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Abstract: Background and objectives: Telomerase reverse transcriptase (TERT) promoter mutation,
found in a subset of patients with thyroid cancer, is strongly associated with aggressive biologic
behavior. Predicting TERT promoter mutation is thus necessary for the prognostic stratification of
thyroid cancer patients. Materials and Methods: In this study, we evaluate TERT promoter mutation
status in thyroid cancer through the deep learning approach using histologic images. Our analysis
included 13 consecutive surgically resected thyroid cancers with TERT promoter mutations (either
C228T or C250T) and 12 randomly selected surgically resected thyroid cancers with a wild-type TERT
promoter. Our deep learning model was created using a two-step cascade approach. First, tumor areas
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were identified using convolutional neural networks (CNNs), and then TERT promoter mutations
within tumor areas were predicted using the CNN-recurrent neural network (CRNN) model. Results:
Using the hue—saturation—value (HSV)-strong color transformation scheme, the overall experiment
results show 99.9% sensitivity and 60% specificity (improvements of approximately 25% and 37%,
respectively, compared to image normalization as a baseline model) in predicting TERT mutations.
Conclusions: Highly sensitive screening for TERT promoter mutations is possible using histologic
image analysis based on deep learning. This approach will help improve the classification of thyroid
cancer patients according to the biologic behavior of tumors.
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1. Introduction

Thyroid cancer is one of the most common malignancies in humans [1]. Although
the majority of thyroid cancers show indolent behavior [2], tumor recurrence and distant
metastasis can occur [3,4]. The telomerase reverse transcriptase (TERT) gene, located on
chromosome 5p15.33, is involved in telomere maintenance and associated with cellular
senescence [5]. TERT promoter mutations have been repeatedly found in human cancer, par-
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ticularly with high frequency in human melanoma and thyroid cancer [5,6]. Furthermore,
Licensee MDPI, Basel, Switzerland.

TERT promoter mutations C228T and C250T have been known to occur quite frequently
(mutation hotspots) [7,8]. Notably, TERT promoter mutations in thyroid cancer have been
associated with aggressive clinical behavior [9-11]. Thus, the detection of TERT promoter
mutations is important for prognostic stratification and patient management.

Evidence has shown that digital pathology with artificial intelligence (AI) can have a
wide range of applications [12]. In fact, the use of digital pathologic images can improve
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quantitative analysis of certain histologic features, such as tumor-infiltrating lympho-
cytes [13]. Furthermore, current studies have been actively investigating methods for
predicting the mutation status of genes with diagnostic and therapeutic implications using
digital pathologic images [14-17]. Conventionally, a two-step approach is used for pre-
dicting genetic alternations in various cancer types [14,15,18]. First, typical tumor areas
are distinguished using tissue slides, and subsequently, another deep neural network is
applied to classify mutations at the tile level within tumor areas. Recent advances include
attention-based multiple-instance learning performed by aggregating tile features with
weight-scoring values learned by a neural network for slide-level prediction [19-21].

It is important to consider the color diversity of histopathological images when train-
ing Al for better tumor classification. Recent studies have introduced deep neural networks
along with color normalization or transformation methods [22,23] as an image preprocess-
ing step that reduces the generalization error.

To the best of our knowledge, this study is the first to evaluate the mutation status of
the TERT promoter in thyroid cancer using our deep learning model. On the basis of the
general perspective of medical doctors, we designed a two-step cascaded architecture to
predict the mutation status of the TERT promoter in thyroid cancer. In the first step, the
architecture predicted tumor areas using color transformation methods and convolutional
neural networks (CNNSs). To subsequently infer the TERT promoter mutation status, the
combination of a CNN and recurrent neural network (RNN) model (CRNN) [24,25] was
applied in the second step, which focuses on finding cell abnormalities associated with
TERT promoter mutation status.

2. Materials and Methods
2.1. Study Population

We retrospectively evaluated 80 consecutive surgically resected thyroid cancer cases
from 2016 to 2021 whose samples underwent TERT promoter polymerase chain reaction
(PCR) testing and found 13 (16.3%) cases with TERT promoter mutations (either C228T
or C250T). TERT promoter mutation status was confirmed via real-time PCR at the De-
partment of Pathology, Kyungpook National University Chilgok Hospital. TERT promoter
PCR testing was mainly performed for older patients (>55 years) with large tumors having
widely infiltrative growth patterns and thyroid cancers showing aggressive clinical behav-
ior [6,26]. We then randomly selected 12 surgically resected thyroid cancer cases having
a wild-type TERT promoter during the same period. Considering the class-imbalance
problem in training deep learning [27], we finally selected a number of TERT-negative
cases that is similar to that of positive ones. The clinicopathologic data of the patients were
retrieved from their medical records. This study was conducted in accordance with the
guidelines of the Declaration of Helsinki. The requirement for written informed consent
from the patients was waived because of the retrospective nature of the study.

