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Abstract: Background and Objectives: Periodontitis is a chronic multifactorial inflammatory infectious
disease marked by continuous degradation of teeth and surrounding parts. One of the most important
periodontal pathogens is P. intermedia, and with its interpain A proteinase, it leads to an increase
in lethal infection. Materials and Methods: The current study was designed to create a multi-epitope
vaccine using an immunoinformatics method that targets the interpain A of P. intermedia. For the
development of vaccines, P. intermedia peptides InpA were found appropriate. To create a multi-
epitope vaccination design, interpain A, B, and T-cell epitopes were found and assessed depending
on the essential variables. The vaccine construct was evaluated based on its stability, antigenicity, and
allergenicity. Results: The vaccine construct reached a more significant population and was able to
bind to both the binding epitopes of major histocompatibility complex (MHC)-I and MHC-II. Through
the C3 receptor complex route, P. intermedia InpA promotes an immunological subunit. Utilizing
InpA-C3 and vaccination epitopes as the receptor and ligand, the molecular docking and dynamics
were performed using the ClusPro 2.0 server. Conclusion: The developed vaccine had shown good
antigenicity, solubility, and stability. Molecular docking indicated the vaccine’s 3D structure interacts
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strongly with the complement C3. The current study describes the design for vaccine, and steady
interaction with the C3 immunological receptor to induce a good memory and an adaptive immune
response against Interpain A of P. intermedia.

Keywords: periodontitis; biofilm; red complex; bone loss; public health

1. Introduction

With the advances in technology and science, significant progress has been made
in understanding microorganisms and disease processes. The knowledge of the disease
process has undergone a paradigm shift from early models that assumed the quantity of
plaque to current concepts of host-microbial interactions [1]. Periodontitis is a microbial-
induced, host-mediated, chronic inflammatory disease characterized by dysbiotic plaque
biofilms that cause progressive attachment loss [2,3]. Some bacteria, even in small quantities,
can interact with the host’s immune system and other bacteria, increasing the pathogenicity
of the microbiome. The dysbiotic microbiota includes a variety of microorganisms, of which
Prevotella intermedia, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans
have significant effects on the microbiota, disrupting tissue homeostasis [4,5].

A localized chronic inflammation and subsequent loss of the tooth’s supporting struc-
tures result from the intricate interplay of the bacterial virulence factors and defense
mechanisms of the host [6,7]. Many periodontal pathogens create proteinases, which are
key virulence factors that can lead to the host’s proteins being broken down for vital nutri-
ents. Many strains of P. intermedia have evolved defenses against complement killing to
become successful pathogens [8]. The function of the complement system is to promote
the uptake and destruction of pathogens by phagocytic cells. Complement receptors (CRs)
on phagocytes detect bound complement components. These complement receptors bind
pathogens that have been opsonized by complement proteins, which is one of the main
roles of C3b and its proteolytic derivatives. Since C3b is produced in greater quantities
than C4b, C4b also functions as an opsonin but plays a considerably smaller role. Hence,
microbes have found ways to evade this system for better survival. Similar to how gingi-
pains have favoured the chain of C3 and C4, Interpain A (InpA) also demonstrated this
preference. Gingipains primarily bind the chains of these proteins, allowing them to release
the complements C3a and C5a, which serve as anaphylatoxins, and their induced versions
C3b, C4b, and C5b at low doses [9].

Prevotella intermedia, an oral Gram-negative anaerobe, helps in converting hemoglobin
to an iron (III) protoporphyrin IX pigment. The bacterium produces InpA (interpain A),
a 90-kDa cysteine protease, a homolog of streptopain from Streptococcus pyogenes (SpeB).
Under situations of low redox potential and higher pH in the infected gingival crevice and
diseased periodontal pocket, where the host closely regulates the availability of haeme,
InpA greatly contributes to the acquisition of haeme [10]. Haem albumin is more sensitive
to InpA than apo albumin. In order to extract haemoglobin’s hemosiderin from the cell,
Prevotella intermedia’s cysteine protease Interpain A (InpA) collaborates with P. gingivalis’
HmuY hameophore, demonstrating further post-translational interaction. Notably, gingi-
pains work in concert with karilysin or Interpain A to suppress complement, indicating that
these complementary proteases may still prevent complement activation after being released
and diffused across the biofilm that is defending the entire microbial community [11].

