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Abstract: The objective of this study was to evaluate the effects of high levels of maternal exposure to
ambient air pollution and heavy metals on risks of autism spectrum disorder (ASD) and epilepsy using
the National Health Insurance claims data of South Korea. The data of mothers and their newborns
from 2016 to 2018 provided by the National Health Insurance Service were used (n = 843,134). Data on
exposure to ambient air pollutants (PM2.5, CO, SO,, NO;, and O3) and heavy metals (Pb, Cd, Cr, Cu,
Mn, Fe, Ni, and As) during pregnancy were matched based on the mother’s National Health Insurance
registration area. SO, (OR: 2.723, 95% CI: 1.971-3.761) and Pb (OR: 1.063, 95% CI: 1.019-1.11) were
more closely associated with the incidence of ASD when infants were exposed to them in the third
trimester of pregnancy. Pb (OR: 1.109, 95% CI: 1.043-1.179) in the first trimester of pregnancy and
Cd (OR: 2.193, 95% CI: 1.074—4.477) in the third trimester of pregnancy were associated with the
incidence of epilepsy. Thus, exposure to SO, NO,, and Pb during pregnancy could affect the
development of a neurologic disorder based on the timing of exposure, suggesting a relationship
with fetal development. However, further research is needed.

Keywords: air pollution; autism spectrum disorder; epilepsy; heavy metals

1. Introduction

Air pollution is a major risk factor for global health. Exposure to air pollution has been
linked to increased mortality and morbidity, contributing significantly to the overall global
disease burden [1]. Globally, the number of all-cause deaths from overall air pollution
increased by 2.62% from 1990 to 2019 [2]. The Health Effects Institute’s State of Global Air
reported that PM2.5, a type of fine-particulate air pollution, is the sixth-highest risk factor
for death globally, accounting for approximately four million deaths in 2019 alone [3]. Over
90% of the world’s population live in areas where the air quality standards set by the WHO
are not met. In Asian megacities, air pollution concentrations have been observed to be the
highest worldwide. Recently, Korea has undergone rapid economic growth, and the air
quality has worsened.

Air pollution is caused by complex components including nitrogen dioxide (NO3),
sulfur dioxide (SO;), and particulate matter (PM). NO,, SO,, PM, and indirectly generated
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ozone (O3) are major air pollutants that are related to exhausts from vehicles and industrial
energy consumption, which are caused by urbanization and industrialization [4-7].

Generally, heavy metals are amalgamated with PM [8] and mainly originate from
diesel and gasoline exhaust fumes from local traffic and industrial areas [9,10].

Air pollution is known to affect mortality and the prognosis of cardiovascular disease,
respiratory disease, and stroke [11-13]. Recent studies have focused on the potential effects
of exposure to NO,, SO,, and PM2.5, which showed that a maternal exposure factor that
can adversely affect even the prenatal period [14,15].

PM2.5, with various deleterious components, can enter the blood circulation through
the lungs [16,17]. In addition, PM2.5 exposure during pregnancy can induce oxidative
stress and an inflammatory response. It can affect the fetus through changes in the uter-
ine environment and placental function [18,19]. The prenatal period is critical for brain
development. It is a complicated process determined by both genetic and external factors.
Deleterious factors during the prenatal period might have severe and long-term adverse
effects on brain structure and function, resulting in neurodevelopmental disorders.

Some studies have shown that exposure to NO,, SO,, and PM2.5 is a risk factor for
stillbirth and spontaneous abortion, supporting the notion that exposure to NO,, SO,, and
PM2.5 can affect the fetus [20,21]. Regarding neurodevelopment, it is known that PM2.5 can
induce oxidative stress and an inflammatory response [8] and that both oxidative stress and
an inflammatory response can affect the expression of brain-derived neurotrophic factor
(BDNF) and cyclic AMP response element-binding protein (CREB), which are well-known
neurodevelopment factors [22-24]. Some studies have demonstrated that exposure to
PM2.5 is related to changes in the expression of BDNF and CREB [25-27].

