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Abstract: Diabetic retinopathy is a form of diabetic microangiopathy, and vascular hyperpermeability
in the macula leads to retinal thickening and concomitant reduction of visual acuity in diabetic macu-
lar edema (DME). In this review, we discuss multimodal fundus imaging, comparing the pathogenesis
and interventions. Clinicians diagnose DME using two major criteria, clinically significant macular
edema by fundus examination and center-involving diabetic macular edema using optical coherence
tomography (OCT), to determine the appropriate treatment. In addition to fundus photography,
fluorescein angiography (FA) is a classical modality to evaluate morphological and functional changes
in retinal capillaries, e.g., microaneurysms, capillary nonperfusion, and fluorescein leakage. Recently,
optical coherence tomography angiography (OCTA) has allowed us to evaluate the three-dimensional
structure of the retinal vasculature and newly demonstrated that lamellar capillary nonperfusion in
the deep layer is associated with retinal edema. The clinical application of OCT has accelerated our
understanding of various neuronal damages in DME. Retinal thickness measured by OCT enables us
to quantitatively assess therapeutic effects. Sectional OCT images depict the deformation of neural
tissues, e.g., cystoid macular edema, serous retinal detachment, and sponge-like retinal swelling.
The disorganization of retinal inner layers (DRIL) and foveal photoreceptor damage, biomarkers of
neurodegeneration, are associated with visual impairment. Fundus autofluorescence derives from
the retinal pigment epithelium (RPE) and its qualitative and quantitative changes suggest that the
RPE damage contributes to the neuronal changes in DME. These clinical findings on multimodal
imaging help to elucidate the pathology in the neurovascular units and lead to the next generation of
clinical and translational research in DME.

Keywords: center-involving diabetic macular edema; clinically significant macular edema; diabetic
macular edema; diabetic retinopathy; disorganization of retinal inner layers; fluorescein angiog-
raphy; fluorescein leakage; fundus autofluorescence; hard exudates; hyperreflective foci; optical
coherence tomography; optical coherence tomography angiography; photoreceptor damage; vascular
hyperpermeability

1. Introduction

Diabetic retinopathy (DR) is one of the leading causes of vision loss worldwide. In
particular, diabetic macular edema (DME) and proliferative diabetic retinopathy (PDR) are
vision-threatening DR [1]. Although the standard clinical practice for DME has been estab-
lished, the pathogenesis of DME remains to be fully characterized and further advances in
diagnosis and treatment should be pursued [2–4].

DME is characterized by vascular hyperpermeability and retinal edema in the macula,
resulting in reduction of visual acuity (VA) [4]. Classical fundus examination has allowed
us to evaluate and diagnose DME [2]. The distinct findings are retinal hemorrhages, hard
exudates, and microaneurysms. The thickening of translucent retinas is the most relevant,
although its subjective evaluation is difficult even for the experienced clinicians.
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Histological publications have elucidated the morphological changes and their com-
ponents in DME [5–10]. Cystoid macular edema (CME) often develops in the inner nuclear
layer (INL) and outer plexiform layer (OPL) in eyes with macular edema [10]. Electron
microscopy suggested that these spaces correspond to the accumulation of the extracellular
fluid or intracytoplasmic swelling due to the liquefaction necrosis of neuroglial cells [11].
Tight junctions are abundantly developed between vascular endothelial cells in healthy
retinas, whereas they are disrupted in diabetic retinas [12–14]. Trypsin-digested speci-
mens revealed that pericyte loss and vascular deformation, i.e., microaneurysms, may
contribute to vascular hyperpermeability [5,15]. Hard exudates may correspond to the ac-
cumulation of lipid-laden macrophages or the deposition of lipoproteins in the histological
samples [16,17]. These publications allow clinicians to speculate about the pathogenesis
of DME.

Advances in vascular biology have elucidated that vascular endothelial growth factor
(VEGF) plays the most important role in angiogenesis and vascular hyperpermeability
in PDR and DME, respectively [18–20]. This prompted us to apply anti-VEGF treatment
for DME [21–23]. Among several therapeutic strategies, it is the first-line therapy and
regulates vascular hyperpermeability most efficiently [24]. Currently, clinicians are trying
to determine the predictors of visual outcomes, treatment frequency, and remission of
macular edema after anti-VEGF treatment to pursue customized medicine [25–30].

