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Abstract: Background and Objectives: Lung cancer remains a leading cause of cancer mortality
worldwide. Accurately classifying benign pulmonary nodules and malignant ones is crucial
for early diagnosis and improved patient outcomes. The purpose of this study is to explore the
deep-learning model of ResNet combined with a convolutional block attention module (CBAM)
for the differentiation between benign and malignant lung cancer, based on computed tomography
(CT) images, morphological features, and clinical information. Methods and materials: In this study,
8241 CT slices containing pulmonary nodules were retrospectively included. A random sample
comprising 20% (n = 1647) of the images was used as the test set, and the remaining data were used
as the training set. ResNet combined CBAM (ResNet-CBAM) was used to establish classifiers on
the basis of images, morphological features, and clinical information. Nonsubsampled dual-tree
complex contourlet transform (NSDTCT) combined with SVM classifier (NSDTCT-SVM) was used
as a comparative model. Results: The AUC and the accuracy of the CBAM-ResNet model were
0.940 and 0.867, respectively, in test set when there were only images as inputs. By combining
the morphological features and clinical information, CBAM-ResNet shows better performance
(AUC: 0.957, accuracy: 0.898). In comparison, a radiomic analysis using NSDTCT-SVM achieved
AUC and accuracy values of 0.807 and 0.779, respectively. Conclusions: Our findings demonstrate
that deep-learning models, combined with additional information, can enhance the classification
performance of pulmonary nodules. This model can assist clinicians in accurately diagnosing
pulmonary nodules in clinical practice.

Keywords: lung cancer; CT; deep learning; radiomics; machine learning

1. Introduction

Worldwide, lung cancer remains the leading cause of death in cancer mortality.
It was estimated that 2.2 million new lung cancer cases (11.6% of the total cases) and
1.8 million deaths (18% of the total cancer deaths) occurred in 2020 [1]. Early diagnosis
of asymptomatic lung cancer plays a vital role in treatment planning that can signifi-
cantly improve the survival rate of lung cancer patients, but only 15% of patients were
diagnosed at an early stage of the pathological process, to a large extent leading to poor
prognoses [2,3], where stage I and II lung cancer have a much better prognosis than
stage III or IV lung cancer [4]. Computed tomography (CT) has been recognized as an
effective and noninvasive early diagnostic method for nodule localization, evaluation
of tumor size, morphological features analysis, benign–malignant classification, and

Medicina 2023, 59, 1088. https://doi.org/10.3390/medicina59061088 https://www.mdpi.com/journal/medicina

https://doi.org/10.3390/medicina59061088
https://doi.org/10.3390/medicina59061088
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/medicina
https://www.mdpi.com
https://orcid.org/0000-0001-6997-926X
https://orcid.org/0000-0002-2135-046X
https://orcid.org/0000-0001-6657-6940
https://doi.org/10.3390/medicina59061088
https://www.mdpi.com/journal/medicina
https://www.mdpi.com/article/10.3390/medicina59061088?type=check_update&version=1


Medicina 2023, 59, 1088 2 of 11

survival prediction in patients [5]. The National Lung Screening Trial (NLST) has re-
ported that screening with low-dose computed tomography (LDCT) scans will result in
a 20% reduction in lung cancer mortalities [6,7]. Lung cancer management guidelines
and data-driven models have been developed, but accurately distinguishing between
benign and malignant nodules remains a challenge [7].

