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Abstract: Background and Objectives: Acrylic resins remain the materials of choice for removable
prosthesis due to their indisputable qualities. The continuous evolution in the field of dental materials
offers practitioners today a multitude of therapeutic options. With the development of digital
technologies, including both subtractive and additive methods, workflow has been considerably
reduced and the precision of prosthetic devices has increased. The superiority of prostheses made
by digital methods compared to conventional prostheses is much debated in the literature. Our
study’s objective was to compare the mechanical and surface properties of three types of resins
used in conventional, subtractive, and additive technologies and to determine the optimal material
and the most appropriate technology to obtain removable dentures with the highest mechanical
longevity over time. Materials and Methods: For the mechanical tests, 90 samples were fabricated
using the conventional method (heat curing), CAD/CAM milling, and 3D printing technology. The
samples were analyzed for hardness, roughness, and tensile tests, and the data were statistically
compared using Stata 16.1 software (StataCorp, College Station, TX, USA). A finite element method
was used to show the behavior of the experimental samples in terms of the crack shape and its
direction of propagation. For this assessment the materials had to be designed inside simulation
software that has similar mechanical properties to those used for obtaining specimens for tensile tests.
Results: The results of this study suggested that CAD/CAM milled samples showed superior surface
characteristics and mechanical properties, comparable with conventional heat-cured resin samples.
The propagation direction predicted by the finite element analysis (FEA) software was similar to that
observed in a real-life specimen subjected to a tensile test. Conclusions: Removable dentures made
from heat-cured resins remain a clinically acceptable option due to their surface quality, mechanical
properties, and affordability. Three-dimensional printing technology can be successfully used as a
provisional or emergency therapeutic solution. CAD/CAM milled resins exhibit the best mechanical
properties with great surface finishes compared to the other two processing methods.

Keywords: removable dentures; acrylic resins; subtractive methods; additive technologies; finite
element analysis

1. Introduction

Complete and partial edentulism are the most severe and irreversible forms of edenta-
tion, which leads to imbalances in all elements of the stomatognathic system. This is why
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practitioners and researchers have been continuously concerned over time, seeking to find
an optimal therapeutic solution that allows the restoration of all the affected functions.

Acrylic dental resins, especially poly-methyl-methacrylate (PMMA) resin, are com-
monly used in dentistry as denture base materials due to their advantages, including
their relatively high strength, acceptable hardness, color stability, insolubility in the oral
cavity, low weight, and low conductivity [1,2]. However, these materials have numerous
drawbacks which are frequently reported by practitioners, the most common of which
are poor mechanical strength, susceptibility to staining [3], curing shrinkage, and water
sorption [3–5].

In the last decade, digital technologies have become an alternative to the conventional
fabrication of acrylic removable dentures [6]. These methods substantially reduce workflow,
facilitate quick communication between the dentist and the dental technician, and increase
patient comfort [7]. Most available systems use subtractive and additive manufacturing
to fabricate acrylic-based dentures [8,9]. The materials used in these technologies are
industrially produced, so they have superior chemical and volumetric stability and optimal
mechanical strength [10–13]. Subtractive systems use pre-polymerized acrylic discs, from
which, based on the information received from the CAD unit, the future prosthesis will be
milled. Milling strategies allow for obtaining a well-fitted prosthesis with highly accurate
surfaces [14–18].

Several 3D printing technologies have been employed in dentistry, including stere-
olithography (SLA), digital light processing (DLP), selective laser sintering (SLS), selective
laser melting (SLM), electron-beam processing (EBM), polyJet photopolymer printing, and
fused deposition modeling (FDM). However, the stereolithographic printing of light-cured
polymers has gained popularity [19].

Additive methods reduce workflow and the numbers of appointments, allow repro-
duction of all details, and reduce material waste [20,21].

Printing parameters, such as laser intensity, calibration of the printer and software,
resin properties, build direction and angle, layer thickness and numbers, the bond between
the layers, the amount of supporting structures, and post-polymerization conditions, play
an important role regarding the quality of the final product [22]. It is a huge responsibility
for dental staff to fabricate high-quality removable dentures, and it is important to know the
details and particularities of each method. Digitalization in the prosthetics field has already
activated research and clinical potential and will do significantly more in the near future.
Consequently, these systems must be studied to determine their advantages and down-
sides. A removable denture requires a considerable number of clinical and technological
procedures, as well as digital approaches that have the benefit of drastically lowering the
amount of work required. On the other hand, the expenses of such a technical line are still
rather high, and many experts do not view the procurement of equipment for producing
detachable prostheses via additive or subtractive methods as a lucrative investment.