In this article, we searched PubMed as an electronic database, and selected the first
publication in the relevant field. We discuss about how the recent application of multimodal
imaging improves our understanding of the pathogenesis of DME and resolves the clinical
issues, e.g., visual prognosis (Figure 1).
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late (C) phases of FA images show fluorescein leakage and pooling. (D) Cystoid macular edema is
delineated on the sectional optical coherence tomography (OCT) image obtained using Spectralis
OCT along the green arrow on the scanning laser ophthalmoscope image. (E) Two-dimensional OCT
thickness map (total retinal thickness) with an ETDRS grid overlay (1, 3, 6 mm-circles). The central
subfield thickness is 651 µm. Different OCT machines use different segmentation methods for the
outer boundaries of retinas, so the mean retinal thicknesses depend on the OCT machines. (F) Short
wavelength fundus autofluorescence. (G) Near-infrared FAF.

2. Clinical Diagnosis of DME

At present, many clinicians objectively and quantitatively diagnose center-involving
diabetic macular edema (CIDME) using optical coherence tomography (OCT) [3]. It is
reasonable to designate the retinal thickening in the macula as the diagnostic criterion
for DME. CIDME is used as the eligibility criterion in most clinical trials of anti-VEGF
treatment [31]. Another classical diagnosis of DME is clinically significant macular edema
(CSME) [2]. The criteria are retinal thickening or hard exudates within 500 µm from
the fovea or 1500 µm or more of retinal thickening within 1 disc diameter of the fovea
on fundus examination or the stereoscopic fundus photography. The Early Treatment
Diabetic Retinopathy Study (ETDRS) had defined CSME as the criterion for macular
photocoagulation in DME.

In addition to these two major diagnostic criteria, the international classification of
diabetic macular edema disease severity depends on the proximity of the retinal edema
and hard exudates to the fovea [32]. Eyes with retinal thickening or hard exudates in the
posterior pole were diagnosed as DME. Eyes with these lesions distant from the center are
defined as mild DME. When these lesions are approaching or involving the center, we diag-
nose moderate or severe DME, respectively. Finally, fluorescein angiography (FA) shows
focal and/or diffuse fluorescein leakage as a biomarker of vascular hyperpermeability [33].

The pathogenesis of DME is complicated, and evidence is continuing to accumulate
using newly developed imaging modalities, so we have not reached a consensus on the
ultimate criteria for DME diagnosis.

3. Fundus Photography
3.1. Conventional Photography

Fundus examination was originally the basis of the diagnosis and treatment of DME
(Figure 2A). Fundus photography is useful for longitudinal evaluation. Their main findings
are retinal hemorrhages, hard exudates, and retinal thickening in the macula, all of which
represent the breakdown of the blood-retinal barrier (BRB) [4]. In particular, VA is reduced
when the foveal center is involved with retinal edema and hard exudates. The ETDRS
defined CSME depending on the fundus findings and demonstrated that VA reduction is
retarded by macular photocoagulation [2].

Hard exudates are generally considered to be the accumulation of the extravasated
lipoproteins or the lipid-laden macrophages [16,34]. They are sometimes arrayed at the
edge of retinal edema, which is referred to as circinate hard exudates. This suggests the
vascular lesions with hyperpermeability at the center of the “circinate”. When they migrate
into the subfoveal spaces, they often lead to the photoreceptor damage at the fovea and
subsequent VA reduction [35,36].
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Figure 2. Various instruments for fundus photography. (A) Clinically significant macular edema on
conventional photography. Arrows and arrowheads indicate retinal hemorrhages and hard exudates,
respectively. Dashed line is retinal thickening. (B) The high-resolution image by adaptive optics
camera within the square in panel A reveals that hard exudates are composed of multiple round
lesions. (C) Ultrawide-field scanning laser ophthalmoscope images can show approximately 80% of
the area of the entire retina.

3.2. Advanced Technologies

There are three main advances in fundus photography: ultrawide field imaging,
super high resolution, and separate wavelengths. The clinical application of ultrawide-
field fundus photographs has significantly improved the quality of the assessment of
peripheral retinas (Figure 2B) [37]. However, we carefully evaluate the macular lesions,
because the lateral resolution is slightly reduced in these indirect images. Adaptive optics
technology, which was originally applied to astrology to remove the wavefront aberrations,
has increased the lateral resolution of fundus cameras and scanning laser ophthalmoscopes
(SLOs) [38,39]. As a result, we can appreciate the fine structure of vascular lesions, hard
exudates, and photoreceptor mosaics (Figure 2C). Since the SLO obtains the fundus imaging,
mediated via specific wavelengths of emission and excitation, the light reflection in the SLO
images delineates the unusual fundus images. The clinical feasibility of such modalities
should be elucidated.