The etiology of autism spectrum disorder (ASD) and epilepsy is still not fully known so
far. They were once regarded as genetic diseases [28-30]. However, some studies have reported
that both genetic and environmental factors can contribute to these diseases [31-33]. Therefore,
the objective of this study was to evaluate whether high levels of maternal exposure to NO,,
SO,, and PM2.5 could increase the risk of neurological disorders such as autism spectrum
disorder and epilepsy using the National Health Insurance claims data of South Korea.

2. Materials and Methods
2.1. Study Population

This study was approved by the Institutional Review Board of the Korea University
Ansan Hospital (2021AS0317). Information obtained from the Korean National Health
Insurance (NHI) claims database from January 2016 to December 2020 was used in this
study. The NHI claims database provides information on all the insurance claims of the
Korean population.

This study cohort included NHI claims data for babies with short gestation periods
and low birth weights (“P07”), comprising singletons and twins (“Z38.0-Z38.5”) born in
hospitals, and mothers who gave birth from January 2016 to December 2018. Multiple
births and missing data were excluded, as they could have affected the results of this study.

The baseline characteristics, underlying diseases, and follow-up data of study subjects
were extracted from the NHI claims database. The measured data on ambient air pollutants
(PM2.5, CO, SO,, NOy, and O3) and heavy metals (Pb, Cd, Cr, Cu, Mn, Fe, Ni, and
As) in South Korea from January 2015 to December 2018 were extracted from the Korea
Environment Corporation (https:/ /www.airkorea.or.kr/eng/ accessed on 18 April 2022.).
The atmospheric conditions data were matched to mothers and their newborns based on
the mother’s NHI registration area. Air pollutant measurement data measured during
pregnancy were matched based on the mother’s health insurance claim registration area.
The gestation period was divided into three stages. The first 1-3 months were defined
as stage 1, 4-7 months as stage 2, and 8-10 months as stage 3. In the case of household
income, the bottom 40% was defined as low and the top 5% was defined as high. Premature
(“P07.2-F07.3") and twin (Z38.3-Z38.5) codes were used.
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Autism spectrum disorder (“F84.0-F84.9”), excepting Rett’s syndrome (F84.2), and
epilepsy (“G40.0-G40.9”) were the disease codes used in this study. The minimum observa-
tion period for infants up to disease onset was maintained as two years or more.

2.2. Statistical Analysis

Data are presented as the mean =+ standard deviation and number (%) of patients.
The confounding variables and essential characteristics of the groups with and without
autism spectrum disorder and groups with and without epilepsy were analyzed using an
independent t-test for continuous variables and Fisher’s exact test or the chi-square test for
categorical variables.

Logistic regression was performed, and odds ratios and 95% Cls for autism spectrum
disorder or epilepsy adjusted for maternal age, education, infant sex, gestational season,
and household income were analyzed for air pollutant and heavy metal exposure according
to pregnancy stage in a single-pollutant model.

For autism spectrum disorder, two air pollutants and two heavy metals were selected
according to forward selection with a four-pollutant model. After adjusting for maternal
age, education level, infant sex, pregnancy period, and household income, the odds ra-
tios and 95% Cls for autism spectrum disorder were analyzed based on exposure to air
pollutants and heavy metals according to pregnancy stage.

For epilepsy, two air pollutants and three heavy metals were selected according to
forward selection with a five-pollutant model. After adjusting for maternal age, education
level, infant sex, pregnancy period, and household income, odds ratios and 95% Cls for
epilepsy were analyzed based on exposure to air pollutants and heavy metals according to
pregnancy stage. Additionally, adjusted odds ratios and 95% ClIs for the neurologic disor-
ders and exposure to air pollutants and heavy metals according to months of pregnancy in
a one-pollutant model were obtained.

All statistical analyses were performed using SAS® ver. 9.4 (Statistical Analysis
Software 9.4, SAS Institute Inc., Cary, NC, USA). Differences were considered statistically
significant if the p-value was less than 0.05.

