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Abstract: Background: Cardiopulmonary disorders are the most common cause of central cyanosis,
and methemoglobinemia is often overlooked in the differential diagnosis of patients with central
cyanosis. In most cases, methemoglobinemia is acquired and hereditary congenital methemoglobine-
mia is rare. Only a few case reports of congenital methemoglobinemia can be found in PubMed. To
date, only four cases of congenital methemoglobinemia diagnosed after the age of 50 years have been
reported. Case Presentation: A 79-year-old Japanese woman presented at our hospital with the chief
complaints of dyspnea and cyanosis. She exhibited cyanosis of the lips and extremities, and her SpO2

was 80%, with oxygen administration at 5 L/min. Blood gas analysis revealed a PaO2 of 325.4 mmHg
and methemoglobin level of 36.9%. The SpO2 and PaO2 values were dissociated, and methemoglobin
levels were markedly elevated. Genetic analysis revealed a nonsynonymous variant in the gene
encoding nicotinamide adenine dinucleotide cytochrome (NADH) B5 reductase 3 (CYB5R3), and the
patient was diagnosed with congenital methemoglobinemia. Conclusions: It is important to consider
methemoglobinemia in the differential diagnosis of patients with central cyanosis. At 79 years of age,
our patient represents the oldest patient with this diagnosis. This report indicates that it is crucial to
consider the possibility of methemoglobinemia regardless of the patient’s age.

Keywords: cyanosis; hereditary congenital methemoglobinemia; old age

1. Introduction

Methemoglobinemia is a disease that can cause cyanosis and shortness of breath.
Pulse oximeters generally rely on data from healthy individuals with low levels of car-
boxyhemoglobin and methemoglobin. Hence, pulse oximeter signals may be invalid in
patients with underlying conditions. Dissociation between SpO2 and PaO2 values may aid
in the diagnosis of methemoglobinemia. Methemoglobinemia can be either congenital or
acquired, and the most common cause of congenital methemoglobinemia is functional vari-
ants in the gene encoding NADH-cytochrome B5 reductase 3 (CYB5R3). Methemoglobin
is a form of the protein hemoglobin in which the iron is in the ferric state, rather than
the normal ferrous state. Although a small percentage of methemoglobin is present in
healthy individuals, an increase in methemoglobin content occurs due to loss of function of
CYB5R3. Methemoglobinemia is caused by functional variants of CYB5R3 transmitted in an
autosomal recessive manner. Herein, we present a case of congenital methemoglobinemia
diagnosed at the age of 79 years; this may be the oldest patient with this diagnosis reported
to date.
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2. Case Report
2.1. Case Presentation

A 79-year-old Japanese woman presented to our hospital with the chief complaints of
dyspnea and cyanosis. She had a history of pulmonary tuberculosis, lung cancer (following
partial right lobe resection and radiotherapy), and bronchiectasis. In addition, the patient
had undergone home oxygen therapy 6 months prior due to chronic respiratory failure.
Two hours before arriving at our hospital, the patient reported dyspnea and her usual
oxygen dosage of 2 L/min was increased to 5 L/min. Nonetheless, her dyspnea did not
improve, and her SpO2 decreased to as low as 80%. This prompted her to seek emergency
care at our hospital.

2.2. Investigation

At the time of examination, the patient’s vital signs were as follows: blood pressure,
134/62 mmHg; pulse, 60 beats per minute; respiratory rate, 23 breaths per minute, SpO2,
80% (while receiving 5 L/min of oxygen via a mask); and body temperature, 37.3 ◦C. Physi-
cal examination revealed cyanosis of the lips and extremities, and auscultation revealed
diminished breath sounds (but no wheezes or crackles). Chest radiography revealed no
infiltrative shadows.