4. Dye-Based Angiography
4.1. Fluorescein Angiography

FA is the best imaging modality to assess the vascular morphologies and dysfunction
in the retinas. Higher contrast allows us to appreciate capillaries and details of the mor-
phological changes in retinal vessels. In particular, FA is the only modality to evaluate the
BRB status. Fluorescein dye is extravasated into the retinal parenchyma in cases of BRB
disruption, which is referred to as fluorescein leakage. It is classified into two patterns:
focal and diffuse fluorescein leakage (Figure 3) [33]. When the source of the leaked dye can
be identified clearly, the extravascular hyperfluorescence is considered focal fluorescein
leakage. In most cases, microaneurysms are the source of dye leakage. In contrast, when
the source is not distinctive, hyperfluorescence is referred to as diffuse fluorescein leakage.
Focal and diffuse leakages often coexist, and they are not definitively divided. Another
sign of the BRB breakdown is fluorescein pooling. Fluorescein dye is stored in cystoid
spaces in the INL or OPL and appears to be round or oval.
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FA has higher sensitivity to detect microaneurysms than fundus examination. Mi-
croaneurysms appear to be hyperfluorescent dots and are sometimes accompanied by
fluorescein leakage [5,15]. FA is useful to discriminate microaneurysms from dot-like
retinal hemorrhages, which correspond to blocked fluorescence. Circinate hard exudates in
fundus examination and microaneurysms with leakage often coexist. When we consider
macular photocoagulation for CSME, FA images are useful to determine whether vascular
lesions are coagulated.

The disadvantages of FA also need to be considered. The retinal vasculature is com-
posed of three or four capillary plexus layers. However, the signals on two-dimensional
images are derived mainly from the superficial layer, and we cannot assess the status of
deep vascular plexuses on FA images [40]. Another consideration is patient allergy, for
which first aid for anaphylaxis needs to be prepared.
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4.2. Indocyanine Green Angiography

Indocyanine green angiography (ICGA) is another imaging modality of chorioretinal
vessels. This dye has an affinity for lipoproteins, and some microaneurysms are delineated
as hyperfluorescent dots on ICGA images. It was reported that such microaneurysms
are the source of vascular leakage and might be appropriate targets for focal macular
photocoagulation [41].

5. Optical Coherence Tomography

Clinical application of spectral-domain optical coherence tomography (SD-OCT) has
deepened our understanding of DME in neuroglial tissue [42,43]. One of the main char-
acteristics of DME is retinal thickening. SD-OCT allows us to evaluate retinal edema
qualitatively and quantitatively [44]. In particular, the mean retinal thickness in the central
subfield, referred to as central subfield thickness (CST), is used to diagnose CIDME [3,31].
Some lesions develop, and some important structure in the retinas is lost on SD-OCT
images in eyes with DME.

5.1. Principles

OCT is a noninvasive imaging modality. Time-domain (TD)-OCT, the original tech-
nique, depends on the coherence between the reflected lights from the retinas and the
reference mirror [45]. As a result, we can differentiate the retinal layers according to OCT
reflectivity. In SD-OCT with approximate 840 nm light source, the nonuniform Fourier
transform of OCT signal spectra increased the scan speed and generated the high-resolution
images (axial resolution = 3–5 µm) [42]. The latest generation is swept source (SS)-OCT [46].
The longer wavelength of the light source (approximate 1040–1060 nm) penetrates deep
structures, e.g., the choroid and sclera, in most of commercially available SS-OCT machines,
and the axial resolution is considered to be 6–8 µm. As a result, SS-OCT enables us to
evaluate the chorioretinal structure. Visible light is sometimes used as the light source for
the research. Of these, SD-OCT is the main technique used today. We need to pay attention
to the several artifacts including motion artifacts, blinking artifacts, and segmentation error.
Hyperreflective lesions often lead to the shadow beneath themselves.

In the research field, adaptive optics technologies have been introduced into the OCT
imaging [47]. These technologies have improved lateral resolution, and some structures,
e.g., ganglion cells and photoreceptor cells, may be delineated in a single-cell manner [48].

5.2. Diagnosis of CIDME

Retinal sectional images are obtained using OCT, and the side-by-side arrangement
of these images constructs three-dimensional images, which allows us to measure the
retinal thickness in each sector of the ETDRS grid. In particular, the mean retinal thickness
within the central 1-mm circle is defined as the CST. When the CST is greater than the
thresholds, eyes with DR are diagnosed with CIDME (Figure 4, Table 1) [3]. We must be
careful with this quantitative diagnosis. The thresholds are different in the different devices,
because of the different methods used for automatic segmentation [31]. In some cases,
the segmentation is incorrect, and as a result, the measurement is also incorrect. We may
consider the manual measurement using the caliper in the equipped software.