Finite element analysis (FEA) is a computational method that allows for the accurate
modeling and analysis of complex structures, making it a valuable tool across a wide range
of fields, from engineering to biology. Since Finite Element Analysis (FEA) is a numerical
method capable of evaluating the stresses and deformations in structures. It has become a
widely accepted and non-invasive approach for studying the biomechanics of biological
systems and understanding the impact of mechanical forces on them [23].

Over the last few years, there has been rapid progress in the field of materials used for
fabricating removable dentures. Nonetheless, the most recent studies on the mechanical
and surface properties of resins do not cover the entire range of commercially available
products across all countries. Our study is highly valuable for current practice as it an-
alyzes the most used acrylic resins in our laboratories, replicating the real technological
working flow involved in prostheses fabrication. The current research aimed to perform a
comparative analysis of the selected mechanical characteristics of three types of resins used
in conventional, subtractive, and additive technologies and to determine the optimal mate-
rial and the most appropriate technology to obtain removable dentures with the highest
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mechanical longevity over time. Additionally, for ensuring the precision of the outcomes,
we evaluated the ability of the FEA software to predict the direction of crack propagation,
as well as provide valuable insights related to stress and strain phenomena.

The null hypothesis was that the mechanical and surface properties of the samples are
unaffected by the fabrication process.

2. Materials and Methods
2.1. Study Design

In order to investigate the properties of denture base materials, 90 samples (Figure 1)
were manufactured using resins used for conventional and CAD/CAM subtractive- and
additive-fabricated dentures. For the experimental tests that were conducted, the resin
samples were divided up into three main groups, as shown in Table 1.
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Figure 1. The experimental sample framework.

Table 1. Resin groups with their product information and experimental equipment.

Resin Groups Resin
Experimental Equipment

Surface Roughness Vickers Hardness Tensile Tests

Group 1
Heat-cured group

Meliodent Heat Cure
(Kulzer GmbH,

Hanau, Germany)

Form Talysurf® tester
(Taylor Hobson,
Leicester, UK)

HVT-1000 (Shanghai
Daheng Optics and
Fine Mechanics Co.,

Ltd., Shanghai, China)

Instron 2716-002,
Instron, Norwood,

MA, US

Group 2
Subtractively

manufactured group

Polident (Polident
d.o.o, Volja

Draga, Slovenia)

Group 3
Additively

manufactured group

Asiga DentaBASE resin
(Asiga, Alexandria,

NSW, Australia)

2.2. The Samples Design

For the hardness and roughness tests, rectangular samples with a width of 30 mm, a
length of 70 mm, and a thickness of 2 mm were made (Figure 2a).
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Dumbbell-shaped samples were used for tensile testing, with dimensions chosen
according to ISO 527-2 [24] and ASTM D-638 [25] standards (Figure 2b).

2.3. PMMA Sample Realization
2.3.1. Heat-Cured Samples

For the heat-cured samples, wax patterns were invested in Type 3 dental stones
(Moldano, Kulzer GmbH, Hanau, Germany), respecting the manufacturer processing
instructions: mixing a ratio of 100 g powder:30 mL water under a vaccum for 30 s.

Then, the metallic flask was immersed in 100 ◦C water for five minutes, the two sides
of the flask were separated, the wax fragments were cleaned, and the mold was isolated
using Isodent alginate solution (SpofaDental Inc., Jičín, Czech). The recommended mixing
ratio for the resin preparation is 35 g powder to 14 mL liquid. The liquid was added to
the mixing beaker along with an appropriate amount of powder, which was then stirred
for one minute using a spatula. After 10 min, the Meliodent Heat Cure (Kulzer GmbH,
Hanau, Germany) reached a packable consistency and could be manually pressed into the
mold. The flask was immersed in boiling water for 15 min, after which the heat source was
switched off. According to the manufacturer’s recommendations, a short cycle method
was used in the polymerization process. The flask was allowed to cool slowly in a water
bath after 20 min of boiling. Following polymerization, the specimens were extracted from
the mold.

