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Abstract: Hyperphosphatemia is a secondary disorder of chronic kidney disease that causes vascular
calcifications and bone-mineral disorders. As per the US Centers for Disease Control and Prevention,
renal damage requires first-priority medical attention for patients with COVID-19; according to
a Johns Hopkins Medicine report, SARS-CoV-2 can cause renal damage. Therefore, addressing
the research inputs required to manage hyperphosphatemia is currently in great demand. This
review highlights research inputs, such as defects in the diagnosis of hyperphosphatemia, flaws in
understanding the mechanisms associated with understudied tertiary toxicities, less cited adverse
effects of phosphate binders that question their use in the market, socioeconomic challenges of renal
treatment and public awareness regarding the management of a phosphate-controlled diet, novel
biological approaches (synbiotics) to prevent hyperphosphatemia as safer strategies with potential
additional health benefits, and future functional food formulations to enhance the quality of life. We
have not only introduced our contributions to emphasise the hidden aspects and research gaps in
comprehending hyperphosphatemia but also suggested new research areas to strengthen approaches
to prevent hyperphosphatemia in the near future.

Keywords: chronic kidney disorder; hyperphosphatemia; phosphate accumulating organisms;
phosphate-controlled diet

1. Introduction

Chronic kidney disease (CKD) is a common disorder, with 10% of the world population
suffering from it and millions of deaths reported every year due to the unavailability of
an affordable treatment [1]. Hyperphosphatemia is a prevalent comorbidity of CKD,
affecting 50–74% of patients with renal disorders [2]. Kidney function anomalies result
in phosphate imbalance in the body, leading to hyperphosphatemia, a condition known
to cause life-threatening complications, including bone mineral imbalances and vascular
calcification [3]. When a patient is diagnosed with hyperphosphatemia, phosphate-rich
foods are immediately restricted to reduce the dietary-phosphate load, which hampers
the quality of life. These dietary restrictions, coupled with the potential side effects of
phosphate binders, further exacerbate the already compromised quality of life of patients
due to the long and strict dialysis schedule [3].

Our current review highlights the gaps in the knowledge of hyperphosphatemia
management that need immediate attention, such as performing research to identify the
unheeded sources of phosphate in the daily routine, cross-reactivity of phosphate with food
processing reactions and its impact on renal health, accuracy of phosphate estimation in
blood samples, practical efficacy of hyperphosphatemia treatment, potential consequences
of hyperphosphatemia, and topics that require immediate attention (renal damage caused
by heavy metals in cosmetics and SARS-CoV-2; Supplementary Material) for general
awareness. The disadvantages of phosphate binders and kidney-associated disorders that
have been scarcely addressed are also included in this review.
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2. Phosphate-Associated Toxicities

It is evident from the literature that high serum phosphate levels are linked to car-
diovascular adverse events among non-CKD and CKD populations [4]. Among CKD
populations, mortalities in stages 3 and 4 are linked to high serum phosphate concentra-
tions [5], whereas stage 5 (no dialysis) is linked to a high risk of mortality due to increased
serum phosphate levels of 4.71 mg/dL [6]. In the largest study reported at the Veterans
Affairs Medical Centers (n 1/4 3490) by Kestenbaum et al., the mortality risk for patients
with CKD was linearly associated with the serum phosphate threshold of 3.5 mg/dL
(1.13 mmoL/L) [7].

2.1. Calcification

In hyperphosphatemia, high levels of intact parathyroid hormone (iPTH) and fibrob-
last growth factor (FGF)-23 with reduced vitamin D concentration cause calcium release
from bones, which triggers the calcification of vasculatures and weakens the bones. High
iPTH levels in hyperphosphatemia are documented in reports related to calcification
issues [8,9]. However, these reports did not explore the FGF23 and vitamin D levels to
clarify the role of iPTH-related calcifications in renal-based hyperphosphatemia models.
In contrast, another report revealed FGF23 as a regulatory factor for cardiac hypertrophy
development in a renal disorder-based model, although it did not document iPTH and
vitamin D levels [10].

Surprisingly, hypocalcemia is generally reported in hyperphosphatemia [11], albeit
when there is frequent calcification of vascular smooth muscle cells. The probable reason
for this is calcium gradient formation by bones via local transport phenomena at sites
near the vascular organs rather than low systemic calcium levels or hypocalcemia [12].
Bones are calcium reservoirs, which may release a high concentration of free calcium in
hyperphosphatemia. This high calcium concentration near vascular tissues and organs
leads to calcification issues, rather than calcium in the blood or from the diet.