This quantified parameter is often applied as a surrogate marker in clinical trials for
DME. We can confirm improvement of the edematous changes and remission of CIDME
using the CST [29,49]. Although the CST is the gold standard for the structural assessment
of DME, its association with VA reduction is modest. We sometimes observe the cases
with paradoxical VA changes, e.g., VA reduction in eyes with decreased CST and VA
improvement in eyes with increased CST [50]. This suggests that factors other than retinal
edema influence visual function [4,51,52].



Medicina 2023, 59, 896 7 of 18
Medicina 2023, 59, x FOR PEER REVIEW 7 of 18 
 

 

 
Figure 4. Two-dimensional optical coherence tomography (OCT) map. A two-dimensional map 
with an ETDRS grid overlay (1, 3, 6 mm-circles), which is obtained using Spectralis OCT, allows us 
to discriminate center-involving diabetic macular edema (CIDME) (A) from non-CIDME (B). 

This quantified parameter is often applied as a surrogate marker in clinical trials for 
DME. We can confirm improvement of the edematous changes and remission of CIDME 
using the CST [29,49]. Although the CST is the gold standard for the structural assessment 
of DME, its association with VA reduction is modest. We sometimes observe the cases 
with paradoxical VA changes, e.g., VA reduction in eyes with decreased CST and VA im-
provement in eyes with increased CST [50]. This suggests that factors other than retinal 
edema influence visual function [4,51,52]. 

Table 1. The correspondence between findings on classical and modern modalities. CFP = color 
fundus photograph; FA = fluorescein angiography; IA = indocyanine green angiography; OCT = 
optical coherence tomography; OCTA = optical coherence tomography angiography; SW-FAF = 
short wavelength fundus autofluorescence; NIR-FAF = near-infrared fundus autofluorescence. 

Classical Modalities Modern Modalities 
Diagnosis of diabetic macular edema (DME)  
 Clinically significant macular edema on CFP  Center involving DME on OCT 
Microaneurysms  
 Dot-like reddish lesion on CFP  Oval or round on OCT 
 Hyperfluorescent dot on FA, IA  Saccular or fusiform appearance on OCTA 
Fluorescein leakage on FA - 
Fluorescein pooling on FA Cystoid macular edema on OCT 

Capillary nonperfusion on FA 
No boundaries between inner layers on OCT 
Lamellar capillary nonperfusion on OCTA 

Choroid  
 Hyperfluorescent or hypofluorescent areas on 

FA, IA 
 Flow void (or deficit) in the choriocapillaris layer on OCTA 

 
 Reduced vascular density or tortuosity of choroidal vessels on 

OCT 
- Serous retinal detachment on OCT 
- Disrupted or absent ellipsoid zone line on OCT 
Hard exudates on CFP Hyperreflective foci on OCT 
- Disorganization of the retinal inner layers 
- Epiretinal membrane or vitreomacular traction on OCT 

Figure 4. Two-dimensional optical coherence tomography (OCT) map. A two-dimensional map with
an ETDRS grid overlay (1, 3, 6 mm-circles), which is obtained using Spectralis OCT, allows us to
discriminate center-involving diabetic macular edema (CIDME) (A) from non-CIDME (B).

Table 1. The correspondence between findings on classical and modern modalities. CFP = color
fundus photograph; FA = fluorescein angiography; IA = indocyanine green angiography; OCT = opti-
cal coherence tomography; OCTA = optical coherence tomography angiography; SW-FAF = short
wavelength fundus autofluorescence; NIR-FAF = near-infrared fundus autofluorescence.

Classical Modalities Modern Modalities

Diagnosis of diabetic macular edema (DME)
• Clinically significant macular edema on CFP • Center involving DME on OCT

Microaneurysms
• Dot-like reddish lesion on CFP • Oval or round on OCT
• Hyperfluorescent dot on FA, IA • Saccular or fusiform appearance on OCTA

Fluorescein leakage on FA -

Fluorescein pooling on FA Cystoid macular edema on OCT

Capillary nonperfusion on FA No boundaries between inner layers on OCTLamellar capillary
nonperfusion on OCTA

Choroid
• Hyperfluorescent or hypofluorescent areas on FA, IA • Flow void (or deficit) in the choriocapillaris layer on OCTA