Deep learning has emerged in the computer vision field and become very popular
in the medical imaging field [8]. Deep learning based on convolutional neural networks
(CNNs) has been successfully applied in the diagnoses of various diseases, such as skin
cancers [9], brain strokes [10], and lung diseases [11,12]. These CNN models have high-
lighted the possibility of automatically exploiting features from the images and accordingly
completing the tasks of feature selection and weight tuning without requiring a compli-
cated pipeline of image-processing and pattern-recognition steps [13,14]. Using large-scale
training image data, CNN models provide a uniform framework for jointly learning the hi-
erarchical representative features extracted directly from images and classification weights.
Radiomics is an emerging technique that extracts high-dimensional quantitative image
features for diagnosis and prognosis [15,16]. Texture features are the most frequently used
modality, and an increasing number of studies have suggested that CT texture features have
massive diagnostic value in clinical diagnosis [3,17,18]. In our previous study, we found
that nonsubsampled dual-tree complex contourlet transform (NSDTCT) can describe the
image in multiple scales and directions and that it can extract richer detailed information
from the image. But there is no conclusion on which method can better classify pulmonary
nodules. Regardless of whether using deep-learning methods or radiomic approaches,
many studies have been developed for classifying and predicting the malignant risk of
pulmonary nodules, but they often rely on subjective labels provided by radiologists and
lack reliable reference criteria for histopathological examination [19–21]. Moreover, most
models incorporate only image information and ignore other important information from
the patients.

Herein, we have collected CT images of patients with pulmonary nodules with patho-
logical results from multiple centers. A novel deep-learning model was proposed to classify
benign pulmonary nodules and malignant ones according to CT images, morphological
features, and clinical information. Radiomic models were used for comparison. This work
serves as a promising diagnostic tool for the early diagnosis of lung cancer and improving
patients’ survival rates.

2. Methods
2.1. Data Source

In total, 972 patients from 4 hospitals in China were recruited in this study from 2015
to 2019, and informed consent was obtained. The lung CT images of all the patients were
collected in DICOM format, and together, there were 8241 slices involving lung nodules.
By consulting the patient’s medical records and admission information, we continued to
collect the pathological diagnosis results, demographic information, environmental and
behavioral factors, and imaging signs of pulmonary nodules in the form of a questionnaire.
The inclusion criteria were as follows: (1) the number of CT images containing nodules in
each patient must not be less 2; (2) for malignant nodules, a pathological diagnosis or a
discharge diagnosis was determined as lung cancer thanks to a doctor’s prior knowledge;
for benign nodules, the patients were diagnosed with other diseases through pathological
diagnosis or thanks to a doctor’s prior knowledge. The exclusion criteria were as follows:
(1) patients who were treated with chemo-radiation therapy or surgery and (2) images in
which the nodules were hard to segment. The checklist of subjects and images is shown in
Table 1.
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Table 1. The checklist of subjects and images.

Source Subjects (n, %) Images (n, %)

Beijing Chest Hospital 183 (18.8) 3065 (37.2)
Beijing Friendship Hospital 174 (17.9) 1454 (17.6)

Beijing Cancer Hospital 394 (40.5) 2312 (28.1)
Xuanwu Hospital 221 (22.7) 1410 (17.1)

Total 972 (100.0) 8241 (100.0)

This study took each picture as the research object. The pictures were first split into a
training set (80%) and a testing set (20%), and the positive–negative sample ratios in these
sets were approximately the same as those in the complete data set. Next, the training set
was used to fit and tune the models, and the testing set was used to evaluate the predictive
and generalization ability of the models. The simple statistics of the training and testing
sets are summarized in Table 2.

Table 2. Demographic characteristics of the patients in the training and testing sets.

Characteristic Training Set (n = 6594) Testing Set (n = 1647) p-Value

Age (years, mean ± SD) 61.5 ± 11.6 61.3 ± 11.8 0.451 a

Sex (n, %) 0.391 b

Male 4171 (63.3) 1023 (62.1)
Female 2423 (36.7) 624 (37.9)

Type (n, %) 0.966 b

Malignant 4103 (62.2) 1027 (62.3)
Benign 1491 (37.8) 620 (37.7)

a t-test was used for the distribution difference of continuous variables. b Chi-square test was used for the
distribution difference of categorical variables.

2.2. Image Preprocessing

The region of interest (ROI) was semiautomatically segmented from the whole CT
image by using the region growth method, which was performed by two experienced
radiologists and conducted with MATLAB 2017. An overview of the study workflow is
illustrated in Figure 1.
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Figure 1. Workflow of CT image analysis to classify the pulmonary nodules.