2.3.2. Milled Samples

The wax patterns were scanned with a Swing DOF Scanner (DOF Inc., Seoul, Republic
of Korea) and the computer-aided machine automatically milled (VHF K5 Plus, VHF,
Ammerbuch, Germany) the experimental samples from CAD/CAM pink denture base
resin discs (Polident, Polident d.o.o, Volja Draga, Slovenia), measuring 95 mm in diameter
and 25 mm in thickness.

2.3.3. Printed Samples

STL files were submitted to the digital light processing (DLP) printer (Asiga MAX,
Asiga, Alexandria, NSW, Australia) for fabrication using Asiga DentaBASE resin (Asiga,
Alexandria, NSW, Australia). After the printed samples were removed from the build
platform, they were cleaned with 99% isopropyl alcohol and dried with steam.

Finally, a 20 min post-polymerization process was required, which was conducted
using the Asiga Flash Post Curing Unit (Asiga, Alexandria, NSW, Australia).
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2.3.4. Finishing and Polishing

During the sample processing phase, we utilized the Acrylic Contouring & Finishing
Kit HP (Shofu Dental GmbH, Ratingen, Germany) for denture finishing and polishing.

Initially, a dark gray AcryPoint coarse-grit BP1 tool (Shofu Dental GmbH, Ratingen,
Germany) was utilized for 60 s (in dry conditions). Then, a brown AcryPoint medium-grit
BP1 tool (Shofu Dental GmbH, Ratingen, Germany) was used for the same duration. The
instruments’ rotational speed was rather modest at 10,000 rpm.

A light gray AcryPoints tool (Shofu Dental GmbH, Ratingen, Germany) and a gentle
circular goat hair brush were employed at an even slower speed of 4000 rpm (60 s in dry
conditions) for fine finishing.

For polishing, a Pala Polish Polishing paste (Kulzer GmbH, Hanau, Germany) was
applied first to the samples, and then the procedure was carried out with a rag wheel
(Kulzer GmbH, Hanau, Germany) three times for 60 s in order to achieve a flawless sheen.

2.4. Experimental Tests
2.4.1. Roughness Tests

For each sample, six measurements (three records before and three records after
finishing and polishing) were taken at the level of the examined surface using a contact-
type roughness tester Form Talysurf® (Taylor Hobson, Leicester, UK).

Based on the determined roughness parameter values, the influence of finishing on
the micrometric profile of each surface (∆Ra) was calculated as follows:

∆Ra = Ra before finishing − Ra after finishing

Ra—the arithmetic mean roughness.

2.4.2. Vickers Hardness Tests

The Vickers tests were performed using a HVT-1000 automatic tester (Shanghai Da-
heng Optics and Fine Mechanics Co., Ltd., Shanghai, China) with a 50 gf load force for 10 s.
On each sample, five determinations were made.

The Vickers hardness (HV) was calculated using the following formula:

HV = 1854.4 L/d2

L—the load force in gf; d—the average diagonal in µm.

2.4.3. Tensile Tests

Standard tensile tests were conducted at room temperature in accordance with ISO
527-1: 2000 [25], and computer-controlled testing equipment was used for the direct strain
measurements (Instron 2716-002, Instron, Norwood, MA, USA).

Young’s modulus and the tensile stress at yield were determined using a 1 mm/min
crosshead speed.

Young’s modulus (E) was calculated according to Hook’s law:

E = σ/ε

σ—tensile stress (the amount of force applied per unit area, σ = F/A); ε—tensile strain (the
extension per unit length, ε = dL/L).