• Reduced vascular density or tortuosity of choroidal vessels
on OCT

- Serous retinal detachment on OCT

- Disrupted or absent ellipsoid zone line on OCT

Hard exudates on CFP Hyperreflective foci on OCT

- Disorganization of the retinal inner layers

- Epiretinal membrane or vitreomacular traction on OCT

Retinal pigment epitheliopathy on CFP • Reduced autofluorescence on SW-FAF
• Mosaic pattern on NIR-FAF
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5.3. Various Pathomorphologies on Sectional Images

OCT delineates various lesions in neuroglial tissues in DME. The first publication
of the pathomorphologies in DME documented three patterns on TD-OCT images: CME,
serous retinal detachment (SRD), and sponge-like retinal swelling (Figure 5A,B) [53]. They
considered that retinal thickening is composed of one or a mixture of these structural
lesions. High-resolution SD-OCT images have shown that CME develops mainly in the INL
and OPL and that sponge-like swelling results from epiretinal membrane or taut posterior
hyaloidal membrane [54,55].

Medicina 2023, 59, x FOR PEER REVIEW 8 of 18 
 

 

Retinal pigment epitheliopathy on CFP 
 Reduced autofluorescence on SW-FAF 
 Mosaic pattern on NIR-FAF 

5.3. Various Pathomorphologies on Sectional Images 
OCT delineates various lesions in neuroglial tissues in DME. The first publication of 

the pathomorphologies in DME documented three patterns on TD-OCT images: CME, 
serous retinal detachment (SRD), and sponge-like retinal swelling (Figure 5A,B) [53]. They 
considered that retinal thickening is composed of one or a mixture of these structural le-
sions. High-resolution SD-OCT images have shown that CME develops mainly in the INL 
and OPL and that sponge-like swelling results from epiretinal membrane or taut posterior 
hyaloidal membrane [54,55]. 

 
Figure 5. Various findings on sectional optical coherence tomography (OCT) images. The images 
obtained using Spectralis OCT show pathomorphologies, e.g., cystoid macular edema (A) and se-
rous retinal detachment (B). Intact (C), disrupted (D) (double-headed arrow), and absent (E) ellip-
soid zone (EZ) lines. ELM = external limiting membrane; RPE = retinal pigment epithelium. (F) Hy-
perreflective foci (white arrowheads). (G) DRIL as a biomarker of neural damage (double-headed 
arrow). Scale bar = 200 μm. 

Comparative studies between FA and OCT images have promoted our understand-
ing of the multifaceted pathogenesis in DME. Honeycomb and petaloid patterns of fluo-
rescein pooling correspond to cystoid spaces in the INL and OPL, respectively [54]. The 
foveal avascular zone (FAZ) is enlarged, and microaneurysms around it develop in CME 
eyes [56]. This suggests that retinal ischemia and microaneurysms contribute to the devel-
opment of CME. In contrast, we rarely find the fluorescein pooling in SRD eyes. Perifoveal 
hyperfluorescence is often observed in SRD eyes, so we hypothesize that the distant effects 

Figure 5. Various findings on sectional optical coherence tomography (OCT) images. The images
obtained using Spectralis OCT show pathomorphologies, e.g., cystoid macular edema (A) and serous
retinal detachment (B). Intact (C), disrupted (D) (double-headed arrow), and absent (E) ellipsoid zone
(EZ) lines. ELM = external limiting membrane; RPE = retinal pigment epithelium. (F) Hyperreflective
foci (white arrowheads). (G) DRIL as a biomarker of neural damage (double-headed arrow). Scale
bar = 200 µm.

Comparative studies between FA and OCT images have promoted our understanding
of the multifaceted pathogenesis in DME. Honeycomb and petaloid patterns of fluorescein
pooling correspond to cystoid spaces in the INL and OPL, respectively [54]. The foveal avas-
cular zone (FAZ) is enlarged, and microaneurysms around it develop in CME eyes [56]. This
suggests that retinal ischemia and microaneurysms contribute to the development of CME.
In contrast, we rarely find the fluorescein pooling in SRD eyes. Perifoveal hyperfluorescence
is often observed in SRD eyes, so we hypothesize that the distant effects from vascular
hyperpermeability in the perifovea result in the development of SRD [57]. This correlation
may prompt us to perform the customized methods of macular photocoagulation.
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5.4. Photoreceptor Damage

High-resolution images in the outer retinal layers allow us to appreciate the patho-
logical changes in the photoreceptor-retinal pigment epithelium (RPE) complex. SD-OCT
delineates the ellipsoid zone (EZ) and the external limiting membrane (ELM) above the
RPE [58], which are biomarkers of the photoreceptor status. In some cases with DME, one
or both of these lines are disrupted or absent at the fovea (Figure 5A–C) [59–63]. Since VA
depends on the foveal photoreceptors in human eyes, their damage leads to VA reduction.
The pathological mechanisms underlying photoreceptor damage remain to be elucidated.
A recent publication has shown that anti-fumarase antibody is increased in some patients
with DME and promotes the photoreceptor inner and outer segments in mice [64]. This
suggests the autoimmune mechanisms in the photoreceptor damage in DME.