2.2. Histologic Evaluation

Surgical specimens were fixed in 10% neutral-buffered formalin and embedded in
paraffin blocks. The paraffin blocks were then cut into 4 pm thick sections and stained with
hematoxylin and eosin. Two independent pathologists specializing in thyroid pathology
(MSK and JYP) reviewed all available slides, and the representative slides were selected for
scanning (Figure 1). Tumors were diagnosed and classified according to the fifth edition of
the World Health Organization classification of thyroid neoplasms [28].

2.3. Dataset Preparation
2.3.1. Annotation of Tumor and TERT Positives
Each slide has been annotated according to three types of regions, as shown in Figure 2:

normal regions (red contours), tumor regions (yellow contours), and TERT regions of
interest (ROIs) within the tumor (bounding boxes). The tumor regions have been accurately
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delineated, while normal regions and TERT ROI boxes have been marked partially. Figure 2
shows an example of overall annotation tasks on whole-slide image (WSI) data.
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Figure 1. Representative images of thyroid cancers harboring a TERT promoter mutation (a,b) and
a wild-type TERT promoter (c,d). Thyroid cancer with a TERT promoter mutation shows (a) a
solid architecture with (b) prominent nuclear atypia and frequent mitosis, whereas that with a
wild-type TERT promoter shows (c) conventional papillary architecture with (d) a lesser degree of
nuclear atypia.

2.3.2. Downsampling Ratio

To analyze patches in different WSI scales, the downsampling level was defined on
the basis of the generic equation of 1/2/¢v¢! valu¢_Thys, the original size was extracted from
the level value 0. Because each step focuses on different features, we applied different level
values to both steps of the deep learning model. Patch images scaled to 411 the size of the
original image resolution were used to classify tumor areas; however, patches used for
predicting TERT promoter mutations were extracted using the original resolution.

2.4. Whole Architecture for TERT Prediction

We constructed a cascade deep learning model consisting of a tumor classifier and
a TERT predictor that inferred mutation status according to the tile-based WSI input.
Figure 3a shows how the CNN model recognizes tumor areas at low magnification levels
with tiling patches. The predicted patches are rescaled to the original level to examine
cytologic atypia at high resolutions and are delivered to the CRNN model for the prediction
of TERT mutation (negative or positive) as shown in Figure 3b.

2.5. Data Split

We used 25 WSIs (13 for TERT positive, 12 for TERT negative) with the given dataset
being split into 5 cross-validation sets at the slide level. To evenly split the TERT-positive
and TERT-negative cases in each fold, each positive and negative slide was first separated,
after which five-fold cross-validation was performed. Table 1a shows the number of patches
for tumor classification. Because each WSI contains various tumor area distributions, each
set has a different amount of data. Table 1b shows the distribution of TERT ROI bounding
boxes made according to TERT-negative and TERT-positive slides in the second step.
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Figure 2. Whole-slide image (WSI) annotation: (a) normal regions, (b) tumor regions, and (c¢) TERT
ROIs are marked in red and yellow contours and purple bounding boxes, respectively.
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Figure 3. Overview of the TERT prediction architecture consisting of (a) a tumor classifier and (b) a
mutation predictor.
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Table 1. Training-validation data split information for tumor classification and TERT prediction: (a)
data counts for tumor and non-tumor patches and (b) TERT-negative and TERT-positive ROI boxes
in each cross-validation (CV) set.

(b) TERT ROI for Negative and

(a) Tumor and Non-Tumor Patches ...
Positive Cases

Training Validation Training Validation

Normal Tumor Normal Tumor Negative Positive Negative Positive

CV Set 1 26794 26417 10099 5699 145 225 45 83
CV Set 2 24963 27675 11930 4441 149 239 41 69
CV Set 3 28618 24019 8275 8097 143 236 47 72
CV Set 4 34142 20825 2751 11291 168 246 22 62
CV Set5 33055 29528 3838 2588 155 286 35 22

2.6. Classification of Tumor Areas Using CNN
2.6.1. Patch Filtering

Given the enormous size of WSI data, each WSI was tiled using a patch size of
256 x 256 at level value 2 (i.e., downsized to 1/ of the original). Some patches include
unnecessary components, such as void backgrounds observed as being white. To prevent
the use of white background patches, we filtered out void patches on the basis of the
grayscale pixel criteria. Each patch image was converted to 8-bit grayscale, and a binary
image was generated by setting the valid pixel value threshold to <230 in order to identify
the background areas in the patch image. After each patch was inspected using the value at
the pixel level, only patches that had a background pixel rate exceeding 40% were excluded
from the training dataset.