3. Results

The medical records of 854,796 mothers from January 2016 to December 2020 and
their newborns from January 2016 to December 2018 were reviewed (Figure 1). There were
5493 infants with autism spectrum disorder and 3190 infants with epilepsy. A total of
11,662 patients were excluded due to incomplete medical records. Finally, 843,134 patients
were included in this study.

Table 1 shows the demographic and prenatal characteristics of the study subjects. For
the infants with ASD, the proportion of maternal ages of 40 years or older was higher
(23.5%) compared to that for infants without ASD (18.5%, p < 0.001). There were more
males (71.6%) among the infants with ASD than the infants without ASD (51.25%, p < 0.001).
Furthermore, more infants with ASD were born in winter (33.7%, p < 0.001), and these
infants included more preterm babies (15.1%) and twins (3.5%, p < 0.001). For infants with
epilepsy, the proportion of maternal ages over 40 was higher (23.9%) than that for infants
without ASD (18.5%, p < 0.001) There were more males (55.3%) among the infants with
epilepsy than the infants without epilepsy (51.3%, p < 0.001). Infants who were born in
winter (36.7%) (p < 0.001) and those who were preterm (13.5%) were more prevalent among
the infants with epilepsy than the infants without epilepsy (p < 0.001).

Table 2 shows the summary statistics of air pollutants and heavy metals by case.
Figure 2 shows the spatial distribution of the mean PM2.5 and NO, concentrations and the
number of neurologic disorders in South Korea. An increase in the mean PM2.5 or Pb was
associated with an increase in the incidence of ASD and epilepsy in newborns.

The adjusted odds ratios and 95% Cls for autism spectrum disorder and epilepsy and
exposure to air pollutants and heavy metals according to the stage of pregnancy in the
single-pollutant model are shown in Table 3.



Medicina 2023, 59, 951 4 0f 15

The adjusted odds ratios and 95% ClIs for autism spectrum disorder and exposure to
air pollutants and heavy metals according to the stage of pregnancy in a four-pollutant
model are shown in Table 4. The adjusted odds ratio and 95% ClIs for epilepsy and exposure
to air pollutants and heavy metals according to the stage of pregnancy in a five-pollutant
model are shown in Table 5.

Mothers and their newborns who gave birth in
South Korea through electronic search from
January 2016 to December 2020 (n = 854,796)

[ Identification ]

| Excluded (n=11,662)
"| + Incomplete medical records

Participated in this study
[ Enrollment ] (n =843,134)
Y
. Analysed
[ b ] (n = 843,134)

Figure 1. Consort flow diagram of this study.

Table 1. Demographic and prenatal characteristics of the study subjects.

With Autism . .
Total Spectrum Disorder With Epilepsy

Maternal age (years) *t

total 843,134 5493 3190

<20 68 (0.0) 0 (0.0) 1(0.0)

20-30 70,501 (8.4) 460 (8.4) 246 (7.7)

30-40 616,720 (73.1) 3740 (68.1) 2182 (68.4)

40< 155,845 (18.5) 1293 (23.5) 761 (23.9)
Occupational status *

Worked outside home 323,250 (38.3) 1945 (35.4) 1187 (37.2)
Household income *

Low (40%) 292,469 (34.7) 1819 (33.1) 1095 (34.3)

Middle (40-95%) 531,455 (63.0) 3526 (64.2) 2006 (62.9)

High (95% <) 19,210 (2.3) 148 (2.7) 89 (2.8)
Infant sex *t

Male 428,873 (51.2) 3934 (71.6) 1765 (55.3)
Season *t

Winter 224,344 (26.6) 1850 (33.7) 1170 (36.7)

Spring 218,963 (26.0) 1332 (24.2) 716 (22.4)

Summer 204,840 (24.3) 1196 (21.8) 679 (21.3)

Fall 194,987 (23.1) 1115 (20.3) 625 (19.6)
Premature (27-36 weeks) *t

<36 weeks 44,060 (5.3) 829 (15.1) 430 (13.5)
Multiple birth *

twin (Z38.3-Z38.5) 18,734 (2.2) 193 (3.5) 77 (2.4)

Data are presented as the mean =+ standard deviation and number (%) of patients. * p < 0.05 compared be-
tween groups with and without autism spectrum disorder. t p < 0.05 compared between groups with and
without epilepsy.
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Table 2. Summary statistics of air pollutants and heavy metals by case.