2.3. Deep-Learning Algorithm

A CNN is a framework belonging to deep learning that has shown state-of-the-art
performance in image segmentation and classification [22,23]. All the processes are automat-
ically performed, and the massive weights are set and updated via a back-propagation (BP)
algorithm to minimize the loss function, thus achieving the best classification accuracy. Sev-
eral common CNN models, including Vgg16, GoogLeNet, ResNet, and DenseNet, perform
well on different classification tasks [24–27]. We chose ResNet50 as the basic network struc-
ture for deep learning. Next, we adopted a transfer-learning strategy and data-argument
technique; the pretraining weights were derived from training on the ImageNet data set,
and the best parameter of the model can be obtained via fine-tuning.
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According to the CNN model, the greatest advantage of the ResNet framework lies
in adding identity mapping that is performed by the shortcut connections, the outputs of
which are added to the outputs of the stacked layers [28]. Therefore, the ResNet addresses
the degradation problem and adds neither extra parameters nor computational complexity.
In addition, we try to add a convolutional block attention module (CBAM) in the ResNet.
CBAM is a simple and effective attention module for feedforward convolutional neural
networks. Given an intermediate feature map, the CBAM infers the attention map along
two independent dimensions (channel and space) in turn, and next, it multiplies the
attention map and the input feature map for adaptive feature optimization [29]. It can
be seamlessly integrated into any CNN architecture without factoring in the overhead
of the module, and it can be trained end to end with a basic CNN. The structure of our
CBAM-ResNet is shown in Figure 2.
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Figure 2. Deep-learning model structure. (a) CBAM-ResNet model using CT images of pulmonary
nodules alone. (b) CBAM-ResNet model combining CT images, morphological features, and
clinical information.

During the model training process, the input size of the image is 64 × 64, the optimizer
used is Adam, the cross entropy is employed as the loss function, the batch size is set to
128, and the maximum number of iterations is 100.

2.4. Radiomic Analysis

A nonsubsampled dual-tree complex contourlet transform (NSDTCT) was conducted
on the ROI to obtain 96 subband images, and feature extraction was then performed on the
subbands. NSDTCT has two steps. First, a dual-tree complex wavelet transform was used
to decompose the original image into 2 low-frequency bands and 6 high-frequency bands of
6 directions (±15◦, ±45◦, ±75◦); next, 2n band coefficients were set on the high-frequency
level by using a nonsubsampled directional filter bank. The acquired imaging features
contained the texture features, including 6 texture features based on a gray histogram
(average gray level, average contrast, measure of smoothness, third moment, measure of
uniformity, and entropy), 14 texture features based on a gray-level co-occurrence matrix
(GLCM) (energy, inertia, inverse difference of moment, entropy of GLCM, correlation,
cluster of tendency, contrast, homogeneity, variance, maximum of probability, sum of mean,
difference of mean, sum of entropy, and difference of entropy), and 3 texture features based
on a neighborhood gray difference moment (difference entropy, coarseness contrast, and
busyness). In total, 2208 features were obtained from each ROI. Feature extraction was
performed by MATLAB 2017, which enables the processing and extraction of radiomic
features from medical image data.
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Given that some derived features could be redundant according to the classifier, we
have reduced the dimensionality of the texture features. In this study, we adopted the
commonly used dimensionality reduction method: least absolute shrinkage and selection
operator (LASSO). LASSO is a strategy for feature selection that produces some coefficients
that are exactly zero and hence exhibits simple and interpretable models. In total, 2208
texture values were calculated in feature selection. These 2208 textures were incorporated
into the LASSO regression model with a penalty function, and 128 features were retained,
according to the best accuracy for the following classification models. The best parameters
of LASSO were selected by 10-fold cross validation.

A support vector machine (SVM) is a widely applied supervised machining-learning
method that is very suitable for small sample, nonlinear, and high-dimensional pattern-
recognition problems, and it has achieved good classification results on many image feature
classification tasks [30–32]. In this research, the radial basis function (RBF) was adopted,
and a 10-fold cross-validation method was used to optimize the parameters (gamma
and cost).