2.6.2. Color Transformation as Image Preprocessing

To account for the color diversity of the pathological images, such as those acquired
from different scanners or using various staining conditions, color transformations, in-
cluding hue-saturation—value (HSV) and hematoxylin-eosin-DAB (HED) methods, were
applied for a better classification performance [22]. Color-augmentation strategies using
HSV /HED-light and HSV /HED-strong have been investigated for tumor classification
in Figure 4

« = Random Choice[uniform distribution(1 —6, 1+ 0)]

B = Random Choice[uniform distribution(—6, 0)]
image' = a x image +

where « is the slope, B is the intercept parameter, and image’ is the color-transformed image.
For HED-light and HED-strong, 6 parameters of 0.05 and 0.2 were applied, respectively.
Moreover, a hue value of 0.1 and saturation value of 1.0 were applied for HSV-light and
HSV-strong, respectively. The 6, hue, and saturation parameters manipulate how much
to jitter the HED or HSV color space. Color normalization using the mean and standard
deviation values for the whole-image data was performed in order to apply pre-trained
weights from the ImageNet dataset and determine optimal preprocessing methods.

2.6.3. CNN Model Training

For tumor classification, we applied three state-of-the-art CNN models: DenseNet161 [29],
VGG16 [30], and EfficientNet_b4 [31]. Figure 5 shows an overview of the CNN training
model architecture for tumor area prediction. Each CNN model was implemented using a
Pytorch deep learning framework and used a pre-trained model generated on the ImageNet
dataset. To address the class-imbalance problem, class weighting, which is the ratio of
the number of samples in each class to the total training samples, was applied to the
cross-entropy loss function. A total of 3 CNN training models were created on NVIDIA
RTX A6000 GPUs, with data being loaded at a batch size of 64.
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HED-strong HSV-light HSV-strong

Figure 4. Examples of HED and HSV color transformations: (a) original patches and (b) color-
transformed patches.
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Figure 5. Overview of the CNN training model architecture for tumor area prediction showing
(a) image tiling of WSI and patch filtering out from the tiled dataset (the yellow mask represents
tumor area annotation, blue dot boxes are normal patches, and red dot boxes are tumor patches) and
(b) the color transformation of the filtered patches.
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Because most training performances were saturated or overfitted after the 30th epoch,
tasks were forcibly stopped early at that point. In the experiments, the initial learning
rate and weight decay were determined to be 5.0e-5 and 1.0e-4, respectively, using an
ADAM optimizer to perform a parameter sweep that would derive the best-performing
architecture. The best model was screened on the basis of validation accuracy.

Each validation set was evaluated on the best-performing models having the highest
accuracy scores. As the trained models were generated using 5 different color transfor-
mation methods (i.e., normal, HED-light, HED-strong, HSV-light, and HSV-strong) at
each cross-validation set, the experiment had a total of 25 training operations for each
CNN model.

2.7. Prediction of TERT Promoter Mutation Status Using CRNN

After classifying tumor areas at the first step, the second step predicted whether the
patches were positive or negative for TERT mutations. Considering the diagnosis of the
annotated ROI bounding-box region at high resolution, the bounding box was magnified to
the original scale to determine cytologic atypia levels, after which the boxes were cropped
into 24 fragments (see Figure 6). Because each annotated box differs in size, the patches were
overlapped, with the overlap size being set to automatically fit the corresponding sizes.

(b)

Y
BN
i 3
2 e
ﬁ a',:-
0 0 @) 0N
zZ Z 74 Z
2 z 2 Z
MLP
)classiﬁer
RNN

Figure 6. Overview of the CRNN training model architecture for TERT mutation prediction containing
modules for: (a) TERT ROI bounding-box extraction, (b) tiling to 256 x 256 patches, and (c) CRNN.