2.2. Local pH

The kidneys regulate electrolyte balance in the blood. However, their capability for
bicarbonate reabsorption declines with damage, although the acidogenesis in CKD remains
the same and leads to acidosis [13]. Subsequently, intrarenal NH3/NH4

+ increases and
activates the complement pathway, which causes tubulointerstitial inflammation. This
acidic condition exacerbates CKD progression [14]. Additionally, metabolic acidosis causes
muscle wasting, protein catabolism, bone demineralisation, thyroid disorders, insulin
resistance, growth hormone secretion, exacerbation of β2-microglobulin accumulation, and
increased mortality [15,16]. Hyperkalemia, metabolic acidosis, and hyperphosphatemia are
indicators of an acid-base imbalance that may result in severe disease.

Treatment of patients with CKD with oral alkali (NaHCO3 at 22–24 mmol/L) is a
prevention strategy to combat acidosis development [17]. However, precautions must
be taken to check serum bicarbonate (>26 mmol/L) as it is associated with mortality
risk [18]. Electrolyte imbalance can be corrected by dialysis. However, sudden shifts in pH
in a short time caused by dialysis may lead to multiple adverse conditions; for example,
high blood pH may cause hypoventilation due to reduced functionality of the central
respiratory centre, resulting in reduced O2 delivery due to vasoconstriction and shifting
of the haemoglobin dissociation curve to the left [19]. High blood pH indicates a high
concentration of bicarbonate ions that can bind to systemic acids, thereby resulting in CO2
accumulation and paradoxical intracellular acidosis with multiple cellular defects [20].

In conclusion, both acidosis and alkalosis are harmful to pH homeostasis. According
to the Bohr effect, to correct pH imbalance in a renal damage condition like hyperphos-
phatemia, acidosis may lead to higher oxygen levels than normal that may cause oxidative
damage to tissues and organs, whereas alkalosis may result in an increase in carbon dioxide
levels to maintain pH homeostasis [21], which may enhance the severity of renal disorders.
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In hyperphosphatemia, metabolic acidosis not only enhances inflammation but also
supports phosphate transport for calcification. In the case of metabolic acidosis or low
physiological pH, the majority of phosphate ions are favored to be in their monovalent
(H2PO4

−) ion forms, which may facilitate phosphate-calcium complex formation. However,
to facilitate a calcification reaction, acidic local pH is preferred over the systemic effect of
metabolic acidosis.

2.3. Phosphate Estimation

In hyperphosphatemia, low bone mass contributes to high phosphate levels in the
blood, and the resulting phosphate accumulation causes kidney damage; under these
circumstances, phosphate equilibrium is re-established with higher concentrations of blood
phosphate and other phosphate reservoirs in the body [22]. This condition cannot be
treated by dialysis since a high phosphate equilibrium is established in a short time after
dialysis rounds [23]. The health hazards of the hyperphosphatemia initiation phase are
reported by the Framingham Offspring Cohort study, wherein researchers found that under
normal serum phosphate concentrations, adverse cardiovascular events occurred [24] that
raised uncertainty about the real estimation of phosphate levels that are responsible for
phosphate-related toxicities. In addition, after a phosphate-rich diet, false-positive blood
phosphate levels can be observed. Additionally, if we consider fasted blood samples for
phosphate estimation, would the measured value be equal or close to the actual value of
the toxic phosphate level?

We should consider the other various forms of phosphate present in the body that may
contribute to hyperphosphatemia. Additionally, to adequately treat hyperphosphatemia,
we should focus on treating the related toxicities; this treatment strategy should be pro-
moted, although there are no proper guidelines issued to treat hyperphosphatemia entirely.
With this treatment, we must pay attention to prevention strategies and spread awareness
about phosphate sources in our daily routine, as care is always better than cure.

3. Hyperphosphatemia and Phosphate in Food

A patient suffering from renal disorders faces many challenges, such as late diagnosis
of associated diseases like hyperphosphatemia and related consequences, poor quality of
life, and economic issues, as described in the red part of Figure 1. These problems can be
solved by the detection of improved or new markers for hyperphosphatemia diagnosis,
development of cost-effective treatment alternatives, diet modification, and following social
awareness programs, as shown in the green part of Figure 1. These challenges are described
in the following sections with possible solutions.