Air Pollutants and Heavy Metals Mean Median

PM10 (ug/m?) 45.35 £ 11.07 45.07 (36.67-52.68)
PM2.5 (ug/m3) 25.83 + 6.17 25.33 (21.36-29.71)
SO; (ppm)) 0.005 £ 0.001 0.005 (0.004-0.005)
NO; (ppm) 0.023 + 0.007 0.023 (0.018-0.028)
O3 (ppm) 0.028 + 0.010 0.028 (0.020-0.035)
CO (ppm) 0.493 £ 0.110 0.468 (0.412-0.575)
Pb (ug/m?3) 0.024 £+ 0.012 0.022 (0.015-0.033)
Cd (nug/m?) 0.001 +£ 0.001 0.001 (0.001-0.001)
Cr (ug/m?) 0.005 + 0.004 0.004 (0.002-0.006)
Cu (ug/m3) 0.025 £+ 0.018 0.021 (0.013-0.034)
Mn (pg/m3) 0.032 £ 0.017 0.029 (0.020-0.040)
Fe (ug/m?) 0.672 4 0.345 0.650 (0.429-0.838)
Ni (ug/m3) 0.005 £ 0.003 0.004 (0.003-0.006)
As (ug/m3) 0.004 + 0.003 0.003 (0.002-0.005)

Data are presented as the mean =+ standard deviation and median (25-75%).
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Figure 2. Spatial distribution of the mean PM2.5 and NO, concentrations and the number of neu-
rologic disorders in South Korea. (a) PM2.5 and autism spectrum disorder, (b) PM2.5 and epilepsy,
(c) Pb and autism spectrum disorder, (d) Pb and epilepsy. Data are presented as the mean and number
of patients.

ASD was associated with increased total mean concentrations of SO,, NO,, and Pb
during the entire pregnancy. SO, (OR: 2.723, 95% CI: 1.971-3.761) and Pb (OR: 1.063, 95% CI:
1.019-1.11) were strongly associated with the incidence of ASD when infants were exposed
to them in the third trimester of pregnancy. Epilepsy was associated with increased total
mean concentrations of SO, and NO, during the entire pregnancy. Pb (OR: 1.109, 95% CI:
1.043-1.179) in the first trimester of pregnancy and Cd (OR: 2.193, 95% CI: 1.074—4.477) in
the third trimester of pregnancy were also associated with the incidence of epilepsy.

Figure 3 shows the adjusted odds ratios and 95% ClIs for the neurologic disorders
and exposure to air pollutants and heavy metals according to months of pregnancy in a
one-pollutant model. The association between the concentration of Pb by pregnancy period
and the occurrence of ASD and epilepsy increased over the entire pregnancy period. On
the other hand, Cd had a closer association with the occurrence of ASD and epilepsy in the
early and late pregnancy periods.
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Table 3. Adjusted a odds ratio and 95% CI of autism spectrum disorder or epilepsy and exposure to
air pollutants and heavy metals according to the stage of pregnancy in a single-pollutant model.

With Autism Spectrum Disorder With Epilepsy

OR (95% CI)

OR (95% CI)

1st stage 0.992 (0.988-0.996) 0.992 (0.987—0.998)

2nd stage 1.023 (1.019-1.027) 1.021 (1.016-1.027)

PM10 3rd stage 1.022 (1.018-1.026) 1.020 (1.015-1.026)
total 1.023 (1.017-1.029) 1.023 (1.015-1.030)

1st stage 0.995 (0.989-1.003) 0.996 (0.987-1.005)

2nd stage 1.036 (1.029-1.043) 1.033 (1.024-1.043)