Computational immunology, often known as immunoinformatics, is a subfield of
bioinformatics that uses bioinformatics methods to comprehend and analyze immunologi-
cal data [12]. Utilizing databases and other technologies to predict B- and T-cell epitopes is
one of the most researched aspects of applied immunology. Researchers can now utilize an
organism’s genome information to identify vaccine candidates computationally, moving
beyond the old vaccinology method thanks to advancements in sequencing tools [13,14].
Major colonization factors, adhesion proteins, and other well-characterized virulence com-
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ponents essential for infection initiation and additional host damage have been the main
targets of vaccine development. The pathogen genome does, however, encode several
uncharacterized proteins that have yet to be investigated for their potential to encode
antigenic regions. Immunoinformatics techniques can be beneficial, especially for diseases
with minimal information on pathogenesis mechanisms or antigenic determinants [15,16].

Since P. intermedia (Interpain A) has a significant role in host immune modulation and
providing the required nutrition to the microbiome, the current study aimed to design a
vaccine that targets Interpain A using an immunoinformatics approach.

2. Materials and Methods
2.1. Sequence Analysis

Immune epitope database analysis was used to identify the protein structure of the
epitope of P. intermedia with the help of positive assays for linear epitopes [17]. The
network assembled was examined for hubs, shortest path, and clustering coefficient. The
Protein Data Bank (PDB) database was used to retrieve the amino acid (FASTA) reference
identity (ID) of 3BBA, which belongs to P. intermedia. The antigenic peptides prediction
tool (http://imed.med.ucm.es/Tools/antigenic.pl) (accessed on 12 March 2022) and the
AllerTop v2.0 servers (http://ddg-pharmfac.net/AllergenFP/) (accessed on 12 March 2022)
were used to screen 3BBA for average antigenic propensity and allergenicity [12].

2.2. Prediction of Epitope

Using NetCTL1.2 (DTU Health Tech, Lyngby, Denmark) [18], lymphocyte (CTL-
cytotoxic-T cells) epitopes for 3BBA were predicted for serotypes that had a threshold
value of 0.75, 0.97 (specificity), or 0.80 (sensitivity). Default levels of C-terminal cleavage
and transporter associated with the antigen were used. Both immune and antigen reactivity
were ascertained using Class-I immunogenicity of the IEDB server and VaxiJen v2.0. Using
a traditional method and a percentile rank of 2, the MHC-I specific gene sequence of a
subset of CTL epitopes (17 epitopes/ligands) was found with MHC-I related predictions in
the Immune Epitope Database (http://tools.iedb.org/mhci/), (accessed on 14 March 2022).
The percentile rank and IC50 value of peptide-MHC-II interactions were determined using
the NN Align technique and the IEDB MHC-II epitope prediction tool. The origin species
was a person. Further analysis was conducted on the Human Leukocyte Antigen–DR
isotype (HLA-DR), HLA-DP, and HLA-DQ loci. Since these results represent a greater
affinity, IC50 values of 10 nM and a percentile rank of 1.5 were utilized for prediction. We
assessed the antigenic properties of anticipated HTL epitopes. Finally, the allergenicity,
toxicity, and antigenicity of the 3BBA epitopes from Cytotoxic T lymphocytes (CTL), Helper
T cell (HTL), and B cell lymphoma (BCL) were considered. For the creation of multi-epitope
vaccines, the predicted 3BBA epitopes were utilized [13].

2.3. Population Coverage Analysis

Expression and distribution of HLA alleles expressed diverse presentations between
regions and ethnicity, which may impact the creation of multi-epitope-based vaccines [19].
The population coverage tool of IEDB was used to assess the CTL and HTL.

2.4. Construction of Multi Epitope Vaccine

Adjuvant, CTL, HTL, and BCL epitopes were combined to form appropriate links to
allow the epitopes, in vivo, adequate room to function. Human-defensin-2 (PDB ID: 1FD 3)
served as an adjuvant along with a B-cell epitope utilizing an EAAAK linker to boost the
immunogenicity of the vaccine candidate [14,20]. The same GSGSGS, GSGSGS, and AAY
linkers were used to bind BCL to HTL, HTL to CTL, and intra-CTL epitopes, respectively.

2.5. Structure Prediction and Validation

Through the use of the Swiss model, the iterative threading modeling method was
used to predict and validate the three-dimensional structure of the vaccine construct.

http://imed.med.ucm.es/Tools/antigenic.pl
http://ddg-pharmfac.net/AllergenFP/
http://tools.iedb.org/mhci/
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2.6. Molecular Docking Analysis

Utilizing 2a73 complement C3 and the vaccine receptor and ligand, molecular docking
with ClusPro 2.0 program was used in order to assess the co-action of the vaccine and
with the host immune receptor. So, using three sequential steps—rigid body docking,
clustering of lowest energy structures, and structural refinement—complexes were created.
The docked structure was examined using PyMol (http://www.pymol.org) (accessed on
15 March 2022), and the ideal complex was selected to assess which complex had a lesser
energy score [12,13].