Preservatives are reported to increase phosphate content in food by as much as
70% [25]; therefore, they are a chief contributor to the postprandial phosphate burden.
As per the guidelines of the European Union, sodium phosphate (E 339), potassium
phosphate (E 340), calcium phosphate (E 341), salts of orthophosphoric acid diphosphate
(E 450), triphosphate (E 451), and polyphosphate (E 452) can be incorporated as preserva-
tives, emulsifying agents, acidity buffers, taste intensifiers, stabilisers, and acidifying agents
into food to prevent the growth of microbes. The phosphate content in processed food
(including phosphate additives) is reported to be higher than that of natural food due to its
high assimilation into the gastrointestinal tract [26]. In addition to preservatives, phosphate
additives are also used to prevent the agglomeration of coffee and as a component of the
melting salt used for softening cheese [26].

Kemi et al. reported that the consumption of phosphate additive processed cheese
considerably increases iPTH levels [27]. In normal renal function, the consumption of
a phosphate additive-based diet may result in high levels of FGF-23, osteopontin, and
osteocalcin [28]. As per the guidelines of Kidney Disease: Improving Global Outcomes
(KDIGO), patients with CKD and bone mineral disorders should not only limit phosphate
intake (especially no more than 1 g per day for CKD stage 5 patients) but also undergo
proper treatment [29].
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Figure 1. Challenges faced by a renal (hyperphosphatemia) patient and the possible solution.

Currently, detailed studies are required to understand the effect of the frequency and
content of phosphate-rich sources on hyperphosphatemia development at each stage of
CKD. In the early stages of CKD, consumption of phosphate-rich food is not associated
with premature fatality due to the presence of a healthy kidney function; however, patients
on haemodialysis are at a higher risk of mortality with frequent phosphate-rich food
consumption [30].

Serum phosphate levels are dependent not only on the phosphate content of consumed
food and its digestibility but also on many factors like calcium intake, vitamin D, and the
expression of phosphate transporters in intestinal regions [31]. The phosphates present
in medications and multivitamin tablets that contribute to 20–150 mg phosphate per
supplemental tablet must be investigated for in vivo assimilation studies [32]. Expert
dieticians are required to personalise the diet, and address food availability and economic
issues with the management of the quality of life of patients with CKD.

3.1. Socioeconomic Challenges

Owing to time limitations, lack of cooking skills, and taste preferences, people usually
buy marketed foods. It becomes more challenging when the amount of phosphate-based
food additives or phosphate content is not mentioned in the marketed foods [33]. The
phosphate additives in animal food may intensify the ageing process by accelerating muscle
and skin atrophy, thereby resulting in the advancement of CKD and related calcification [34].
Marketed food products have 100% phosphate bioavailability; however, natural food
products range between 60 and 80% [35,36]. Thermal processing, such as boiling, is
reported to drain out the mineral content of food and assist in the reduction of phosphate
content by 35–50% in boiled food [37]. However, it is well-documented that phosphate salts
accelerate the formation of Maillard reaction products [38–40] (especially monohydrogen
phosphate-based salt [41]) during the cooking or processing of foods that later form uremic
toxins and overburden the kidney [42,43].

Simple meals with phosphorus additives have 736 mg more phosphorus
(41% increment) per day than additive-free foods; however, phosphate additive-free meals
are costlier by USD 2.00 per day. Therefore, consumers may prefer lower-priced food and
unintentionally acquire the harmful effects of high phosphate consumption [34]. These
reports also indicate the socioeconomic imbalance that focuses on the vulnerability of
low-income countries to the development of phosphate-related ailments.
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3.2. Public Education

In a report by Sullivan et al., awareness of phosphate restriction helped to moderately
lower the hyperphosphatemia condition in patients with end-stage renal disease [44]. How-
ever, a systematic review discovered that the prevention of malnutrition with a reduction in
serum phosphate levels in patients with CKD through counselling and raising awareness
regarding phosphate-related toxicities and phosphate content in commercial and natural
resources is a challenging task [45].

In UK and Finland, products containing sodium chloride are labelled using the colours
of a traffic light (i.e., red, yellow, and green marks indicating high, medium, and low
content, respectively) to prevent the consumption of high levels of sodium associated with
cardiovascular adverse events. Similarly, support for phosphate regulation and the content
mentioned on market products must be initiated by medical agencies and governments [26];
consumers must also be concerned and aware of the probable harmful effects of phosphate
and develop a habit of checking the phosphate content on the label of processed foods.