2.4.4. Finite Element Method (FEM)

The finite element method (FEM) goal was to model a fracture similar to the ones
obtained after tensile tests that would give us stress and strain distributions, which are
otherwise very difficult to measure. Our choice of software was Ansys (Ansys, Canonsburg,
USA). First, we had to design the materials with mechanical properties similar to the
ones used in our research. None of the three resins were available as a library source that
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could be used inside the simulation. Therefore, we used a specific tool -Ansys- as Material
Designer. Poly-methyl-methacrylate (PMMA) resins are most commonly used for denture
applications. We aimed to design materials similar to those used for mechanical testing [26].
For this purpose, we accessed the software library containing various types of materials,
named Engineering Data. From the composite materials section we added a Polyamide
resin and Epoxy E-Glass [27] for designing a materials similar to PMMA. In order to create
this material, the software first requires a matrix and a binder and it was selected the
resin as matrix and particles of epoxy as binder. The next step consisted of selecting a
geometry for the inner arrangement at a macromolecular level. We chose a random particle
distribution with default values of 15430 seed, a 0.3 particle volume fraction, and a 10 µm
particle diameter. The diameter distribution was set to be constant. The resulting particle
arrangement, and the mentioned settings, can be observed in Figure 3.
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Mesh-wise, we chose a conformal and periodic meshing without imposing a maximum
size for its elements. Our choice for anisotropy was orthotropic and we computed a
linear elasticity property without the need for coefficients of thermal expansion or thermal
conductivity. We used the periodic boundary conditions option for our analyses and chose
a constant material type of solver, which we generically named PMMA. The software
computed a Young’s modulus of 3255.3 MPa on XY, 2725.4 MPa on YZ, and 2718.2 MPa on
XZ. We obtained a Poisson’s ratio of 0.38701 in XY, 0.39117 in YZ, and 0.41716 in XZ. The
density was reported as 1.4066 × 10−9 t mm−3 (Figure 4).
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The newly designed material needed for finite element analyses was imported into
the Engineering Data section of a Static Structural type of analysis. In order to obtain
a fracture direction, the sample was designed with the same geometric dimensions as
the ones specified by standards in a 3D software solution (Siemens SolidEdge academic,
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Siemens, Munich, Germany) and used inside experimental tensile tests. Based on the results
of the tensile tests, we designed a pre-crack about the same height as the area where the
fracture appeared after tensile testing. The 3D model was later translated into a Parasolid
file that was easily interpreted by the software.

By reading the internal library, namely Engineering Data, we were able to assign the
newly created material to the imported geometry. Because of the complexity of this process,
we used a virtual topology tool based on an edge mapping type of behavior. Our choice for
predicting a crack direction was to use the SMART crack growth tool available in Ansys.
This was suitable for our setup because crack growth simulation expands in homogenous
environments, which was the case for our specimen. The criterion is in fact a rate of energy
release type of method, which uses stress intensity factors (SIFs) for assessments. We chose
a static crack type of growth, which calculates the extension of each front node of the crack.
We had to generate a new coordinate system specific to the crack itself, where the X points
to the direction of propagation and the Y sits almost normal to its upper face. Mesh-wise,
we imposed a patch conforming method that uses quadratic element orders and a face
meshing method for both of the crack’s faces with an element size of just 0.25 mm, as the
mesh general settings were set to 0.5 mm with an aggressive mechanical type of error limits
assessment. That resulted in 9590 elements and 18,210 nodes (Figure 3). The fracture tool
included a pre-meshed crack with six solution contours and the SMART crack growth tool
was set to be static. The chosen option for failure criteria was a stress intensity factor with a
critical rate of 100 MPa·mm(0.5). The analysis settings received a 0.001 sec end time defined
by ten sub-steps. Conditions were set in the form of a fixed support on the lower face of
the sample and a force solicitation on the upper face (Figure 4).

Equivalent elastic strain registers showed values a little over 0.008 mm/mm (Figure 5a),
as the propagation direction was similar to the one observed in our tested samples and the
equivalent stress, evaluated by means of von Mises criteria, reached 1634.8 MPa along the
fracture line (see Figure 5b). The analysis was stopped just before the body was separated.
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Figure 5. Setup with graphical representations of the (a) 3D view of the meshed body and (b) 3D
view with supports and conditions applied on the sample body.

2.5. The Statistical Analysis

For the statistical data analysis, Stata 16.1 software (StataCorp, College Station, TX,
USA) was used. The one-way ANOVA analysis was employed to check if there were
statistical differences in terms of surface roughness, hardness, and tensile parameters across
the three types of resins used. Furthermore, the Bonferroni multiple comparison test was
used to check where the statistically significant difference lay by zooming in on each of the
possible paired samples. The statistical analysis was carried out with a significance level of
p < 0.05.
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3. Results
3.1. Evaluation of the Roughness Parameters

The findings from the statistical analysis for the compared roughness parameters are
shown in Table 2.