2.7. Molecular Dynamics Simulation

The dynamics and structural stability of protein complexes are effectively investigated
by molecular dynamics (MD) simulation. Desmond software (D. E. Shaw Research, New
York, NY, United States) used MD to imitate vaccine-C3. Desmond (Schrödinger LLC, New
York, NY, USA) ran a 100-nanosecond simulation of molecular dynamics. The receptor-
ligand complex was reduced and optimized by Maestro’s Protein Preparation Wizard.
Using System Builder, all systems were created. An orthorhombic solvent model is TIP3P.

(Points from TIIP3) The simulation made use of OPLS 2005. NaCl at 0.15 M simulated
physiological conditions. The ensemble of 300 K and 1 atm NPT was used throughout
the simulation. Simulation models were lax. The simulation’s stability was evaluated by
comparing the root-mean-square deviation (RMSD) over time for the protein and ligand.

3. Results
3.1. Analysis of P. intermedia Peptide Sequences

The molecular weight of the peptide 3BBA was approximately 251 amino acids bases.
In vaccine development, epitope identification assesses proteins whose antigen prediction
was higher than 0.8 (Supplementary Figure S1). The antigenic susceptibility of 3BBA was
found to be 1.0122 on average, and they were not allergic (Supplementary Figure S2). For
the creation of a multi-epitope vaccine against P. intermedia, 3BBA was chosen based on its
antigenic propensity (Figure 1 and Supplementary Figure S3).
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3.2. Prediction and Assessment of T-Lymphocyte Epitope

Cytotoxic T-lymphocyte epitopes are essential for eliciting robust immune reactions
involving the histocompatibility complex. The NetCTL1.2 service was used to find the
epitopes of 3BBA. Fifteen epitopes from 3BBA with cumulative scores greater than 0.75 were
discovered from all MHC-I serotypes (Table 1 and Supplementary Table S1). Helper T-

http://www.pymol.org
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lymphocytes activate cytotoxic T-cells to produce antibodies and kill infected target cells.
For the HLA-DR, HLA-DQ, and HLA-DP loci, HTL epitopes for 3BBA were predicted
using IC50 values (10 nM) and percentile rank (1.5). The HTL epitopes at the HLA-DR gene
met several requirements. The HTL epitope (obtained from MHC-II) was discovered to be
similar. The C-terminal dimerization domain employed in the development of vaccines
was chosen to contain the HTL epitope (LAEVKALTTELTAEN) (Table 2).

Table 1. MHC-I binding predictions of IEDB server.

Allele # Peptide * Core Score Score Percentile
Rank

HLA-A *
01:01

6 SADFGNTTY SADFGNTTY SADFGNTTY 0.976649 0.01

2 TTWGQQMPY TTWGQQMPY TTWGQQMPY 0.634927 0.12

13 LTKGHPLIY LTKGHPLIY LTKGHPLIY 0.631891 0.12

3 TATAQVLNY TATAQVLNY TATAQVLNY 0.466786 0.21

15 EQDMVRGVY EQDMVRGVY EQDMVRGVY 0.46399 0.21
* Starts at 1, ends at 9, and the total length was 9. #: Number.

Table 2. MHC-II binding peptides (Consensus (comb.lib./smm/nn)) accessed on 17 March 2022.

Allele # Start End Peptide * Percentile
Rank

Adjusted
Rank

HLA-DRB1 *
01:01

1 55 69 FKYPVRGIGSHTVHY 8.40 8.40

1 98 112 SGNYTEAEANAVATL 8.70 8.70

1 99 113 GNYTEAEANAVATLM 8.90 8.90

1 6 20 PSKYAAEVSTLLTTT 8.90 8.90

1 97 111 YSGNYTEAEANAVAT 9.70 9.70
* Total length was 15. #: Number.

3.3. Prediction and Assessment of B-Lymphocytes

B-cell epitopes are crucial in the production of antibodies. The BepiPred server
confirmed the B-cell epitopes identified by ABCPred (Table 3) with a 16-mer length
score of 0.5 or above (Figure 2). The BCL epitopes for 3BBA were discovered to satisfy
server requirements by demonstrating antigenic, non-allergic, and non-toxic characteristics
(Tables 4 and 5). Ultimately, 3BBA was chosen for vaccine production based on the study
and prediction of CTL, HTL, and BCL.