To integrate features from the 24 fragments, a CRNN, which is a combination of CNN
and RNN, was constructed, after which a multilayer perceptron (MLP) module was created
as shown in Figure 6. To extract the features of each patch, we applied ResNet152 as a CNN
module and added Long Short-Term Memory (LSTM) (which has three RNN layers) to
integrate the features and establish a two-layer MLP module to make the final predictions
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regarding the TERT mutation status. Figure 6 shows that all patches were passed through
the CNN module and delivered to the RNN module.

Model training was performed using the CRNN network using NVIDIA RTX A6000
GPUs, with the data being loaded at a batch size of 64. Each CNN module used a pre-
trained model generated on the ImageNet dataset. To measure the performance of the
model, cross-entropy loss was applied, which yielded the summed outputs. According to
training performance tracking, most training performances were saturated or overfitted
after the 50th epoch; thus, tasks forcibly stopped early at that point. By sweeping the hyper-
parameters to derive the best-performing architecture, the learning rate was determined
to be 1.0e—3 using an ADAM optimizer, and the best model was selected according to
validation accuracy.

3. Results
3.1. Patient Cohort

The median age of the patients was 53 years (range 22-79 years) with the cohort
including 9 males and 16 females. The 13 thyroid cancer cases with a mutant TERT
promoter comprised 5 conventional papillary thyroid carcinomas, 3 follicular thyroid
carcinomas, 1 poorly differentiated thyroid carcinoma, and 3 anaplastic thyroid carcinomas.
The 12 thyroid cancer cases with a wild-type TERT promoter comprised 8 conventional
papillary thyroid carcinomas, 2 follicular thyroid carcinomas, and 2 poorly differentiated
thyroid carcinomas. Detailed information regarding the patient cohort is included in
Table S1.

3.2. Tumor Classification

Five metrics, namely, precision, recall, f1 score, accuracy, and area under the curve
(AUC) score were utilized to evaluate tumor classification performance. Some metrics,
such as precision, recall, and f1 score, have two classification results; therefore, their results
were macro-averaged over normal and tumor classes.

Figure 7 summarizes the performance results of the tumor classification performed
using the DenseNet161, VGG16, and EfficientNet_b4 CNN architecture with image channel-
wise normalization (i.e., subtracting the mean and dividing by the standard deviation
from ImageNet datasets) and four different color-transformation methods. As five cross-
validations were conducted, each result was averaged and its standard deviations indicated
as shown in Figure 7.

Most bar plots show that the performance scores of the CNN architecture using the
color transformation methods were better than those using image normalization, resulting
in an improvement of approximately >6% (£2%) in terms of both accuracy and AUC score.
The figures show that DenseNet161, VGG16, and EfficientNet_b4 had the best performance
results with HSV-strong, HED-strong, and HSV-light transformation methods, respectively.
More detailed results are provided in Supplementary Materials Table S2.

3.3. TERT Classification Performance Results Using the CRNN Model

As the color transformation methods showed improved results in the first step, we
implemented additional experiments using the HSV-strong method in the next step. Table 2
shows the prediction results of TERT mutation status as negative or positive using the
CRNN (ResNet152 + LSTM) model. Accordingly, an accuracy of 0.92 and AUC score of
0.90 were obtained without applying any color transforms. However, after applying the
HSV-strong method, an accuracy of 0.95 and AUC score of 0.94 were obtained, which were
noticeably better scores. As shown in Table 2 a,b, all performance metric scores were better
when using the HSV-strong method than when using a plain image-normalization scheme.
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Figure 7. Tumor classification results obtained via five different transformation methods using the
(a) DenseNet161, (b) VGG16, and (c) EfficientNet_b4 CNN models.



Medicina 2023, 59, 536

10 of 15

Table 2. Results of TERT mutation prediction on the CRNN (ResNet152 + LSTM) model showing the
mean and standard deviation values following five-fold cross-validation.

(a) CRNN with Normal Transform (b) CRNN with HSV-Strong

Precision Recall f1-Score Precision Recall f1-Score

Negative 093 (+0.13)  0.84 (£0.19) 087 (£0.12) 097 (£0.03)  0.89 (+0.18)  0.92 (+0.11)
Positive 0.93 (£0.09)  0.96 (£0.08)  0.94 (£0.07)  0.95(+0.09)  0.98 (£0.02)  0.96 (0.04)

Accuracy 0.92 (+0.08) 0.95 (+0.06)
AUC score 0.90 (£0.09) 0.94 (£0.08)

To examine the areas highlighted by the CRNN model in the tumor patches predicted
to be TERT positive, we created attention maps for the CNN modules on the basis of the
score values extracted from the last fully connected layers. Because the TERT ROI has
24 patch images, each attention map is displayed in Figure 8, where the deeper the green
color, the higher the attention score. In general, tumor cells showing size enlargement
and nuclear hyperchromasia with prominent nucleoli, which are usually associated with
aggressive biologic behavior, are concentrated in deep green areas in each attention map.

