compared
the robotic total mesorectal excision performed with the Wego Micro Hand S or with its
comparator benchmark, the Intuitive Surgical Da Vinci Si®. The Micro Hand S group had
lower total hospital costs (87,040.1 ± 24,676.9 yuan vs. 125,292.3 ± 17,706.7 yuan, p < 0.05)
and surgery costs (25,772.3 ± 4117.0 yuan vs. 46,940.9 ± 10,199.7 yuan, p < 0.05) when
compared to the Da Vinci group.

4. Discussion

Robotic surgery has increasingly been adopted in general surgery since 2001 [125]. For
years, the only widely adopted system was the Intuitive Surgical Da Vinci robot but, more
recently, several other robotic platforms have been launched and introduced in the current
practice after clinical approval in the respective markets. The present systematic review
constitutes a state of the art of their clinical application.

The literature reviewed was very recent, published between 2016 and 2023, and
reported clinical outcomes of over 2800 patients undergoing a minimally invasive operation
with new robotic platforms.

Despite the recent adoption of these newly introduced platforms, the majority of
the surgical procedures were performed with no reported adverse outcome and a low
rate of technical issues related to the robot malfunction, confirming the reliability of the
described systems. The new robots were mostly adopted for hepatopancreatobiliary, col-
orectal, and abdominal wall surgeries while fewer cases were reported for endocrine, upper
gastrointestinal, and breast surgery. While some specialties, such as colorectal surgery,
seemed to have extensively benefited from the new devices, others like the hepatopancre-
atobiliary surgery did not fully exploit their potential as the most performed procedure
in such specialty still remains cholecystectomy. One of the reasons for this difference
could be the absence of advanced instruments like staplers and powered dissectors, still
not available for most of the presented robots. Another explanation could be found in
the adoption of the new robotic platforms by hospitals aiming to improve the surgical
volume and the attractiveness, even on simple procedures such as hernia surgery and
cholecystectomy [126].

Nevertheless, the clinical indications for the new platforms are growing thanks to the
constant approval of new specialties and new procedures in different countries.

The robotic platforms that are less represented in this review are expanding their
market and new reports are available on a daily basis, following the acquisition by hospi-
tals [127,128]. This robotic surgery broadening favored even general emergency surgeries
for routine indications, such as appendicitis or cholecystitis, following a current trend in
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the literature [129]. Included articles belong to different continents but more than 50% were
from Asia, where market is mainly driven by China, Japan, South Korea, India, and Taiwan.

These countries represent a population of more than 3 billion people, and they are
pushing towards the development of indigenous platforms with the aim to compete with
the existing Da Vinci. Concerning the Chinese market, the import of foreign robots is subject
to a very limited quota, which was fully covered by Intuitive Surgical before the arrival of
new competitors. The increasing complexity in the regulations will likely cut out expensive
imported robots from the local market in favor of newly developed Chinese systems but
it is not clear whether other countries will benefit from the commercialization of these
platforms [130,131]. Access to the new technologies from China is extremely limited mainly
due to the language barrier and the limited sharing of technical information, but currently
several devices appear to be under testing and commercialization [132–134]. As for China,
even Japan has a long history in robotic surgery, and it recently pushed the development of
an indigenous product (Medicaroid Hinotori™). The company’s philosophy is tailored to
suit the local market, promoting a smaller robot for smaller patients. However, it is also
considering global expansion plans, as substantiated by its newly announced partnership
with Karl Storz for the vision system [135] and the installation of the robot into a European
training center [136]. Likewise, South Korea and India also developed their own systems
with the aim of reducing robotic surgery expenses and facilitating the access to their
population [137,138].

All the platforms presented in this review differ in nature, history, development,
and technology. Only half of the included robots demonstrated their clinical potential
while the rest are still under approval or in the investigational stage. The multi-arm
robotic architecture invented by the Intuitive Surgical experience was adopted only by
five manufacturers, whereas five others developed a modular concept more inspired by
laparoscopy. Although the concept of “new robot” refers to small, portable, modular
devices equipped with small instruments, this point was not agreed upon by the authors
when reviewing the currently available robotic architecture, which is largely inspired
by the well-known Da Vinci system. [139]. New concepts are emerging in the existing
literature such as the mini-robot by Virtual Incision MIRA or the single port systems
by Intuitive Surgical and Titan Medical emerged from the literature, leading to debates
regarding indications and results, as it was in the laparoscopic era [140]. Additionally, two
mentioned systems introduced the opportunity to robotize two routine practices such as the
colonoscopy (Medrobotics Flex®) and the common laparoscopy (Moon Surgical Maestro).
These innovations require proper trials to demonstrate their usefulness due to the current
lack of clinical evidence.