2.3. Differential Diagnosis

Despite the absence of infiltrative shadows on chest radiography, the patient was
admitted to our hospital with a diagnosis of acute bronchitis based on her history of
bronchiectasis and the presence of low-grade fever and purulent sputum. Gram staining
of the sputum revealed the presence of Gram-negative bacilli. Because Pseudomonas aerug-
inosa had been detected previously in sputum culture tests, antimicrobial therapy with
ceftazidime (1 g administered every 12 h) was initiated. Despite the administration of
oxygen, the patient’s SpO2 remained low. Therefore, we initiated noninvasive positive pres-
sure ventilation, which also did not improve the SpO2 value. Arterial blood gas analysis
revealed a high PaO2 (325.4 mmHg)—indicating a marked discrepancy with the SpO2 of
80%—and elevated methemoglobin (36.9%; Table 1). Based on these findings, the patient
was diagnosed with methemoglobinemia.

2.4. Genetic Analysis

Genetic testing was performed since the chronic elevation of methemoglobin levels
strongly suggested the possibility of congenital methemoglobinemia. We extracted ge-
nomic DNA from the patient with approval from the Ethics Committee of the School of
Medicine, Kyushu University (#680-01). Since CYB5R3 is known to be the most common
responsible gene in congenital methemoglobinemia, we examined all exons of CYB5R3
using Sanger sequencing. We observed a rare homozygous nonsynonymous variant in exon
3 (NM_000398.7:c.173G>A [p.Arg58Gln], rs121965007; Figure 1) [1]. The nucleotide variant
has a CADD score of 27.5 (https://cadd.gs.washington.edu, accessed on 31 January 2023)
and has been previously reported as a causative variant in only three Japanese patients with
methemoglobinemia [2]. We did not observe any other sequence variants in the other eight
exons examined in CYB5R3. The resulting amino acid substitution, Arg58Gln, was pre-
dicted to be probably damaging by PolyPhen2 (http://genetics.bwh.harvard.edu/pph2/,
accessed on 31 January 2023) and damaging by SIFT (https://sift.bii.a-star.edu.sg, accessed
on 31 January 2023) software. Since the variant is located in the flavin adenine dinucleotide
(FAD)-binding domain, it is likely to affect binding affinity to FAD, resulting in the reduced
efficiency of electron transfer (Figure 2) [3,4].

https://cadd.gs.washington.edu
http://genetics.bwh.harvard.edu/pph2/
https://sift.bii.a-star.edu.sg
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Table 1. Laboratory test results at admission.

Parameter Recorded Value Standard Value

White blood cell count 5800/µL 3300–8600/µL
Hemoglobin 13.2 g/dL 11.5–15.0 g/dL
Platelet count 20.9 × 104/µL 15–35 × 103/µL

C-reactive protein 1.31 mg/dL ≤0.14 mg/dL
Total protein 7.3 g/dL 6.6–8.1 g/dL

Albumin 3.7 g/dL 4.1–5.1 g/dL
Aspartate aminotransferase 13 U/L 13–30 U/L
Alanine aminotransferase 8 U/L 7–23 U/L

Lactase dehydrogenase 131 U/L 124–222 U/L
Blood urea nitrogen 14.0 mg/dL 8–20 mg/dL

Creatinine 0.93 mg/dL 0.46–0.79 mg/dL
Sodium 139 mEq/L 138–145 mEq/L

Potassium 4.1 mEq/L 3.6–4.8 mEq/L
Chloride 104 mEq/L 101–108 mEq/L
Glucose 100 mg/dL 75–110 mg/dL

Atrial blood gas
pH 7.457 7.35–7.45

pCO2 36.8 mmHg 35–45 mmHg
pO2 325.4 mmHg 80–90 mmHg

O2 saturation 99.8% 92.0–98.5%
HCO3 25.4 mmol/L 21–30 mmol/L
Lactate 1.10 mmol/L 0.5–1.6 mmol/L