2.5. Deep-Feature Visualization

Convolutional neural networks can automatically extract image features and classify
them. To explore whether the model learned useful features from meaningful areas, we
used two visualization methods to interpret the features extracted by the CNN.

To reveal the focus area of the model, we extracted the feature maps from the CBMA-
ResNet model. Gradient-weighted class activation mapping (Grad-CAM) was used to
express the importance of the features. The area with higher values on the feature map was
considered to be the area that contributed more to the generated result.

The effectiveness of the learned features was shown via t-distributed stochastic neigh-
borhood embedding (t-SNE), an unsupervised dimension-reduction algorithm for visualiz-
ing high-dimensional data. We utilized t-SNE to reduce the dimension of global features
from 256 to 2.

2.6. Statistical Analysis

The statistical descriptions of clinical information and the morphological features are
presented as the mean and the standard deviation (SD) or percentage, respectively; R 4.0.3
software was used to perform the χ2 test or t-test for the basic clinical data of patients and
the morphological data of images. The difference was statistically significant at p < 0.05.
Fill in missing values by using the random forest method on the morphological features.
To evaluate the classification performance on the training set and the testing set, three
indexes (accuracy, sensitivity, and specificity) were calculated. The 95% confidence interval
(95% CI) of the area under the curve (AUC) was also calculated on the basis of the results
from a binomial exact test. Curves from the receiver operating characteristics (ROC) were
plotted to visually compare the differences between the models.

3. Results
3.1. Clinical and Morphological Characteristics

In total, 972 patients were involved in this study: 612 in the malignant group (malig-
nant pulmonary nodule patients) and 360 in the benign group (benign pulmonary nodule
patients). The male proportion comprised 62.4% of the malignant group and 61.4% of the
benign group. The mean age was 61.9 in the malignant group and 54.8 in the benign group.
Moreover, 25.3% of the benign cases smoked, and 46.3% of the malignant cases smoked.
The statistical difference test showed that there was no significant difference in gender
between the two groups, but there was a significant difference in age and smoking. The
morphological feature distribution of images is shown in Table 3. According to the results,
all eight features had a significant between-group difference of p < 0.001.
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Table 3. Morphological feature distribution of images.

Morphological Feature Benign
(n = 3111)

Malignant
(n = 5130) p-Value

Diameter (cm, mean ± SD) 2.582 ± 1.30 3.135 ± 1.52 <0.001 a

Halo (yes, %) 47 (3.4) 248 (6.2) <0.001 b

Lobulation (yes, %) 477 (34.8) 3073 (73.6) <0.001 b

Vacuole (yes, %) 46 (2.7) 575 (14.6) <0.001 b

Spiculation (yes, %) 245 (16.9) 1802 (45.9) <0.001 b

Calcification (yes, %) 316 (22.0) 324 (5.3) <0.001 b

Cavity (yes, %) 115 (8.6) 231 (6.0) <0.001 b

Pleural retraction (yes, %) 181 (14.1) 1871 (47.0) <0.001 b

a t-test was used for the distribution difference of continuous variables. b Chi-square test was used for the
distribution difference of categorical variables.

3.2. Performance of Classification

In this study, we combined the ResNet and CBAM (CBAM-ResNet), a novel deep-
learning algorithm to classify malignant and benign lung nodules. We constructed three
deep-learning models: a CBAM-ResNet model built with images as inputs (CBAM-ResNet1),
a CBAM-ResNet model with images and morphological features as inputs (CBAM-ResNet2),
and a CBAM-ResNet with age and smoking data from CBAM-ResNet2 (CBAM-ResNet3).
Among them, eight morphological features (diameter, halo, lobulation, vacuole, spiculation,
calcification, cavity, and pleural retraction) were incorporated into the model. In CBAM-
ResNet3, the factors of age and smoking were transformed into categorical variables (age
was divided into three groups, namely ≤50, 50 to 65, and >65 years old, and smoking was
divided into smokers and nonsmokers). The NSDTCT texture feature combined with the
SVM classifier (NSDTCT-SVM) was used as a comparison model. Similarly, we established
three models: NSDTCT-SVM1 (using only images as inputs), NSDTCT-SVM2 (combining
images and morphological features as inputs), NSDTCT-SVM3 (adding age and smoking
based on NSDTCT-SVM2).

