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Abstract: Background and Objectives: Regulatory T cells (Tregs) are usually enriched in ovarian cancer
(OC), and their immunosuppressive function plays a key role in tumorigenesis and progression.
We mainly explored the phenotypical characterization of Treg-related markers on αβ and γδ T cell
subsets in patients with OC. Materials and Methods: Thirty-six untreated patients with OC at the
Women’s Hospital of Nanjing Medical University from September 2019 to August 2021 were enrolled.
Phenotypical characterization of Tregs-related markers were detected by flow cytometry (FCM).
Enzyme-linked immunosorbent assay was used to detect the levels of carbohydrate antigen (CA125)
and transforming growth factor β (TGF-β). The level of human epididymis protein 4 (HE4) was
detected by electrochemiluminescence immunoassay. Results: Circulating CD4+ Tregs, CD8+ Tregs,
and CD3+γδ T cell subpopulations from OC patients have elevated Foxp3, CD25, CD122, Vδ1, and
reduced CD28 expression compared to benign ovarian tumor (BOT) patients and healthy controls
(HC). The upregulation of Foxp3 and Vδ1 and the downregulation of CD28 were highly specific for
maintaining the immunosuppression function of CD4+ Tregs, CD3+γδ T cells, and CD8+ Tregs in OC
patients. These Treg subpopulations were able to discriminate OC from BOT and HC. The levels of
CA125, HE4, and TGF-β were increased in OC patients. A significant positive correlation between
Treg subpopulations and CA125, HE4, and TGF-β was revealed. Conclusions: Proportions of CD4+

Tregs, CD8+ Tregs, and CD3+γδ T cell subsets were significantly increased in OC patients and were
positively correlated with FIGO stage/metastasis status, CA125, HE4, and TGF-β. These indicators
have the potential to be used as immunosurveillance biomarkers for OC.

Keywords: ovarian cancer; Tregs; subpopulations; immunologic surveillance; tumor markers

1. Introduction

OC is one of the most lethal gynecological malignancies. In the year 2020, there were
approximately 21,400 new cases of carcinoma of the ovary, which was estimated to be 1.2%
of all cases of cancer. The mortality related to it is 13,700. There is a 47.3% chance of survival
for five years for women [1,2]. The use of modern diagnosis and treatment methods for
ovarian cancer can reduce its mortality rate, although not enough data are available to
compare different parts of the world in this regard [3]. Significant advances have been made
in surgery management and systemic therapeutic approaches in OC. However, the majority
of these patients will experience recurrence within 1 to 2 years following treatment [4]. The
high lethality of a tumor is in part due to the infiltration of immunosuppressive cells into the

Medicina 2023, 59, 205. https://doi.org/10.3390/medicina59020205 https://www.mdpi.com/journal/medicina

https://doi.org/10.3390/medicina59020205
https://doi.org/10.3390/medicina59020205
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/medicina
https://www.mdpi.com
https://orcid.org/0000-0002-9323-4425
https://doi.org/10.3390/medicina59020205
https://www.mdpi.com/journal/medicina
https://www.mdpi.com/article/10.3390/medicina59020205?type=check_update&version=1


Medicina 2023, 59, 205 2 of 13

tumor microenvironment (TME) [5,6], so a better understanding of the immunosuppressive
potential in OC is critical.

Tregs belong to a lineage of immunosuppressive cells that function by suppressing
effector T cells and immune-mediated inflammation [7]. Vanguri R et al. observed changes
in immune cell subsets expressing repressive or stimulatory proteins resulting in immune
compositions more favorable to checkpoint modulations, suggesting novel therapeutic
strategies in the tumor recurrent setting [8]. Neoadjuvant chemotherapy was associated
with increased densities of CD3+, CD8+, PD-1+, and CD20+ T cells, but other immune
subsets and factors were unchanged [9]. CD4+ Tregs rapidly decreased after primary tumor
debulking, whereas CD8+ CD25+ FOXP3+ Tregs are not detectable in peripheral blood.
Similar results on CD4+ Tregs were observed with chemical debulking in women subjected
to neoadjuvant chemotherapy [10].

Infiltration of Tregs in the TME is commonly associated with poor prognosis in various
types of cancer, including OC [11,12]. It is now accepted that Tregs are heterogeneous
in phenotype and function, with distinct subpopulations identified in human peripheral
blood [13]. The assessment of specific functional subtypes of Tregs may be critical for
a more accurate assessment of prognostic outcomes in OC [14,15]. In the past decade,
researchers have witnessed an explosion in the studies on CD4+ Tregs, whereas research on
another αβ Tregs type CD8+ Tregs, and γδ T cells that possess suppression function subsets
have received considerably less attention.