Methemoglobin 36.9% 0–1.5%
Abbreviations: pCO2: partial pressure of arterial carbon dioxide; pO2:partial pressure of arterial oxygen; HCO3:
bicarbonate.
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Figure 1. Electropherogram of the region of the variant NM_000398.7:c.173G>A [p.Arg58Gln]. The
location of the variant is shown using a purple arrowhead. Abbreviations: Asp: Aspartic Acid; Thr:
Phenylalanine; Arg: Arginine; Phe: Phenylalanine; Gln: Glutamine.
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Figure 2. Enzymatic activity of CYB5R3. (a) Structure of CYB5R3 protein. CYB5R3 is composed of
three domains. The variant we identified is shown by a red arrowhead. (b) The process by which iron
(Fe) ions are reduced by CYB5R3. Flavin adenine dinucleotide (FAD) is responsible for the transfer of
electrons. Abbreviations: aa: amino acid; NADH: nicotinamide adenine dinucleotide cytochrome;
NAD: nicotinamide adenine dinucleotide.

3. Outcome and Follow-Up

Following the diagnosis of methemoglobinemia and administration of 8 mL methylene
blue (0.2 mL/kg), the SpO2 increased to 99% within approximately 10 min (Figures 3 and 4),
with resolution of cyanosis (Figure 5). The color of the blood samples changed from dark
red to red (Figure 6), and the methemoglobin level decreased to 2.0%. The patient had
previously visited our hospital, and a review of her medical records revealed that her
methemoglobin level had been elevated for some time (10% and 20% at 5 and 2 years
prior to the latest visit, respectively). Although we considered the possibility of acquired
methemoglobinemia, there was no history of drug use that would potentially induce
methemoglobinemia. Genetic testing revealed congenital methemoglobinemia. After
starting ascorbic acid therapy (750 mg/day), the methemoglobin level remained in the
range of 6–8% and SpO2 remained above 90%, allowing for the discontinuation of home
oxygen therapy. In this instance, the presence of Pseudomonas aeruginosa was confirmed
through sputum culture, and the patient received a 5-day regimen of ceftazidime.
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4. Discussion
4.1. First and Second Novelty

Cardiopulmonary diseases are the most common cause of central cyanosis, and methe-
moglobinemia is often overlooked in the differential diagnosis [5]. However, methe-
moglobinemia should definitely be considered when there is a discrepancy between SpO2
and PaO2 values [5,6]. To the best of our knowledge, only four cases of congenital methe-
moglobinemia diagnosed after the age of 50 years have been reported to date [5–9]. As
such, our patient is the oldest person (79 years old) in whom the diagnosis of congenital
methemoglobinemia has been made.

4.2. Significance of the First and Second Novelty

Central cyanosis is induced by hypoxemia and is commonly caused by cardiopul-
monary diseases. The specific causes of central cyanosis include right–left shunting (leading
to atrial septal defects, transposition of the great arteries, tetralogy of Fallot, or pneumonia)
and mismatched ventilation and blood flow (leading to bronchial asthma, emphysema,
atelectasis, or pulmonary edema) [10]. However, methemoglobinemia is often overlooked
in the differential diagnosis of patients with central cyanosis [5]. Our patient had a history
of pulmonary tuberculosis, lung cancer, and bronchiectasis and had been on home oxygen
therapy for 6 months. Therefore, the cause of cyanosis was initially thought to be pul-
monary disease. However, the SpO2 did not increase, and cyanosis did not improve with
noninvasive positive pressure ventilation. In addition, we noticed a dissociation between
the SpO2 and PaO2 values and observed an increase in the level of methemoglobin.