The results of the six models in the test set are shown in Table 4. The ROC curves of
classification models were plotted (Figure 3). In the test set, the CBAM-ResNet3 model
achieved the best accuracy. The deep-learning model CBAM-ResNet3 performed better
than the conventional radiomic method. By combining it with morphological information
and clinical information, the performance of the model can be further improved.

Table 4. Classification results of four models in the test set.

Model AUC (95% CI) Accuracy Sensitivity Specificity

CBAM-ResNet1 0.940 (0.927–0.953) 0.867 0.931 0.849
CBAM-ResNet2 0.955 (0.939–0.972) 0.896 0.968 0.863
CBAM-ResNet3 0.957 (0.942–0.975) 0.898 0.971 0.864
NSDTCT-SVM1 0.692 (0.676–0.708) 0.691 0.748 0.691
NSDTCT-SVM2 0.791 (0.772–0.811) 0.765 0.752 0.776
NSDTCT-SVM3 0.807 (0.795–0.819) 0.779 0.763 0.782

CBAM-ResNet1 is a CBAM-ResNet framework that uses only images as inputs; CBAM-ResNet2 adds mor-
phological features to CBAM-ResNet. NSDTCT-SVM1 uses only texture features after a LASSO regression;
NSDTCT-SVM2 uses texture features and eight morphological features. CBAM-ResNet3 and NSDTCT-SVM3 add
age and smoking on the basis of results from CBAM-ResNet2 and NSDTCT-SVM2, respectively.

3.3. Visualization of Deep Features

Figure 4 shows feature maps of eight examples from the validation set. The active
areas (areas of bright colors) represent the focus areas of the model. The feature maps
demonstrated that they were consistent with human observations, the region of the whole
lesion, or a specific area helpful in diagnoses.
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(a–d) and lower row (e–h) are malignant and benign, respectively. Pictures (a,b,e,f) are correctly
classified as malignant or benign nodules, whereas (c,d,g,h) are not.

The t-SNE visualization demonstrated how the model clustered malignant and benign
nodules by using learned features (Figure 5). Nodules with similar features are close to one
another, and those with dissimilar features are not. The colored point clusters were well
separated, indicating that effective features were captured by the model.
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4. Discussion

Accurate estimation of the benign and malignant lung nodules found in CT is essential
for the early diagnosis of lung cancer, and it is still a challenging task for radiologists.
In this study, we used CT images, morphological features, and clinical information with
pulmonary nodules in four hospitals to develop and verify the deep-learning and machine-
learning classification models to differentiate between benign and malignant pulmonary
nodules. Our study found that the CBAM-ResNet model, which utilized images, morpho-
logical features, and clinical information, demonstrated good differentiating performance
and outperformed the radiomic model.

In recent years, CNNs have been applied in many studies for medical image classi-
fication, involving different diseases [23,33,34]. Many studies [11–14] mentioned above
have confirmed that the deep-learning network can achieve an accurate classification re-
sult. CNN models could automatically detect the image features and summarize some
useful points by updating the massive weight parameters [8]. ResNet is improved on the
basis of using a visual geometry group (VGG) network, which has fewer filters and lower
computational complexity. ResNet makes it easier to optimize the network by adding a
short-circuit connection structure, and it can improve accuracy by increasing the depth.
CBAM is a simple and effective attention module for feedforward convolutional neural
networks. Given an intermediate feature map, the CBAM module sequentially infers the
attention map along two dimensions (channel and space) and then multiplies the attention
map with the input feature map for adaptive feature optimization [35]. Our results showed
that combining CBAM with ResNet could achieve a good classification result (AUC = 0.940,
accuracy = 0.867) that takes only images as inputs. It implied that CNNs could to some
extent learn useful features directly from the images.