Table 3. Identification of B-cell epitopes (ABCPred).

Rank Sequence Start Position Score *

1 VRGIGSHTVHYPANDP 59 0.93

2 DFGNTTYDWANMKDNY 82 0.90

3 HPLIYGGVSPGSMGQD 176 0.87

3 SGAYMTDCAAGLRTYF 131 0.87

4 SGTAISADFGNTTYDW 75 0.86

5 GGPNEGSGAYMTDCAA 125 0.84
* A higher peptide score depicts a probable epitope.
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Figure 2. Graphical representation of the BCL epitopes’ confirmation with the BepiPred server
identified by ABCPred with a 16-mer length score of 0.5 or above.

Table 4. Predicted peptides.

No. Start End Peptide Length

1 5 11 DPSKYAA 7

2 21 36 WGQQMPYNKLLPKTKK 16

3 56 76 KYPVRGIGSHTVHYPANDPSG 21

4 85 104 NTTYDWANMKDNYSGNYTEA 20

5 122 133 MQYGGPNEGSGA 12

6 147 166 GFTDAEYITRANYTDEQWMD 20

7 185 192 PGSMGQDA 8

8 217 217 V 1

9 228 236 PGNMYSFTA 9

Table 5. Toxicity prediction of epitopes.

Peptide Sequence * SVM Score Hydrophobicity Hydropathicity Hydrophilicity Charge

YAAEVSTLL −1.36 0.12 1.01 −0.61 −1.00

TTWGQQMPY −1.25 −0.11 −1.19 −0.82 0.00

TATAQVLNY −0.91 −0.01 0.21 −0.78 0.00

ATAQVLNYF −0.90 0.08 0.60 −1.01 0.00

GIGSHTVHY −0.84 0.04 −0.14 −0.74 1.00

SADFGNTTY −0.93 −0.10 −0.70 −0.29 −1.00

MKDNYSGNY −0.90 −0.32 −1.81 0.09 0.00

YTEAEANAV −0.99 −0.08 −0.32 0.06 −2.00

MTDCAAGLR −0.78 −0.13 0.30 0.06 0.00

FTDAEYITR −0.48 −0.21 −0.57 0.12 −1.00
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Table 5. Cont.

Peptide Sequence * SVM Score Hydrophobicity Hydropathicity Hydrophilicity Charge

YTDEQWMDI −1.28 −0.17 −1.17 0.00 −3.00

WMDIVFSEL −1.43 0.16 0.94 −0.67 −2.00

LTKGHPLIY −1.28 0.02 0.11 −0.62 1.50

WNGDVDGYY −0.50 −0.09 −1.18 −0.37 −2.00

EQDMVRGVY −1.42 −0.25 −0.71 0.29 −1.00

* non-toxin.

3.4. Analysis of Population Coverage

The population coverage of the peptide epitope 3BBA from P. intermedia was examined
(Table 6). The combined MHC-I and MHC-II epitopes revealed 89.44% and 29.81% of
population coverage worldwide, respectively, using the chosen T-cell epitopes with cognate
HLA alleles (Figure 3). Notably, our vaccine candidate has demonstrated wider population
coverage to combat P. intermedia globally.

Table 6. India Asian-class II coverage.

Number of HLA
Combinations Identified Percent of Individuals Cumulative Percent of

Population Coverage (in %)

0 70.19 100

1 25.08 29.81

2 4.06 4.72

3 0.66 0.66
HLA: human leukocyte antigen.
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3.5. Construction of Multi-Epitope Vaccine

The epitopes chosen from the top-scoring MHC classes 1 and 2 were stitched together
by appropriate linkers to create a multi-epitope vaccine. An EAAAK linker was used to bind
the adjuvant to the BCL epitope to prevent adjuvant interaction with the vaccine design.
An AAY linker was used to unite CTL epitopes, maintaining the structural configuration of
the epitopes while increasing the likelihood of antigenic reactivity. Additionally, BCL to
HTL and HTL to CTL epitopes were linked together using the linker GSGSGS, which gives
proteins structural flexibility without affecting the function of vaccine candidates.