FM2.5 3rd stage 1.039 (1.031-1.046) 1.033 (1.024-1.043)
total 1.048 (1.037-1.059) 1.047 (1.033-1.061)

1st stage 2.843 (2.240-3.609) 2,900 (2.129-3.950)

o 2nd stage 4149 (3.183-5.408) 3.443 (2.434-4.871)
2 3rd stage 5.060 (3.819-6.703) 5.670 (3.920-8.202)
total 6.060 (4.449-8.256) 6.039 (4.033-9.041)

1st stage 1.281 (1.222-1.343) 1.485 (1.396-1.580)

O 2nd stage 1.463 (1.396-1.533) 1,587 (1.492-1.688)
2 3rd stage 1.394 (1.329-1.462) 1.577 (1.481-1.680)
total 1.439 (1.367-1.515) 1.669 (1.559-1.786)

1st stage 0.719 (0.679-0.761) 0.679 (0.629-0.732)

o 2nd stage 0.764 (0.723-0.807) 0.716 (0.666-0.770)
3 3rd stage 0.862 (0.813-0.914) 0.653 (0.603-0.707)
total 0.572 (0.522-0.626) 0.404 (0.358-0.457)

1st stage 1.008 (1.004-1.012) 1.014 (1.009-1.019)

2nd stage 1.022 (1.018-1.026) 1.025 (1.020-1.030)

o 3rd stage 1.021 (1.017-1.025) 1.032 (1.026-1.037)
total 1.027 (1.022-1.033) 1.040 (1.033-1.047)

1st stage 1.097 (1.069-1.126) 1.147 (1.108-1.186)

2nd stage 1.088 (1.060-1.117) 1.101 (1.063-1.139)

Pb 3rd stage 1.139 (1.110-1.169) 1.164 (1.125-1.205)
total 1.143 (1.109-1.178) 1.181 (1.136-1.228)

1st stage 2.038 (1.350-3.076) 3.045 (1.789-5.181)

2nd stage 1.874 (1.316-2.667) 1.750 (1.101-2.782)

Cd 3rd stage 2.458 (1.815-3.328) 3.288 (2.263-4.777)
total 3.287 (2.113-5.113) 5.389 (3.061-9.487)

1st stage 1.075 (0.980-1.180) 1.059 (0.936-1.197)

2nd stage 1.121 (1.020-1.233) 1.054 (0.929-1.195)

Cr 3rd stage 1.102 (0.995-1.221) 1.122 (0.982-1.282)
total 1.153 (1.026-1.297) 1.112 (0.954-1.297)

1st stage 1.028 (1.010-1.046) 1.071 (1.047-1.094)

2nd stage 1.045 (1.026-1.064) 1.088 (1.063-1.114)

Cu 3rd stage 1.059 (1.039-1.078) 1.103 (1.077-1.129)
total 1.052 (1.031-1.073) 1.109 (1.080-1.137)

1st stage 1.016 (0.997-1.036) 1.003 (0.978-1.029)

2nd stage 1.042 (1.023-1.061) 1.023 (0.999-1.048)

Mn 3rd stage 1.031 (1.012-1.051) 1.031 (1.005-1.056)
total 1.036 (1.014-1.058) 1.024 (0.996-1.054)

1st stage 1.001 (1.000-1.002) 1.003 (1.001-1.004)

. 2nd stage 1.004 (1.003-1.005) 1.005 (1.004-1.007)
3rd stage 1.004 (1.003-1.005) 1.004 (1.003-1.006)

total 1.004 (1.003-1.005) 1.006 (1.004-1.007)
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Table 3. Cont.

With Autism Spectrum Disorder

With Epilepsy

OR (95% CI)

OR (95% CI)

1st stage

2nd stage

3rd stage
total

1.054 (0.945-1.176)
1.202 (1.078-1.340)
1.394 (1.248-1.558)
1.302 (1.144-1.481)

1.020 (0.883-1.177)
1.191 (1.032-1.374)
1.296 (1.120-1.501)
1.248 (1.054-1.479)

As

1st stage

2nd stage

3rd stage
total

1.565 (1.390-1.763)
1.912 (1.700-2.152)
1.660 (1.488-1.852)
2.622 (2.222-3.095)

1.311 (1.118-1.537)
1.481 (1.260-1.741)
1.687 (1.461-1.947)
2.039 (1.642-2.532)

Logistic regression model adjusted for maternal age, education, infant sex, season of conception, and house-
hold income.