Table 2. The roughness parameter values for the studied samples.

Group Number of Samples
Mean Values ± Standard Deviation

Ra before Finishing
and Polishing [µm]

Ra after Finishing and
Polishing [µm]

∆Ra
[µm]

Heat cured 10 0.239 ± 0.024 0.037 ± 0.008 0.201 ± 0.022

CAD/CAM milled 10 0.267 ± 0.044 0.046 ± 0.011 0.221 ± 0.035

3D printed 10 0.494 ± 0.028 0.050 ± 0.007 0.445 ± 0.027

F(df) 177.24 (2,27) 5.33 (2.27) 224.11 (2.27)

p-value 0.000 0.0112 0.000

A one-way ANOVA was used. The significance level was established at 5%.

The results of the roughness coefficients before finishing and polishing revealed a
statistically significant difference between the three groups (p < 0.001). However, the
Bonferroni multiple comparison test indicated that only the 3D printed samples were, on
average, different compared to the other two groups (p < 0.001). As is also displayed in
Figure 6, on average, the heat-cured sample displayed the lowest roughness coefficients.
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As expected, after polishing and finishing, the average roughness coefficients dropped
in all three methods, with the heat-cured sample still reporting, on average, the lowest
coefficients. The ANOVA confirmed that there was still a statistically significant difference
in roughness between the groups (p = 0.0112). Nonetheless, the difference is only significant
between the 3D printed and the heat-cured samples, as indicated by the Bonferroni test
(p = 0.011). Finally, when investigating the differences in terms of averages across the study
groups, the results confirmed a significant difference between them (p < 0.001).

3.2. Evaluation of the Vickers Hardness

At a magnification of 400:1, Figure 7a–c illustrates the indentations produced by the
indenter on the surface of the samples subjected to Vickers hardness analyses.
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Figure 7. The impressions of the penetrator on the surface of the samples: (a) Group 1.2—Sample 3
heat-cured; (b) Group 2.2—Sample 2 CAD/CAM milled; (c) Group 3.2—Sample 8 3D printed.

The average values of the determinations are presented in Table 3, with the 3D printed
sample reporting, on average, the smallest HV coefficients.

Table 3. Vickers hardness values for the studied samples.

Group Number of Samples
Mean Values ± Standard Deviation

Vickers Hardness HV

Heat cured 10 20.257 ± 0.854
CAD/CAM milled 10 22.301 ± 1.115
3D printed 10 13.853 ± 0.586
F(df) 251.63(2.27)
p-value 0.000

A one-way ANOVA was used. The significance level was established at 5%.

When looking at the distribution of our samples, the CAD/CAM milled sample clearly
displays, on average, the highest Vickers. At the other end lies the 3D printed sample, with
the lowest values (Figure 8).
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Figure 8. Box plot of Vickers hardness values by resin used.

The one-way ANOVA test revealed that the surface hardness depends on the type of
resin used determine [F(2.27) = 251.63, p < 0.001]. According to the Bonferroni multiple
comparison test, there was a statistically significant difference in the mean values of the
HV coefficients for all potentially matched samples (p < 0.001).



Medicina 2023, 59, 1042 10 of 15

3.3. Evaluation of the Tensile Parameters

The average values of the modulus and tensile stress at yield obtained by the tensile
test are shown in Table 4.

Table 4. The average values of the mechanical characteristics of the experimental samples obtained
by tensile tests.

Group Number of Samples
Mean Values ± Standard Deviation

Modulus (Segment
0.0005–0.0025 mm/mm) [MPa]

Tensile Stress at Yield
(Offset 0.5%) [MPa]

Heat cured 10 2805.779 ± 245.604 37.575 ± 1.272
CAD/CAM milled 10 2930.298 ± 32.013 41.188 ± 3.449
3D printed 10 2106.551 ± 16.663 30.642 ± 1.501
F(df) 95.98(2.27) 54.66(2.27)
p-value 0.000 0.000

A one-way ANOVA was used. The significance level was established at 5%.