Medicina 2023, 59, 302 8 of 11

3.6. Molecular Docking

ClusPro 2.0-based molecular docking was conducted to evaluate the vaccine compo-
nents’ interactions with Human Complement Component C3 PDB id-2a73. The best com-
plex of vaccine-C3 was preferred as it presented the lowest energy score (596.9 kJ mol−1)
and center energy (the energy between receptor and ligand) of −661.2 kJ mol−1 (Supple-
mentary Figure S4). The vaccine candidate’s residues displayed polar contact with the C3
receptor residues (Figure 4B). The Molecular Dynamic Simulation Analysis has been shown
in Supplementary Figure S5.
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Figure 4. Docked complexes of the vaccine and the epitopes. (A): Predicted structure of modeled vaccine
construct using a Swiss model. (B): Molecular docking of epitopes with 2a37 complement c3 receptor.

The stability and compactness of the docked vaccine-C3 complex were investigated
using the Desmond tool and a 100 ns molecular dynamics simulation. The complicated
RMSD (1) plot demonstrates that stability was obtained at 40 ns. Following that, fluctuations
in protein RMSD values remained within 1.5 throughout the simulation time. The RMSD
values of ligands range from 2.0 angstrom to 100 ns.

4. Discussion

The primary goal of the periodontal vaccine is to depreciate disease progression and
eventually eradicate periodontal disease [21]. P. intermedia is a bacterium that is closely
associated with various periodontal diseases and other infections [22,23]. P. intermedia
has frequently been found in subgingival plaque in human patients with necrotizing
gingivitis, pregnancy gingivitis, and adult periodontitis [24]. Additionally, P. intermedia is
challenging to eliminate because it quickly develops antibiotic resistance [25]. An in-depth
molecular understanding of infection and resistance is essential for developing alternative
treatments [26]. Numerous proteases, including trypsin-like serine proteases, dipeptidyl
peptidase IV, and cysteine proteases, have been identified in P. intermedia [27]. However,
the development of structural studies enabled us to comprehend their unique mode of
action and aid in designing vaccines. Epitope-based vaccines have frequently been created
using immunoinformatics, an innovative and practical approach [28].

Interpain A, a cysteine protease from the cysteine-histidine-dyad class, was investigated
in its zymogenic and mature self-processed forms. The latter is made up of a bivalved portion
with two subdomains. Complement is an important component of the innate immune
defense system, with the primary purpose of recognizing and killing bacteria [28,29].

Heat inactivation of the complement system greatly reduces the opsonic activity
in vitro, indicating that complement is required for host defense against P. intermedia [30,31].
Moreover, in the absence of the classical system, the alternative pathway opsonized
P. intermedia, most likely due to a reaction to endotoxin. Yet, kinetic tests demonstrated that
opsonization occurred substantially faster when the classical pathway was intact [32]. Surpris-
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ingly, the alternative pathway contributed to the death of serum-sensitive strains, whereas the
traditional pathway was predominantly responsible for the death of intermediate-sensitivity
strains [33]. As a result, the complement appears to recognize P. intermedia through many
sensory chemicals. However, it appears that P. intermedia can bind to C3 and, to some
extent, overwhelm complement defenses, allowing chronic infections to develop in the oral
cavity [34]. Furthermore, Interpain A acts synergistically with P. gingivalis gingipains [35].
When applied in equal quantities, C3b deposition was reduced by 85%, compared to 55%
when added individually. Moreover, combining three gingipains with InpA reduced the
C3b deposition by 93%. Hence, the C3 target used in the current study is relevant and prac-
tical since the multiple vaccine epitope inhibits the binding of Interpain A to C3, besides
eliminating the interaction or association with other periodontopathogens [27].

Epitopes induce cytotoxic T- and B-cell lymphocytes to destroy pathogenic microbes
through cytokine action [36]. Cytokines utilize helper T-lymphocytes to trigger the immune
system. The P. intermedia 3BBA epitope peptide depicted higher antigenicity, immunogenic-
ity, non-allergenic and non-toxic nature, and increased MHC-I and II binding than other
epitopes. The present study results show that the current vaccine design is non-allergic,
non-antigenic, non-toxic, and does exhibit good immunogenicity. Moreover, molecular
docking and dynamics results exhibit excellent and stable binding throughout the stimula-
tion period. This is due to the increased affinity of the vaccine for the C3 receptors. Further
studies with DNA cloning are required to make this vaccine a reality.

5. Conclusions

The current study provides the first vaccine design for Interpain A using an Immunoin-
formatic approach. P. intermedia is a common bacterium that is associated with periodontal
infections. It also contributes to the sustainability of the microbiome by providing essential
substrates such as albumin and haem. Future well-designed studies are required to evaluate
the efficacy of this vaccine design. Furthermore, it will be interesting to observe the overall
effect of the elimination of P. intermedia on the microbiome.
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