Table 4. Adjusted odds ratios and 95% ClIs for autism spectrum disorder and exposure to air
pollutants and heavy metals according to the stage of pregnancy in a four-pollutant model.

With Autism Spectrum Disorder

SO, + NO; + Pb + Cd OR (95%CI)
Total 3.288 (2.306-4.687)
S0 1st stage 1.770 (1.338-2.342)
2 2nd stage 2.128 (1.557-2.909)
3rd stage 2.723 (1.971-3.761)
Total 1.322 (1.244-1.403)
NO 1st stage 1.233 (1.165-1.304)
2 2nd stage 1.421 (1.346-1.501)
3rd stage 1.267 (1.197-1.341)
Total 1.079 (1.017-1.145)
b 1st stage 1.041 (0.993-1.092)
2nd stage 0.980 (0.936-1.026)
3rd stage 1.063 (1.019-1.110)
Total 0.441 (0.184-1.057)
cd 1st stage 1.233 (1.165-1.304)
2nd stage 1.421 (1.346-1.501)

3rd stage 1.267 (1.197-1.341)

Logistic regression model was adjusted for maternal age, education, infant sex, season of conception, and
household income.

Table 5. Adjusted odds ratio and 95% Cls for epilepsy and exposure to air pollutants and heavy
metals according to the stage of pregnancy in a five-pollutant model.

With Epilepsy

SO, + NO; + Pb + Cd + As OR (95%CI)
Total 3.702 (2.25-6.089)
SO 1st stage 2.106 (1.403-3.163)
2 2nd stage 1.648 (1.061-2.560)
3rd stage 2.897 (1.855-4.522)
Total 1.869 (1.696-2.059)
NO 1st stage 1.542 (1.422-1.672)
2 2nd stage 1.680 (1.553-1.817)
3rd stage 1.548 (1.427-1.681)
Total 1.064 (0.983-1.152)
b 1st stage 1.109 (1.043-1.179)
2nd stage 1.039 (0.976-1.107)
3rd stage 1.031 (0.974-1.092)
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Table 5. Cont.
With Epilepsy
SO, + NO, + Pb + Cd + As OR (95%CI)
Total 2.591 (0.738-9.102)
cd 1st stage 0.857 (0.328-2.243)
2nd stage 0.757 (0.308-1.859)
3rd stage 2.193 (1.074-4.477)
Total 0.273 (0.187-0.399)
A 1st stage 0.461 (0.361-0.589)
s 2nd stage 0.568 (0.436-0.741)
3rd stage 0.613 (0.480-0.783)
Logistic regression model was adjusted for maternal age, education, infant sex, season of conception, and
household income.
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Figure 3. Adjusted odds ratios and 95% Cis for neurologic disorders and exposure to air pollutants and
heavy metals by months of pregnancy in a one-pollutant model. (a) Pb and autism spectrum disorder by
months of pregnancy, (b) Pb and epilepsy by months of pregnancy, (c) Cd and autism spectrum disorder
by months of pregnancy, and (d) Cd and epilepsy by months of pregnancy. Logistic regression model
adjusted for maternal age, education, infant sex, season of conception, and household income.
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4. Discussion

This study demonstrated that exposure to high concentrations of SO,, NO,, and
Pb during the entire pregnancy period was associated with the development of ASD or
epilepsy. The biological mechanism linking in utero exposure to air pollution and neural
development in children is not yet fully understood. Maternal exposure to air pollution,
including NO, /SO, or PM2.5 and heavy metals, can lead to inflammation, oxidative stress,
and DNA methylation placenta via lung tissues [34-38]. Oxygen and nutrient transport
to the fetus are then disturbed, and inflammatory cytokines from the maternal circulation
might be transported to the fetus, causing a fetal systemic inflammatory response which
can adversely affect fetal development [34-36,39-41]. The fetal period is a critical window
for brain development. Air pollutants in utero can significantly increase the susceptibility
of infants to neurological diseases after birth [42].