4. Phosphate Binders in Hyperphosphatemia

Oral phosphate binders work by hindering the intestinal absorption of phosphate
and forming an insoluble complex. As per reported studies, two major phosphate binders
are currently available in the market: calcium-containing binders and non-calcium-based
binders (lanthanum carbonate and aluminium hydroxide). The various advantages and
disadvantages of the available phosphate binders are described in Table 1.

Table 1. Advantages and disadvantages of commercially available phosphate binders [46–55].

Phosphate Binders Dosage (per Day) Advantages Disadvantages

Calcium carbonate 500–600 mg, 3 times Relatively inexpensive
and first-line treatment

Can potentially lead to hypercalcemia,
cardiovascular disorder (CVD),

gastrointestinal risks, and vascular
and bone calcification

Calcium citrate 4.5 g Cost-effective
Can potentially lead to

hypercalcemia and enhanced
intestinal aluminium absorption

Calcium acetate 667–6000 mg, 9 times Less calcium than
calcium carbonate Needs prescription

Aluminium hydroxide 600–1200 mg, 3 times No calcium and effective across a
wide range of pH levels

Can potentially lead to aluminium
deposition into bones and requires

strict monitoring of aluminium levels,
and haematological and

neurological toxicity

Lanthanum carbonate 0.5–1 g, 3 times
No calcium and effective

across a wide range of
pH levels

Expensive, there is deposition
into bones, and can lead to toxicity,

muscular-ache, and
gastrointestinal risks

Magnesium carbonate - Effective and
relatively inexpensive

Gastrointestinal risks and requires strict
monitoring of magnesium levels

Sevelamer oxyhydroxide 0.5–3 g, 3 times

Effective across a wide range
of pH levels, no calcium and

lanthanum, reduces low-density
cholesterol, and minimal assimilation

Expensive, has gastrointestinal risks,
can lead to metabolic acidosis and hinder

the assimilation of fat-soluble vitamins

Sucroferric oxyhydroxide 500 mg, 3 times Effective with low pill burden Gastrointestinal risks and expensive

Ferric citrate 210 mg, 9 times Effective for iron and
phosphate parameters Expensive

Nicotinamide 1.5 g Effective with low pill burden
and treats pellagra

Exacerbates hyperuricemia and can lead
to nausea and hyperglycaemia

Tenapanor 30 mg, 2 times Effective with low pill burden
and treats constipation Diarrhoea and nausea
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Novel Phosphate Binders

Currently, Sevelamer has drawbacks, including a high dose causing gastrointestinal
complications, acidosis, and affordability issues [56]. Another new alternative for phos-
phate binders is nicotinamide, which regulates hyperphosphatemia by acting negatively
on sodium-dependent phosphate transport in renal proximal tubules and the intestine [57];
however, its mechanism of action is yet to be elucidated in detail. In addition, its ad-
ministration in varied populations resulted in severe gastrointestinal side effects and
thrombocytopenia, which restricts its widespread application [58,59]. While tenapanor has
been traditionally utilised as a treatment for constipation, recent studies suggest that it may
also function as a phosphate binder with a low pill burden and frequency. However, tena-
panor can cause nausea and diarrhoea [54]. Ferric citrate and sucroferric oxyhydroxide are
two commercially available, iron-based phosphate binders that effectively manage blood
phosphate levels and also enhance iron absorption [51]. However, iron-based phosphate
binders are relatively expensive and may pose gastrointestinal risks [52].

We conclude that none of the commercially available phosphate binders is ideal or
effective, as even the most effective phosphate binders have disadvantages. For example,
phosphate binders prescribed to patients with CKD-associated hyperphosphatemia con-
tribute to the pill burden and are costly (USD 750 million globally) [60]. In addition, proper
validation of phosphate binders for hyperphosphatemia management with no harmful side
effects at clinical levels is still lacking.

The differences in the outcomes of phosphate binder clinical trials could be due to
the variation in phosphate exposure, baseline serum phosphate level, population size, and
duration. The differences in clinical outcomes have resulted in the spread of misinformation
and the wastage of research funds and labour. One of the main reasons for different
outcomes is the misinterpretation of statistical values obtained from software data, for
example, a p value of less than 0.05 is considered significant. This generally prevents the
interpretation of other important factors that contribute to the significance of the result.
A rational understanding of statistical numbers and comparison with the results in the
literature is necessary for laying down a stronger foundation to understand the status of
research and future interests.