- 250

~
=]
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-
G
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g g s

Figure 8. Attention maps of TERT-positive cases on the CRNN model.

3.4. Whole Inference Process

In this experiment, our cascaded architecture, comprising trained CNN and CRNN,
recognizes tumors and finally predicts TERT mutation status according to the tile-based WSI
input. The model identifies tumor areas at a downsampling level value 2 (; downscale)
with a patch size of 256 x 256 and then adjusts the predicted patches to level value 0
(original scale) with a size of 1024 x 1024. The higher-resolution patch was cropped to
24 patches with a size of 256 x 256, which were delivered simultaneously to the CRNN
model to predict TERT mutation status. As shown in Figure 9, the CNN model determined
whether each patch belonged to non-tumor or tumor areas. Once classified as a tumor,
patches correctly predicted as TERT positive were marked with a green color, but those
predicted incorrectly were indicated with a purple color.

Table 3 presents the validation results of the whole process using our cascade archi-
tecture. Each validation slide passed through the first CNN models (i.e., DenseNet161,
VGG16, and EfficientNet_b4) and was retrieved along with the best color transformation
methods, such as HSV-strong, HED-strong, and HSV-light. Given that we performed
five-fold cross-validation, each result is the mean value of five validation sets. Two different
transformation methods, namely, image normalization and HSV-strong, were applied to
the CRNN model, and the results of each combination in terms of both sensitivity and
specificity are shown in Table 3. Each combination of the CNN and CRNN models along
with the HSV-strong transformation provided better performance. Notably, we observed a
23%, 15%, and 6% improvement in sensitivity and a 37%, 22%, and 8% improvement in
specificity, respectively, compared to image normalization (Norm) as a baseline model.
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Figure 9. Inference results for TERT based on (a) negative and (b) positive cases without color
transformations (as a base model) and (c) negative and (d) positive cases with color transformations.
True positive TERT predictions are marked with a green color, whereas all others are indicated with a
purple color.

Table 3. Inference results for the cascaded CNN + CRNN(ResNet152+L.STM) architectures.

Methods Sensitivity Specificity
DenseNet161(Norm) + CRNN(Norm) 0.76 (£0.43) 0.23 (£0.18)
DenseNet161(HSV-strong) + CRNN(Norm) 0.96 (£0.12) 0.55 (+0.32)
DenseNet161(HSV-strong) + CRNN(HSV-strong) 0.99 (4-0.00) 0.60 (£0.31)
VGG16(Norm) + CRNN(Norm) 0.78 (£0.34) 0.33 (£0.29)
VGG16(HED-strong) + CRNN(Norm) 0.89 (£0.28) 0.37 (£0.31)
VGG16(HED-strong) + CRNN(HS V-strong) 0.93 (10.26) 0.50 (£0.31)
EfficientNet_b4(Norm) + CRNN(Norm) 0.92 (£0.22) 0.51 (£0.30)
EfficientNet_b4(HSV-light) + CRNN(Norm) 0.95 (£0.12) 0.50 (£0.34)
EfficientNet_b4(HSV-light) + CRNN(HSV-strong) 0.98 (£0.05) 0.59 (£0.26)

4. Discussion

To the best of our knowledge, this study is the first to demonstrate that TERT promoter
mutation status in thyroid cancer is associated with histologic features detectable using
the deep learning approach. Through our cascaded deep learning approach, we learned
that TERT promoter mutation status is associated with tumor cell size enlargement and
nuclear atypia with prominent nuclear atypia, which is often associated with aggressive
tumor behavior. This is consistent with the results of previous studies, which have shown
that TERT promoter mutations usually accompany morphological changes [6,26].