This study demonstrated that exposure to high concentrations of SO, during the third
trimester was associated with the birth of children with ASD. This study also revealed
that exposure to SO, during the early and late pregnancy periods was associated with the
birth of a child with epilepsy. Regarding ASD, a previous study showed no association
between the level of prenatal SO, exposure and the risk of ASD [43]. In that study, the
average exposure level of SO, during pregnancy was approximately 5.8 ppb during the
observation period, which is similar to the result of our study (an average of 5 ppb), but
the relationship between prenatal SO, exposure and the risk of ASD showed a different
result. Other studies have reported that prenatal SO, exposure is associated with poor or
impaired neurodevelopment in early childhood [44,45]. It is known that SO, may lead to
neurotoxicity by inducing oxidative stress, DNA damage, and apoptosis, as well as DNA
methylation [46-50]. Previous studies on the absorption, distribution, and retention of SO,
in mammalian subjects have indicated that sulfur can be absorbed into the blood circulation
and transported to the central nervous system [51,52]. When SO; reaches the CNS, its
biochemical effects can change the enzymatic activities of the CNS [53]. SO; can depress
some enzymatic activities of glucose metabolism [54]. With respect to prenatal exposure,
Choi et al. [50] reported that prenatal DNA-methylation-associated SO, exposure is associ-
ated with an increased ADHD rating scale in later childhood. Moreover, Liu et al. reported
that prenatal SO, exposure is positively related to the fetal hs-CRP level, a biomarker of
systemic inflammation, and Liu et al. also suggested that prenatal SO, exposure might
interfere with fetal glucolipid metabolism by inducing fetal systemic inflammation [55].
However, the study reported no significant association between NO, exposure and in-
creased hs-CRP levels, indicating that the mechanisms through which SO, and NO, affect
fetal neurodevelopment might be different. These are proposed mechanisms through which
NO; may interfere with neuronal development.

Regarding ASD, our results on prenatal NO, exposure are consistent with the associa-
tions reported in previous studies [43,56]. These previous studies reported that during all
pregnancy periods, prenatal NO, exposure was associated with the risk of ASD. On the
other hand, Gong et al. reported that prenatal NO, exposure is not associated with the risk
of ASD [57,58]. However, these studies reported that the average prenatal NO, level of
exposure was around 14 pg/m3 to 20 pg/m? or 5.4 pg/m?3 to 12.7 pug/m?3 in the observation
period. These levels of NO; were found to be lower than those of studies showing an
association between NO, and ASD (Wang et al., 24 ng/ m3, Volk et al., 32.24 ug/ m?3) or this
study (46.20 ug/m?).

Regarding epilepsy, there have been studies reporting that postnatal NO, exposure is
associated with the risk of epilepsy [59,60]. However, to the best of our knowledge, this
study is the first to demonstrate that prenatal NO, exposure is associated with the risk
of epilepsy. It is known that prenatal NO, exposure can induce oxidative stress [61,62]
and systemic inflammation [63]. Oxidative stress can induce the placenta to secrete factors
detrimental to neurons and expose fetal brains to oxidative stress, thus adversely affecting
neuronal development. Inflammation can expose a fetus to maternal immune activation
and pro-inflammatory cytokines, which can adversely affect neurodevelopment [64-67]. In
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animal studies, it has been found that prenatal NO, exposure can adversely affect neonatal
behavioral development [68]. Michikawa et al. [69] suggested that NO; affects the placenta
by inducing inflammation, and this may be related to inflammation of the endometrium.
Other studies have shown that maternal exposure to NO; is significantly associated with
placental DNA methylation levels known to affect fetal development [37] and with DNA
methylations that are associated with apoptosis-related genes in cord blood cells [70]. These
are proposed mechanisms through which NO, may interfere with neuronal development.