Pulse oximeters do not directly measure oxygen saturation in the blood. Instead, the
measurements are obtained by transmitting two wavelengths of light (red light, 660 nm;
infrared light, 940 nm) through tissue (usually a finger or an earlobe) and detecting light
that is not attenuated by the tissue bed [10]. Because SpO2 is based on data from healthy
individuals with low levels of carboxyhemoglobin and methemoglobin, the values ob-
tained from pulse oximetry may be invalid for patients with hemoglobin with different
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absorbance spectra [11]. The absorption coefficient of methemoglobin at 660 nm is al-
most the same as that at 940 nm, resulting in a 1:1 ratio of red light to infrared light. The
SpO2 value is approximately 85% for this ratio, and SpO2 measures tends to approach
85% with an increase in the concentration of methemoglobin. An animal study reported
that when methemoglobin concentration reaches 30–35%, with SpO2 plateaus between
82–86%; thereafter, SpO2 values become independent of methemoglobin concentration [11].
Our patient showed a methemoglobin concentration of 36.9% and SpO2 of 81%. This is
largely consistent with the results of the previous animal study. In methemoglobinemia,
cyanosis depends not on the concentration of methemoglobin, but on the total amount of
methemoglobin present (calculated as hemoglobin value × %methemoglobin). Cyanosis
occurs when the total amount of methemoglobin exceeds 1.5 g/dL. Therefore, a high ery-
throcyte count contributes to cyanosis, and anemic conditions cause cyanosis to be less
prominent [12].

Congenital methemoglobinemia has three genetic causes [6,7]. The most common
cause is CYB5R3 deficiency, followed by hemoglobin M disease and cytochrome B5 defi-
ciency. There are two types of CYB5R3 deficiencies: type I deficiency is limited to erythro-
cytes, whereas type II deficiency occurs in all tissues. Patients with type I disease exhibit
mild symptoms and have a normal lifespan, whereas those with type II disease exhibit
cyanosis, experience neurological damage, and have a significantly shorter lifespan [7].
Type I patients are usually asymptomatic, although they may exhibit mild cyanosis in child-
hood. However, the decline of cardiopulmonary function with aging may cause additional
symptoms, such as shortness of breath and fatigue. In the present case, genetic analysis
(performed at the Division of Genomics, Medical Institute of Bioregulation, Kyushu Uni-
versity) revealed a mutation in the CYB5R3 gene—specifically, an arginine-to-glutamine
substitution—that is known to cause type I disease [1]. Because the patient had type I
disease, she was able to survive until the age of 79 years without major symptoms. Congen-
ital methemoglobinemia due to CYB5R3 deficiency is inherited in an autosomal recessive
manner and has been reported in certain populations [6,13–15]. Although there were no
diagnosed cases of congenital methemoglobinemia in the family history of our patient,
28 cases of congenital methemoglobinemia have been reported in 12 families from the
patient’s native place [16]. Kiyama et al. have previously reported 15 cases of congenital
methemoglobinemia [17] and found that congenital methemoglobinemia is common on
the islands of Henza and Miyagi in Okinawa, Japan. They surveyed 2876 islanders on
the islands of Henza and Miyagi and found an additional 13 cases, leading to a total of
28 cases in 12 families. Of the 28 cases, 46.4% (13 of 28) were male; mean age was 27.3 years
(median: 22, standard deviation: 15.8), 3 were over the age of 50 years, and 1 was 70-year-
old; 25 were asymptomatic, 1 had epilepsy, and 2 had an intellectual disability. These
findings suggest that the local population at this place may have a higher prevalence of
congenital methemoglobinemia. We informed the patient’s daughter of this possibility.

4.3. Clinical Implications

Methemoglobinemia should be considered in the differential diagnosis of patients with
central cyanosis, especially when there is significant dissociation between SpO2 and PaO2
values. This difference is generally greater than 5% in cases of methemoglobinemia [5].
A methemoglobin level of 20% suggests enzyme deficiency [5]. There are few subjective
symptoms in the case of type I disease. However, the life expectancy of the patient is not
shortened, as exemplified by the present case in which the diagnosis was not made until
the age of 79 years.

5. Conclusions

Herein, we present a case of congenital methemoglobinemia first diagnosed at the
age of 79 years. Cyanosis is the most common symptom indicative of congenital methe-
moglobinemia [5–9]. When evaluating central cyanosis, it is important to check for any
dissociation between SpO2 and PaO2 values; if the difference exceeds 5%, methemoglobine-
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mia should be considered as a possible diagnosis. Most cases of methemoglobinemia
are acquired, and patients with type I CYB5R3 deficiency can have a prolonged lifespan.
Furthermore, these patients may not be diagnosed until later in life, as observed in the
present case.
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