The absence or disruption of the EZ line is a biomarker of poor prognosis after some
interventions for DME. Intriguingly, the status of EZ lines is partially restored after anti-
VEGF treatment for DME [65,66].

5.5. Hyperreflective Foci

Hyperreflective foci have been reported as a sign of extravasation in DME [43]. Mor-
phologically, dot-like deposits with high OCT reflectivity are delineated individually or
aggregated (Figure 5F). Hard exudates in fundus examination correspond to the accumu-
lation of hyperreflective foci. Surgically resected hard exudates contain phagocytes, and
histological publications have showed lipid-laden macrophages in diabetic retinas [16]. Fu-
ture clinicopathological study should elucidate the relationship between this OCT finding
and histological lipid-laden macrophages [17,34].

Hyperreflective foci are delineated throughout the retina and often accumulate in
the OPL. They are present in cystoid spaces or vascular walls. In some cases with DME,
hyperreflective foci migrate into the subfoveal spaces and promote photoreceptor damage
there [67,68]. Further studies should show how hyperreflective foci exacerbate neuroin-
flammation in DME [69].

5.6. Lamellar Disorganization

In healthy retinas, the signals from foveal photoreceptors are transmitted through
inner retinal layers, including bipolar cells and ganglion cells. They are represented by
the definite lamellar structures in inner retinas. In some eyes with DME, some or all inner
layers are absent or disorganized, which is referred to as disorganization of the retinal inner
layers (DRIL) (Figure 5G) [70]. The magnitude of DRIL is associated with VA reduction
cross-sectionally and longitudinally.

Diabetic macular ischemia also induces VA reduction and is associated with DME,
mediated via VEGF and insufficient drainage of extracellular fluids [71–73]. The contrast
between the highly reflective nerve fiber layer (NFL) and the less reflective ganglion cell
layer/inner plexiform layer (GCL/IPL) enables us to assess the integrity of the inner retinal
layers. The boundaries between the layers are often absent or obscure in areas with capillary
nonperfusion [74]. Such lesions might result in VA reduction collaboratively with DME.

5.7. Vitreoretinal Interface

DME is sometimes accompanied by epiretinal membrane or vitreomacular traction.
Assessing these lesions is difficult even for the experienced clinicians. In contrast, OCT
delineates them very clearly, which allows us to infer the magnitude of traction and
subsequent visual dysfunction. Therefore, it is easy to determine whether vitrectomy
should be performed in DME with vitreoretinal pathology [75,76].

5.8. Choroid

Many clinicians believe that the choroid influences on the pathogenesis of DME,
because the choroid nourishes the outer retinas through the RPE and drains waste from
the retinas [77]. Some publications reported greater choroidal thickness in eyes with
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DME, and others reported opposite results [78–82]. Ocular inflammation or vascular
hyperpermeability might increase choroidal thickness, whereas the loss of choroidal vessels
might decrease it. Choroidal thickness depends on axial length, age, and systemic factors,
and future studies should elucidate the cause-and-effect relationship between DME and
choroidal thickness [83–85].

En face images of SS-OCT or enhanced depth imaging (EDI)-OCT depict the choroidal
vessels with an intermediate or large diameter in the Sattler’s and Haller’s layers, respec-
tively. The subjective evaluation of these layers indeed showed reduced vascular density
or tortuosity of choroidal vessels in DR [86–88]. These lesions correspond to the histolog-
ical findings at least in part [89,90]. Despite the definite choroidal pathology in diabetic
eyes, it remains to be elucidated whether such lesions promote ocular inflammation or
reduce the drainage of extracellular fluids from the retinas [91]. In addition, studies should
focus on the relationship between immune cell infiltration and hyperreflective foci in the
choroid [92].