This study demonstrated that high concentrations of lead (Pb) exposure during the
late pregnancy period was associated with the birth of a child with ASD and that exposure
to Pb during the early pregnancy period was associated with the birth of child with epilepsy.
High concentrations of Pb have been observed in hair and nail samples from children with
ASD [71,72]. Skogheim et al. [73], using maternal blood samples, also suggested that prena-
tal Pb exposure is associated with the risk of ASD. Regarding epilepsy, Sasmaz et al. [74]
reported that Pb concentrations were significantly higher in the hair of epilepsy patients
than in the healthy group. Other studies have reported that Pb exposure during early devel-
opment is associated with cognitive deficits, as well as behavioral abnormalities [75]. In a
zebrafish study, prenatal exposure to water-soluble fractions of Pb could induce autism-like
behavior in larvae [76]. Chen et al. [77] reported that prenatal Pb exposure can induce
neurobehavioral anomalies in mice. Microglia are the most important innate immune cells
in the brain. Pb has been shown to activate inflammasome proteins associated with mi-
croglial activation [78] and trigger microglial activation, releasing inflammatory cytokines
and neural apoptosis [79]. Pb is a neurotoxicant that can suppress brain plasticity in a
critical period of neurodevelopment [80]. Prenatal Pb exposure can cross the placenta
and accumulate in fetal tissues, threating the developing brain and adversely affecting
placenta functions [81]. Pb has been associated with altered DNA methylation patterns,
with some affected genes being related to neurodevelopment or cognitive function [82,83].
Pb can impact the brain through DNA methylation mechanisms as well as interactions
with calcium-ion-dependent processes and oxidative damage [34].

This study demonstrated that exposure to high concentrations of cadmium (Cd)
during the prenatal late pregnancy period was associated with the birth of a child with
epilepsy. Cd might be released from the mother and transferred to the fetus via the
placenta. High concentrations of Cd have been found in the hair of infants with mothers
occupationally exposed to Cd [85]. Prenatal Cd exposure is known to affect infant growth
and organ development [86]. In animal studies, it has been found that Cd can affect neural
development [87,88]. Some studies have revealed that exposure to Cd in early pregnancy is
related to cognition or ASD and ADHD [73,89]. However, Forns et al. [90] reported that
prenatal exposure to Cd is not related to cognition.

There are several limitations of this study. First, ASD is known to develop from
complex interactions between genetic and environmental risk factors [91]. However, genetic
factors were not considered in the present study. Second, ASD and epilepsy are influenced
by postnatal exposure to air pollution. However, the findings were not adjusted for
postnatal exposure. Since the subjects of this study were infants, their exposure after birth
was unlikely to have had a significant effect. Third, co-exposure to toxic metals has a
synergistic effect. However, there was no adjustment for this effect. For example, Pb and
mercury have been found to have synergistic negative effects on childhood cognitive ability
and development [92]. Gorini et al. [93] also discussed the impacts of single-heavy-metal
exposure and co-exposure to multiple metals on the development of ASD.

The strength of this study was that it demonstrated the association of prenatal exposure
to heavy metals with ASD and epilepsy using air pollution data. Previous studies have
studied the risk of prenatal exposure using the hair or nail of the child and the blood or
hair of the mother. To the best of our knowledge, this study was the first to measure the
prenatal risk of each heavy metal as an air pollutant. The results demonstrate a more direct
association between heavy metals in air pollution and the risk of prenatal exposure to ASD
and epilepsy.
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5. Conclusions

The findings of this study suggest that exposure to SO,, NO,, and Pb during pregnancy
can affect the development of neurologic disorders according to the timing of exposure,
indicating that such exposure is related to fetal development. The relationships of ASD
and epilepsy with air pollution identified in this study need to be further clarified through
more personalized assessments and further epidemiological studies. In addition, research
on the mechanisms of toxic substances is needed. All these efforts will further clarify the
causal relationship between air pollution and the incidence of ASD and epilepsy.
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