Several previous studies have demonstrated the prognostic significance of TERT pro-
moter mutations in thyroid cancer. In conventional papillary thyroid carcinoma, TERT
promoter mutations are often associated with subtypes showing aggressive clinical be-
havior, including the tall cell [32] and hobnail subtypes [33]. Moreover, differentiated
high-grade follicular cell-derived, poorly differentiated, and anaplastic thyroid carcinomas
frequently harbor TERT promoter mutations [28]. Real-time PCR testing [34] and next-
generation sequencing [35] are currently being used to confirm TERT promoter mutation
status. However, testing all thyroid cancers for the TERT promoter mutation might not
be cost effective considering the low incidence of TERT promoter mutations in thyroid
cancer [7]. Therefore, predicting TERT promoter mutations via histologic images using a
deep learning approach can be a useful screening tool.

Generally, WSI data have different color tones, thus color normalization or transforma-
tion has been regarded as an essential step in histopathology image processing. Regarding
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color normalization, prediction performance can also be influenced by a particular refer-
ence template. Manual selection of the templates also adds to the work. Furthermore, a
recent study showed that a proper color transformation scheme outperformed the color
normalization method [19]. Therefore, the current study focuses on color diversity rather
than normalization, which enables us to leverage color transformation to improve TERT
mutation prediction.

This study has some limitations. First, aberrant functionality of the TERT gene can be
acquired through other mechanisms, including TERT mRNA overexpression and aberrant
promoter methylation patterns [36-38]. Hence, thyroid cancers designated as having wild-type
promoters in the present study might have exhibited abnormal TERT functioning, although
the possibility is quite small. Pathogenic mutations in the TP53, BRAF, RAS, and other genes
can also promote histologic changes associated with thyroid cancer [39,40]. Indeed, among
the 13 thyroid cancer cases with TERT promoter mutations, 5 cases subsequently underwent
targeted next-generation sequencing at the request of the clinician. Other than TERT promoter
hotspot mutations, pathogenic mutations in NRAS, TP53, BRAF, RB1 deletion, and NCOA4-
RET fusion were detected in these cases. However, only TERT promoter mutations were
recurrently detected in these cases. We, therefore, suggest that TERT promoter mutations were
most closely associated with the histologic findings observed in the present study.

We mainly performed PCR testing for TERT promoter mutations in thyroid cancer
cases presenting with large tumor sizes showing aggressive behavior [4,26], which might
lead to selection bias. Subsequent studies that include a larger number of thyroid cancer
cases with a wider morphological spectrum should be performed to further validate the
findings presented in this study.

We did not perform a subgroup analysis of thyroid cancer because of the limited
number of cases. In a future study, we are planning to consider subgroup analysis to better
predict TERT promoter mutations according to subtypes, with a larger number of cases.

Intratumoral heterogeneity is a well-known phenomenon in thyroid cancer [41], and
TERT promoter mutation status can differ across distinct tumor areas. However, TERT
promoter mutations in four of the five cases who underwent targeted next-generation
sequencing were found to be clonal events after considering tumor cellularity and variant
allele frequency of the TERT promoter mutation (data not included), with only one case
having a TERT promoter mutation determined to be a subclonal event.

Moreover, a relatively small number of TERT promoter mutations and wild-type
cancers were used in the current study. Training a deep learning model requires a much
larger number of cases. However, TERT promoter mutations occur infrequently in thyroid
cancer. Thus, collecting a large number of thyroid cancer cases with TERT promoter
mutations was difficult.

Given our knowledge of the issues regarding case numbers, we focused on smart-sized
cases confirmed with PCR testing and an efficient learning approach using transfer learning.
Furthermore, this work focuses on tile-level rather than case-level prediction using deep
learning. Thus, the number of tile images (Table 1) was sufficient to train the deep learning
model. Although many relevant studies assign the same label to every patch in the tumor
region of a WSI [14-18], this approach suffers from noisy training [20].

Therefore, to obtain good quality data from a limited number of TERT-positive cases,
the two pathologists who are experienced in thyroid pathology that were involved in our
study conducted fine-grained TERT ROI annotation in tumor areas. Using a smart-sized
and good data set, the deep learning approach was able to differentiate the morphologic
features at the tile level with 0.99 sensitivity for TERT mutation positivity.

5. Conclusions

High-sensitivity screening for TERT promoter mutation status in thyroid cancer is
possible through histologic analysis with the assistance of deep learning along with color
transformation schemes. Thyroid cancer patients with a high probability of harboring TERT
promoter mutations can thus be screened for confirmative TERT promoter mutation testing,
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such as real-time PCR or next-generation sequencing, which can ultimately reduce the
medical costs shouldered by them. Further studies with a larger cohort might be required
to validate the results presented in the current study.

Supplementary Materials: The following supporting information can be downloaded at https://
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