According to the descriptive results, the CAD/CAM samples group displayed greater
modulus coefficients, as well as higher tensile stress parameters (Table 4 and Figure 9).
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The one-way ANOVA also revealed a significant difference (p < 0.001) in the mechani-
cal characteristics between the three groups (p < 0.001). Zooming in to each of the possible
pairs, the Bonferroni test revealed that, when it comes to the modulus coefficient, only the
3D printed samples were, on average, different from the other two samples (p < 0.0001).
However, when looking at the tensile strength parameter, a statistically significant differ-
ence between the mean values was confirmed for all three possible paired samples.

3.4. Finite Element Method (FEM) Analysis

The contours of the samples showed that the critical points were at the ends of
the fracture line and all along its length as the crack propagated. This type of result
(Figure 10 a,b) is similar to the one observed in a real-life specimen that was subjected to a
tensile test.
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4. Discussion

Based on the findings of this research, there were significant differences between
the sample groups for all the characteristics investigated, indicating that the study’s null
hypothesis was rejected. Although 3D-printed samples recorded the highest surface rough-
ness, heat-cured samples and CAD/CAM milled samples showed the lowest Ra coefficients,
both before and after polishing. This discrepancy could be related to the manufacturing
process of pre-polymerized resin blocks in subtractive technologies, as well as the reduced
degree of polymerization in 3D printing.

Similar results were obtained by Helal et al. [28], who found significant differences be-
tween the tested denture base resins (3D-printed, CAD/CAM milled resin, and polyamide
flexible resins). These findings are also supported by those obtained by the authors Zeidan
et al. [29]. In contrast, Srinivasan et al. [18] demonstrated that the surface roughness of
milled and rapidly prototyped resins was similar.

Srinivasan et al. [4] conducted a study in which the surface roughness of CAD/CAM
milled and rapidly prototyped/3D-printed resins utilized in the fabrication of complete
dentures was evaluated using a high-resolution white light non-contact laser profilome-
ter (CyberSCAN CT 100, Cyber technologies, Eching-Dietersheim, Germany). Based on
their findings, the authors concluded that both types of resins exhibited similar levels of
surface roughness.

Contact testers, such as stylus profilometers, directly measure the height of surface
irregularities and can provide highly accurate results. However, they can cause damage to
delicate surfaces, are sensitive to vibrations, and require a high level of operator skill to use
properly. On the other hand, non-contact testers, such as laser and optical profilometers, are
non-invasive, can measure surface roughness at high speeds, are able to measure smaller
asperity than contact types, allow for simultaneous observations of surface images and
height profiles (microscope type), and are able to acquire high-definition, fully focused
images that rival those of SEMs (color 3D laser microscopes) [30]. However, they can be
more expensive, require complex alignment procedures, the measurement area is limited,
and they are used for in-situ measurements [31].

The most significant effect of finishing on the micrometric profile was observed on 3D-
printed (∆Ra = 0.445 ± 0.027 µm) sample surfaces, whereas the impact was comparable in
the CAD/CAM milled and heat-cured samples. Even though polishing improved the sam-
ples, they remained in the same order, with the 3D sample having the highest coefficients.
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In research conducted by Freitas et al. [32], the surface properties of milled dentures
were found to be comparable to those of heat-polymerized denture base resins, but with
reduced Candida albicans adhesion. According to other authors, even after proper finishing
and polishing and long-term thermocyclic aging, traditional complete dentures were
associated with greater Candida adhesion than CAD/CAM milled prostheses.

Al Moaleem et al. [33] and Ramage et al. [34] reached the conclusion that superior
denture surface characteristics, such as porosity and surface roughness, contribute to a
reduction in microbial Candida adherence, lowering the incidence of denture stomatitis.

In their research, Paolone et al. [35] emphasize the importance of denture surface
quality in reducing bacterial plaque adherence and determining superior esthetics and
excellent clinical results.

Regarding the mechanical parameter of hardness and tensile parameters, there were
statistically significant differences between the groups.

Vickers hardness measurements revealed elevated values for the CAD/CAM milled
experimental samples and the lowest values for the 3D-printed samples. The conventional
heat-cured resin group recorded an average hardness value. Comparable findings were
revealed in recent studies [6,36].