5. Advanced CKD-Associated Understudied Diseases
5.1. Pulmonary and Cardiac Irregularities

Pulmonary dysfunction, which is common among patients with end-stage renal dis-
ease, is marked by structural and functional cardiac aberrations. The main cause of pul-
monary dysfunction with renal failure is the long-term accumulation of uremic toxins that
create more physiologically hazardous conditions like the imbalance between acidosis and
alkalosis (or hyperphosphatemia). Hyperparathyroidism in patients with CKD resulted
in pulmonary calcification, hypertension, and right ventricular hypertrophy as secondary
effects [61]. As reported in the literature, the calcium content in the lungs was higher in
cases of renal failure (7656 ± 1657 mg/kg dry weight) than in cases of parathyroidectomy-
induced renal failure in dogs (1057 ± 117 mg/kg dry weight). According to the same
study, the pressure in the right ventricular valve in the dogs with renal failure was
higher (30 and 45 [36 ± 2.1] mmHg) than in the parathyroidectomy-induced renal failure
dogs (15 and 25 [22 ± 2.0] mmHg). The gas diffusion capacity was also lower (between
2 and 4 mL/min/mmHg) in dogs with renal failure than in normal dogs (from 11.8 to
19.1 mL/min/mmHg) [62]. In a clinical trial, patients with renal disease were reported to
struggle with pulmonary venous congestion (15.79%), pleural effusions (10.52%), pericar-
dial effusion (15.79%), and cardiomegaly (15.79%) [63]. Fauber et al. established the direct
relation between pulmonary calcification and functional aberrations in pulmonary function
in renal failure cases [64]. However, data on pulmonary dysfunction in CKD is still scarce.



Medicina 2023, 59, 959 7 of 12

5.2. Restless Leg Syndrome

Takaki et al. concluded that hyperphosphatemia, anxiety, and emotion-oriented coping
with stress independently led to the pathogenesis of restless leg syndrome (RLS) in patients
undergoing haemodialysis. The altered dopaminergic system under RLS led to disturbed
excretion of phosphate [65]. In hyperphosphatemia, diffused vascular calcification occurs
in patients with end-stage renal failure; this may lead to the deposition of calcified products
in vasculatures of the leg and result in RLS development.

5.3. Skin Disorders

After a renal transplant, the prescribed immunosuppressants are absorbed into the skin
and subsequently weaken the immune system, thereby creating a favourable environment
for opportunistic skin infections. The most common symptom of fungal skin infection
reported among patients with renal disease is pale/dark patches or liverish-looking spots.
Another common skin infection among patients with renal disease is warts, which are
caused by viral infections and can easily spread throughout the body. In addition, if the
wart is caused by papillomavirus, it could be carcinogenic and may develop into skin
cancer under UV-C-containing sunlight [66].

Among the unusual but severe calcification-related kidney complications, calciphy-
laxis is generally reported in patients with renal disease and advanced CKD (hyperphos-
phatemia), dialysis, or kidney transplants. Skin lesions in calciphylaxis are found in high-fat
areas like breasts, buttocks, and abdomen [67].

The understudied diseases related to CKD should be included by evaluating com-
prehensive strategies to target multiple issues at a time. However, the current treatment
options are scarce and limited by side effects. Therefore, we must develop safer and
potentially effective alternatives to manage hyperphosphatemia appropriately.

6. Biological Approach for CKD and the Associated Hyperphosphatemia

To the best of our knowledge, prime investigations or attempts to explore a biological
approach for CKD prevention are yet to be initiated. The primary demand for safer
biological approaches for the prevention of hyperphosphatemia necessitates the screening
of probiotics or intestinal bacteria as potential phosphate-accumulating organisms (PAO).
Few attempts have been made with probiotic cultures to reduce uremic toxins and cure
CKD; for example, oral administration of Lactobacillus acidophilus for 1–6 months resulted
in decreased serum dimethylamine and nitrosodimethylamine (potent uremic toxins) [42].
Oxalobacter formigenes was administered to remove accumulated oxalates in patients with
urolithiasis [68].