Furthermore, analysis of instruments and trocars reveal differences across platforms
in terms of materials, dimensions, and degree of articulation. Cost reduction, processability
of instruments, tools’ precision, and CO2 emission remain top priorities for manufacturers
despite the absence of common consensus, moreover regarding the use of reusable or
disposable instruments.

These profound differences complicate a direct comparison between available robotic
platforms. The only studies that aimed to show differences between manufacturers, were
related to the Chinese Wego Micro Hand S system. The authors produced redundant litera-
ture demonstrating the equivalence of their new system with the existing Intuitive Surgical
Da Vinci. In addition, they reported a decrease in hospital and surgical costs which could
represent an advantage [110]. Additional economic studies are necessary to understand
the real economic impact of the new platforms in various surgical environments.

The heterogeneous global situation, the variety of robots, and the continuous market
growth are expected to revolutionize the clinical scenario in general surgery. Healthcare
professionals will probably encounter multiple platforms throughout their career.

Due to the new paradigm of multiple robotic platforms possible co-existing in the
same hospital, a proper credentialing system becomes essential.
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The training process in surgery has been a topic of debate for decades, both in elective
and emergency surgery [141]. Despite more than two decades of robotic surgery adoption
as a surgical treatment across multiple specialties, no definitive training and credentialing
programs were defined. Recently, Stefanidis et al. [142] and Burke et al. [143] tried to cope
with this issue in the United States and United Kingdom, respectively. Currently, the profi-
ciency assessment on the single platform is guaranteed by the manufacturer and hospitals
grant permission to utilize the robot according to regulatory policies. This paper highlights
that only 43.7% of the studies reported the operating surgeon’s previous experience. In
addition, only 27.2% of the authors described the training process of the surgical team on
the adopted platform. The involvement of the nurses and of the anesthesiologists is even
more marginal, despite a growing interest in literature for the topic [144,145]. The proposed
structured training from a single manufacturer confirms the technical ability of the surgeon
to accomplish prefixed tasks in different settings (usually simulation, dry lab, wet lab on
pigs and/or cadavers). Typically, the first clinical procedures performed are proctored,
although this is reported by less than 6% of the authors.

These training modalities have been extensively adopted since the introduction of
robotic surgery despite limited evidence and some conflict of interest. In fact, proficiency
assessment is performed by the same company that has an interest in the robot’s clinical
adoption. As there is no standardized curriculum in robotic surgery, analyzed papers did
not provide information on the transferability of the skills from one platform to another. In
a simulation environment, Larkins et al. were able to demonstrate some degree of robotic
console skill transferability between two different multiport robotic platforms [146], while
Ghazi et al. concluded for a partial transferability when simulating multiport and single-
port robotic surgery [147]. In urology, currently the main market for robotic companies, a
transition towards new systems were observed with positive clinical results [148], and it is
reasonable to expect a similar process of validation for general surgery.

In order to validate the transition to new robotic devices, robotic companies are
developing their products in collaboration with clinicians, trying to differentiate their
approach and to collect data from the clinical activities. Two recently published registry
analyses concerning the adoption of the two mainly diffused new generation robots, namely
Asensus Senhance® and CMR Versius®, reported 871 and 2083 cases, respectively [94,124].
The published databases will make the comparison of clinical outcomes simpler and more
transparent. Furthermore, the registry promotion distinguished the competitors from
Da Vinci.

The next stage of development will focus on the producer partnership to improve and
ameliorate the existing products in order to better compete in a market still dominated by a
single leader. The vision capabilities will be augmented thanks to the new technological
standards, as announced in February 2023 by Asensus with its new Luna Surgical System
endowed with a 4K-3D vision without the need to wear glasses.

In terms of clinical data analysis, the next major advancement will entail the adoption
of artificial intelligence as proposed by Asensus or Medicaroid, in order to digitalize the
surgical practice, opening the door to new opportunities such as the telesurgery [149,150].

The present review presents some limitations mainly related to the low-quality of
existing evidence, the design and the small sample of studies included, and the absence
of data on several robotic platforms. Nevertheless, this systematic review provides a
good snapshot of the real clinical application of the recently introduced platforms in
general surgery.

5. Conclusions

Robotic procedures with new robotic devices have been progressively described in
hepatobiliary, colorectal, abdominal wall, upper gastrointestinal, endocrine and breast
surgery. Despite the low-quality of the current evidence, this review suggests that most
surgical interventions are feasible with no technical issues. More platforms are obtaining
clinical approvals and their continuous development will be likely stimulated by the Asian



Medicina 2023, 59, 1264 12 of 18

market. However, the absence of an international training curriculum and credentialing
program hinders the ability to evaluate surgical proficiency and the transferability of skills
across different devices. Thus, the future holds substantial technological innovation whose
clinical evidence is yet to be established.
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