The morphological features of the pulmonary nodule, involving halo sign, lobulation
sign, speculation sign, ground-glass opacity sign, and others, could be measured by radiol-
ogists, depending on the CT images. Among the morphological features, the incidences
of six signs (diameter, halo, lobulation, vacuole, spiculation, and pleural retraction) in the
malignant nodules were higher than those in the benign group, while the incidences of
calcification and cavity were lower. These features are critical for classification in clinical
practice and are validated to be significantly effective in the prediction of lung cancer
from the clinical perspective [19]. Incorporating morphological features can achieve high
accuracy for the pulmonary nodule’s classification in both the deep-learning and machine-
learning methods. The image sign information can provide information other than the
simple nodule image and can help doctors make preliminary diagnoses and improve inter-
pretability [36]. Previous studies have shown that older age and a heavy smoking history
are associated with an increased risk of developing lung cancer, while the association
between gender and lung cancer risk is complex and not fully understood [37]. In our
study, we found that age and smoking showed statistically significant differences between
the malignant lung nodule group and the benign lung nodule group, while gender did not
show any statistically significant differences. These results suggest that incorporating age
and smoking information into our deep-learning model may improve its performance for
classifying lung nodules. Adding these two factors to the model increased its accuracy and
its AUC to 0.898 and 0.957, respectively.

In comparison with other recently published research, we found that Dhara et al.
proposed an SVM-based lung nodule classification method that combined shape and
texture features for classification of pulmonary nodules in lung CT images, with a sensitivity
of 0.897 and a specificity of 0.864. However, their method requires manual intervention
and evaluates only a subset of the LIDC-IDRI data set [38]. Liu et al. proposed 2D CNN-
based methods that utilize only the central layer’s characteristic information of the nodule,
resulting in less than 70% sensitivity and suboptimal performance [39]. On the other
hand, both Liu et al. and Shen et al. proposed a 3D CNN-based classification method
for benign and malignant lung nodules that made better use of the spatial information of
nodules and achieved improved performance [40,41]. Additionally, Liu et al. proposed
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a multimodel integrated learning architecture for the classification of suspicious lung
nodules and malignant tumors, achieving good classification results with an accuracy of
0.906 and an AUC of 0.939 [42]. Our research achieved better classification performance
by simultaneously inputting images, morphological information, and clinical information,
which allowed for a more comprehensive analysis of lung nodules.

There are some advantages of our study. First, a novel deep-learning model (CBAM-
ResNet network) based on CT images, morphological features, and clinical information
with high performance was constructed and developed and then compared with the
traditional machine-learning methods. Second, the research subjects in our study have
definite diagnoses, and the benign and malignant results were obtained via pathological
diagnosis, so we can obtain more-accurate models. Lastly, the imaging data were collected
from a multicenter study, so they can reduce the deviation caused by having different
patients in different hospitals.

Nevertheless, there are also some limitations in our study. First, this study is a cross-
sectional study, and its data were collected retrospectively. Follow-ups on benign nodules
for 2 years or more can lead to more-accurate results. Second, we did not compare the
model with the diagnoses of radiologists, which ultimately did not indicate the possibility
of a difference between the classification model discussed in the design of this study and
the diagnostic ability of radiologists. Lastly, one limitation of our deep-learning algorithm
is its reliance on large amounts of accurately labeled data, which is compounded by the
additional complexity of incorporating imaging and clinical information into our model,
making data collection more challenging.

In conclusion, the deep-learning model CBAM-ResNet, which trained on participants
with lung nodules from multiple centers, showed excellent performance in the identifi-
cation of malignant and benign lung nodules. Incorporating morphological and clinical
information can further enhance the model’s classification performance. The developed
model could aid clinicians in accurately diagnosing pulmonary nodules in clinical practice.
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