6.1. Screening and Isolation of PAOs

We previously identified Lactobacillus casei JCM 1134 and Bifidobacterium adolescentis
JCM 1275 as potential PAOs [69]. However, these strains were found to be contaminated
with non-PAOs, thereby decreasing the total efficiency of phosphate accumulation. To this
end, we developed a screening and isolation method to obtain superior PAOs from L. casei
JCM 1134 and B. adolescentis JCM 1275 by enrichment in phosphate-rich media and then
eliminating non-PAOs in a low-pH selection medium by utilising the low pH survival
strategy of PAOs. This was followed by the purification of cultures via centrifugation on
a Percoll density gradient. Later, a novel semiquantitative assay on toluidine blue agar
and a quantitative microbial-phosphate estimation method [70] were developed to detect
the potential of PAOs as phosphate accumulators. These methods specifically remove
the ambiguities due to interfering agents and use specific blanks for accurate phosphate
estimations. The experimental data demonstrated that using strain 11th isolate of L. casei
JCM 1134 and strain 8th isolate of B. adolescentis JCM 1275 as potential phosphate accumula-
tors can be a safe and promising approach to prevent CKD-associated hyperphosphatemia
in the early stages of development [69]. Furthermore, these potential PAOs were delivered
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as functional foods (synbiotics) to obtain high throughput product development to prevent
hyperphosphatemia.

6.2. Functional Food Formulation and In Vitro Studies

A tailored double-layered synbiotic formulation was engineered by spray-drying the
transformed phosphate-deficient L. casei JCM 1134 with the supernatant of lysine derivative
of Aloe vera as an outer sacrificial layer to stand with gastric juice; then, the inner second
layer of probiotic, which is a lysine derivative of A. vera, would selectively capture phos-
phate ions for the accumulation in the core (probiotic) [70]. We found that the synbiotic
formulation promoted better phosphate removal when compared to that promoted by
lanthanum carbonate and aluminium hydroxide. Moreover, the synbiotic formulation
demonstrated efficient phosphate removal relative to the calcium carbonate from milk and
soft drinks. Overall, the synbiotic formulation stands out as the first preference for phos-
phate removal from phosphate-rich synthetic media (15.7 mg dipotassium monohydrogen
phosphate salt/mL) under simulated in vitro conditions [71].

7. Conclusions

Besides being expensive, current treatment methods like chemotherapy and dialysis
have long-term side effects. Medical doctors prescribe phosphate binders to treat hyper-
phosphatemia and target only the blood phosphate levels. However, researchers and
medical doctors should understand the phosphate metabolism associated with health-
hazardous pathways (especially the understudied diseases) and provide comprehensive
treatment by targeting probable hyperphosphatemia.

The available phosphate binders have a high pill burden and cost and lead to heavy
metal deposition, metabolic irregularities, and vascular calcifications. New and safer
phosphate binders are still under investigation and will not be available soon to patients
currently affected by CKD. Although renal treatment strategies are prescribed in the
subsequent stages, the reversal of kidney function is almost impossible, and this ensures
that preventive strategies are better than treatment. In this regard, using probiotics as PAOs
and their utilisation as phosphate accumulators under gastric systems is a new and safer
approach to prevent hyperphosphatemia.

8. Future Directions

Probiotics are a safe potential option and confer additional health benefits to the gut.
Prevention of hyperphosphatemia using probiotics as PAOs still needs further investigation,
including extensive in vivo studies to obtain a final product that can be considered satisfac-
tory by patients with CKD. These novel synbiotics can be incorporated into phosphate-rich
foods generally barred for patients with renal disease, thereby enhancing the functional
food market.

It has been reported that a phosphate-restricted life and a tight dialysis schedule
have worsened the quality of life of patients. However, patients with renal disorders are
still unaware of the phosphate content in natural and commercial food items and require
the guidance of a good dietician. Furthermore, governments must take action to make
phosphate content marking on food items obligatory in the list of ingredients. Researchers
must explore the incidence of cross-reactivity other than Maillard reactions during food
processing and evaluate the impact of this on renal health. In addition, government
agencies must conduct social programs to spread awareness regarding the hazardous
effects of phosphate and their prevention.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/medicina59050959/s1, Renal damage caused by heavy metals in
cosmetics and SARS-CoV-2 (separate text file). Refs. [72–86].

https://www.mdpi.com/article/10.3390/medicina59050959/s1
https://www.mdpi.com/article/10.3390/medicina59050959/s1
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