6. Optical Coherence Tomography Angiography

Optical coherence tomography angiography (OCTA) delineates three-dimensional
retinal vasculature, depending on the differences in the optical reflectivity between se-
quential multiple B-scan images [93–95]. OCTA is the first device that can depict the deep
capillary plexuses (Figure 6A,B) [96]. OCTA cannot be used to evaluate BRB breakdown.
OCTA is in the process of clinical investigation and can demonstrate the pathogenesis
of DME, although there is no consensus regarding the diagnostic criteria. We need to be
careful of several artifacts in OCTA imaging [97,98]. In particular, motion artifacts often
influence the image processing in diabetic patients with poor fixation. The main findings
are microaneurysms, lamellar nonperfusion, and suspended scattering particles in motion
(SSPiM) in cystoid spaces.

6.1. Microaneurysms

OCTA visualizes multiple morphologies of microaneurysms, e.g., fusiform and sac-
cular, which may be very similar to the histological findings [5,99]. In contrast, microa-
neurysms present a dot-like appearance in fundus photography and FA images. Mi-
croaneurysms are delineated in the deep OCTA slab images, which is consistent with
histological publications showing that many microaneurysms develop in the INL [100,101].
Several publications have focused on the association between vascular hyperpermeability
and the characteristics of microaneurysms on OCTA images [102].

6.2. Lamellar Nonperfusion

Automatic quantification of vascular parameters can be applied on en face OCTA
images because they have higher contrast and higher signal/noise ratios. The development
of layer-by-layer vascular parameters are in progress, e.g., the size and morphological
parameters of the FAZ, perfusion metrics (vascular density, vascular length density, and
fractal dimension), and nonperfusion metrics (intercapillary area and total avascular area).
In particular, retinal thickening or cystoid spaces are often accompanied by capillary
nonperfusion in the deep layer [71,73]. It was reported that deep nonperfusion areas are
related to photoreceptor damage [103]. An enlarged FAZ and reduced vascular density are
predictors of poor visual outcomes after anti-VEGF treatment for DME [104,105]. Future
studies should elucidate the relationship between diabetic macular ischemia and DME.

The OCTA slab images in the choriocapillaris layer present the mosaic-like appearance
of flow signals in healthy eyes [77]. Loss of such OCTA signal is referred to as flow void
in chorioretinal diseases. The flow void gradually increases according to the severity of
DR [88]. Future studies should elucidate the pathological interactions between outer retinas
and the RPE-choriocapillaris complex.
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7. Fundus Autofluorescence

The RPE is the main component of the outer BRB and maintains metabolism in
photoreceptor cells [106]. Fundus autofluorescence (FAF) enables us to evaluate the status
of the RPE [107]. Two main modalities, short-wavelength (SW) FAF and near-infrared (NIR)
FAF, have been clinically introduced. The SW-FAF and NIR-FAF signals are derived from
the lipofuscin and melanin, respectively. Since the signal is faint, the media opacity reduces
the signal/noise ratio.



Medicina 2023, 59, 896 12 of 18

The fluorescent signals on SW-FAF images gradually decrease to the fovea in healthy
eyes because the signals from the RPE are blocked by the macular pigments in the retinal
parenchyma. The signals are reduced in diabetic retinal pigment epitheliopathy. There
are associations between FAF signals and visual functions in DME [108,109]. Oval-shaped
hyperfluorescence corresponds to the foveal cystoid spaces in CME eyes (Figure 6C) [110].

The NIR-FAF signals increase to the fovea in healthy eyes, according to the density of
melanin. A mosaic pattern on NIR-FAF images is often observed in eyes with DME and
is associated with foveal photoreceptor damage and subsequent VA reduction [111,112].
Quantitative analysis revealed that NIR-FAF signal levels are negatively related to the
logarithm of the minimum angle of resolution (logMAR) and CST (Figure 6D). It remains
to be elucidated whether the RPE damage contributes to the exacerbation of DME or
vice versa.

8. Emerging Questions

The advances in the modern modalities deepen our understanding the clinical findings
on the classical modalities (Table 1). We have discussed the hot topics in fundus imaging
rather than its systematic review. Resultantly, there might be bias, although its advances
are raising interesting questions regarding the next generation of diagnosis and treatment
for DME.

8.1. What Is DME?

We have discussed the clinical feasibility of each imaging modality above. Although
there is no doubt that vascular hyperpermeability promotes DME, other mechanisms
also contribute to its pathogenesis [4,51,52]. Retinal ischemia increases VEGF expression
and subsequent breakdown of the BRB [113]. Capillary nonperfusion in the deep vas-
cular plexus may reduce the ability to drain the extracellular fluids and concomitantly
promote their storage [71,73]. Neurodegeneration may be represented by the DRIL and
photoreceptor damage on OCT images and RPE changes on FAF images [59,60,70,109,111].
Hyperreflective foci and increases in cytokine levels may represent neuroinflammation in
concert with vascular hyperpermeability [43,114]. These results suggest the necessity of an
integrative understanding of DME pathology.