The one-way ANOVA revealed a significant p-value when examining the statistical
differences between the mean modulus and tensile stress values of the three groups (p 0.001).
Comparing each of the potential pairs, the Bonferroni test revealed that, in terms of the
modulus coefficient, only the 3D-printed samples differed from the other two on average
(p 0.0001). However, when examining tensile stress, a statistically significant difference
between the mean values was confirmed for all three potential matched samples.

The internal structures of materials determine their mechanical qualities, such as
hardness and flexural strength [33]. CAD/CAM milled polymers have a higher flexural
strength than denture bases that are manufactured with compression molding, according
to studies [30].

According to Srinivasan et al. [8], milled resins have a higher ultimate strength, tough-
ness, and elastic modulus than printed resins, whereas Al-Dwairi et al. [11] found that
CAD/CAM milled denture base resins have a considerable advantage in surface wettability,
surface roughness, and surface hardness.

Many studies have indicated that milled removable dentures demonstrate greater flex-
ural strength, flexural modulus, and impact strength than typical heat-cured groups [37–42],
as well as superior surface qualities compared to 3D-printed and conventional ones.

Acrylic resins for rapidly prototyped removable dentures have a poor double-bond
conversion compared to standard heat-curing resins, which can impact their mechanical
qualities. Unlike CAD/CAM milled resins, high pressure promotes the creation of longer
polymer chains and can decide a greater degree of monomer conversion [37–44]. The
lower characteristics of 3D-printed resin may also be attributed to the processing technique
used, such as light polymerization and printing methods (e.g., the layering technique and
printing orientation) and parameters.

Steinmassl et al. [45] obtained contradictory results, indicating that digital dentures
do not generally have a higher fracture resistance compared to conventional prostheses
made of self-curing or heat-curing resins. All CAD/CAM milled denture base resins
have greater elastic moduli than heat- or self-curing resins. The fracture surface analyses
imply that the microstructure of the resin, as opposed to the polymer chain length, which
would be affected by the curing technique, may be accountable for the differing mechanical
properties. They believe the changes in mechanical properties are due to the composition
of the resin rather than the industrial procedure used [46].

According to the literature, CAD/CAM milled dentures have a superior fit and greater
surface qualities and mechanical properties compared to traditional heat-polymerized
dentures. Nonetheless, removable dentures that are fabricated with heat-cured resins
remain a viable alternative since the mechanical characteristics and surface quality of these
materials allow the manufacture of clinically well-tolerated prostheses. Being in direct
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contact with the oral tissues, all the new materials must be accurately tuned to fit the
requirements and usage conditions [47].

The FEA software predicted the correct propagation direction and offered valuable
information in a graphical manner, which can be used for future research. However,
the authors acknowledge the need for further refinement since our material mechanical
properties may be different depending on the producer’s manufacturing process.

Due to the lack of proper understanding regarding the biomechanical principles of the
materials involved in restorative procedures, many detrimental effects resulted, causing
restorative failures. Therefore, in order to know the behavior of the materials and dental
tissues, biomechanical studies are very crucial [6,7].

The limitations of the current research were the lack of denture base materials, the
absence of oral condition simulations, and that the samples were not aged by thermocycling.
Given these constraints, further in vitro and in vivo studies are required.

5. Conclusions

The study was based on three different groups of specimens which gave us 90 samples
to test. Every ten samples had two more that were used for validation purposes. Each
sample proved consistent within limits, thus proving our results. Out of the three samples,
the 3D-printed samples experienced the lowest surface quality in terms of surface finishing
and structural integrity. CAD-CAM milled and heat-cured resins have comparable rough-
ness parameters; however, the milled samples exhibited better mechanical properties than
conventional and 3D-printed resins.

Finite element analyses predicted similar behaviors in terms of crack propagation,
as real-life samples showed similar results if the concentrator was placed in the same
area. Statistically, ANOVA highlighted different values for the 3D-printed samples, on
average, compared to the others. Despite the advantages of CAD/CAM milling tech-
nology, heat-cured resins continue to be a feasible option since their surface quality and
mechanical properties allow the fabrication of satisfactorily removable dentures with long-
term durability.

Although 3D-printed removable dentures can be successfully used as a provisional
or emergency therapeutic solutions, further refinement is still required in order to make
them suitable for prosthetic constructions with great longevity over time. The authors
acknowledge the need for further refinement of the results and a wider research base.
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