8.2. Will the Deep Learning Reduce Our Burden?

Artificial intelligence has been implemented in society and industry. In particular,
deep learning is being applied to the medical issues, such as diagnosis, assistance during
surgery, and drug discovery. The main concept of the deep learning is the convolutional
neural network, which transforms from the complex information of several medical images
to an all-or-nothing diagnostic decision. Gulshan and associates demonstrated, for the first
time, the performance of the deep learning using fundus photography in the diagnosis of
DR [115]. The study was followed by the publications that applied deep learning to OCT
images for the automatic diagnosis of DME [116]. These technologies may take the place of
the beginning ophthalmologists, or they may learn from the data from artificial intelligence
in the medical diagnosis of vision-threatening DR.

Deep learning has an advantage in substituting the subjective evaluation, e.g., DR
and CSME diagnosis using fundus photography [2,32]. In contrast, CIDME is objectively
and quantitatively diagnosed using OCT, so the introduction of artificial intelligence is
controversial [3]. We may apply deep learning to the assessment of subjective findings on
sectional OCT images.

Despite its feasibility, we have to grasp the limitations of deep learning. It needs
a training dataset, the quality of which influences the accuracy in the outcomes. The
processes are in the black box, and these issues may reduce the reproducibility.
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8.3. Can Fundus Imaging Offer Customized Medicine?

These imaging modalities deepen our understanding of the pathogenesis of DME. In
particular, quantitative parameters, e.g., CST for reversible disease activity and DRIL and
nonperfusion metrics for irreversible disease progression, are feasible in the longitudinal
study. There are two major strategies to pursue optimized interventions. One strategy is
that clinicians may plan therapeutic approaches against the pathogenesis specific to each
patient. The other strategy is tailor-made medicine using prognostic factors.

The CST is the surrogate marker in the treatment of DME, although VA improvement
and ME resolution are not necessarily consistent [50]. The multiple mechanisms discussed
above might explain the paradoxical VA changes. Most circinate hard exudates are ac-
companied by leaking microaneurysms in their own center and can be treated by focal
macular photocoagulation in eyes with CSME but not CIDME. Typical focal fluorescein
leakage mostly derives from microaneurysms, which can be coagulated by LASER [33]. In
contrast, diffuse fluorescein leakage should be treated by medical interventions including
anti-VEGF treatment and ocular steroids [22,117]. Among the potential OCT findings,
epiretinal membrane and vitreomacular traction are good biomarkers for vitrectomy even
in the era of anti-VEGF therapy [75,118]. We may confirm photoreceptor restoration under
anti-VEGF treatment, which is related to VA improvement [65]. This suggests that foveal
photoreceptor status is a candidate surrogate marker for anti-VEGF treatment [66].

Some findings on fundus imaging modalities are reported as prognostic factors after
intervention in DME. Classically, hard exudates at the fovea are a predictor of subretinal
fibrosis and concomitant poor vision after macular photocoagulation for CSME [35,36].
Atrophic creep involving the fovea after photocoagulation also explains the significant
reduction in VA. In the era of expensive anti-VEGF treatment, we must take both visual
prognosis and socioeconomic burden into consideration. The presence of subretinal fluid is
a predictor of visual gain after ranibizumab for DME [25]. The CST is positively associated
with the treatment frequency of anti-VEGF drugs [26,27]. We can compare the prognostic
factors between individual interventions for the optimized application of treatments.

9. Conclusions and Future Prospects

Multimodal fundus imaging sheds light on the clinical aspects of DME. Many novel
findings are defined subjectively. Further investigation should translate these findings into
quantitative parameters to introduce objective diagnosis and assessment. Adaptive optics
technologies are now being applied to fundus photography and OCT. Their high resolution
delineates cellular changes in the retinas. Based on these fundus findings, translational
studies from beds to bench will elucidate the molecular mechanisms in DME. The visible
parameters on imaging and the invisible parameters in molecular mechanisms reciprocally
elucidate the pathogenesis. Hopefully, these challenges will lead to the development of
novel treatments. Furthermore, statistical analyses of prognostic factors are also contribut-
ing to the promotion of customized medicine. These integrative advances should improve
preventive and therapeutic interventions for DME.
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