In this study, we investigated whether circulating αβ (CD4+, CD8+) Tregs and γδ

(CD3+Vδ1, CD3+Vδ2) T cell subpopulations from OC patients have unique marker charac-
teristics and can be used as biomarkers to evaluate immunosuppressive potential, which
has clinical significance. This study contributes to a better understanding of the hetero-
geneity of Tregs in OC TME and may provide new ideas for the identification of novel
biomarkers in OC immunologic surveillance.

2. Materials and Methods
2.1. Patients and Specimens

We studied 36 untreated patients with OC at the Women’s Hospital of Nanjing Medical
University from September 2019 to August 2021 (Table 1). At the same time, 32 BOT patients
and 40 healthy volunteers were selected as controls [8,9].

Table 1. Characteristic features of ovarian cancer patients (n = 36).

Variables Patients, n %

Age (year)
<50 14 38.9
≥50 22 61.1
Tumor size (cm)
<5 4 11.1
≥5 32 88.9
Histology
serous 22 61.1
mucinous 1 2.8
endometrioid 4 11.1
clear cell carcinoma 8 22.2
others 1 2.8
FIGO stage
I–II 18 50.0
III–IV 18 50.0
Lymph node metastasis
No 21 58.3
Yes 15 41.7
Distant metastasis
No 19 52.8
Yes 17 47.2
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Table 1. Cont.

Variables Patients, n %

CA125 (U/mL)
≤35 0 0.0
>35 36 100.0
HE4 (pmol/L)
≤140 22 61.1
>140 14 38.9

CA125: Carbohydrate antigen 125; HE4: human epididymis protein 4; FIGO: federation of gynecology obstetrics.

All OC patients were staged according to the International Federation of Gynecology
and Obstetrics. The inclusion criterias were listed as follows: (1) pathology confirmed
diagnosis of OC; (2) none of these patients had received radiotherapy or chemotherapy
before specimen collection; (3) without autoimmune diseases, severe renal and liver failure,
incomplete pathological information, or severe underlying diseases.

2.2. Blood Processing and Flow Cytometry

Fasting venous blood samples were collected in ethylene diamine tetraacetie acid
anticoagulated tubes after informed consent in different groups. Peripheral blood mononu-
clear cells (PBMC) were isolated by Lymphocyte Separation Medium (TBD, Tianjin, China).
PBMC isolated from blood was re-suspended in 100 µL flow cytometry staining buffer.

Freshly isolated PBMCs were incubated with anti-CD3 (APC), anti-CD4 (FITC), anti-
CD8 (FITC), anti-CD25 (APC), anti-CD28 (APC), and CD122 (BV421), Vδ2 (PE) (all from
Biolegend, USA) and Vδ1 (FITC) (Abcam, Cambridge, UK) in 100 µL PBS for 20 min at
room temperature in the dark. After 45 min of cell fixation and perforation of the nuclear
envelope, cells were stained with anti-FoxP3 (PE) for 30 min. Finally, FACS Aria II (BD
Biosciences, San Jose, CA, USA) was used to detect the fluorescence signal values, and
FlowJo V10 software (FlowJo, Ashland, Wilmington, DE, USA) was used to analyze the
proportion of each Tregs subset.

2.3. Enzyme-Linked Immunosorbent Assay (ELISA)

TGF-β levels in serum samples of OC patients (n = 36), BOT patients (n = 32), and HC
(n = 40) were detected by the commercially available Human TGF-β ELISA Kit (eBioscience,
Santiago, CA, USA).

2.4. Measurement of CA125, HE4 Concentrations

CA125 and HE4 values were obtained from patient records. The limits of normal
values were 35 U/mL for CA125 and 140 pmol/L for HE4 in accordance with the clinical
reference ranges used routinely at the Women’s Hospital of Nanjing Medical University.

2.5. Statistical Analysis

The statistical analysis was conducted by SPSS 22.0 (IBM) software (SPSS Inc., Chicago,
IL, USA). The measurement data conforming to normal distribution were expressed as
mean ± standard deviation (Means ± SDs), and non-normally distributed measurement
data were expressed as median ((Interquartile range, M (P25, P75)). The differences between
the two groups were compared using an independent samples t-test or the non-parametric
Mann–Whitney U test. The association between variables and clinical characteristics was
evaluated by Chi-square or Fisher exact test. P < 0.05 was considered statistically significant.

3. Results
3.1. Comparison of Proportion of Treg Subsets in Different Groups

We investigated the levels of CD4+ Tregs, CD8+ Tregs, and CD3+γδ T cell subsets
in the circulation of OC patients, BOT patients, and HC (Figure 1, Table 2). We found
that the proportion of Tregs (Foxp3+, CD25+Foxp3+) in CD4+ T cells was significantly



Medicina 2023, 59, 205 4 of 13

higher in the peripheral blood samples of OC patients than in BOT patients and HC. We
further confirmed that the presence of CD8+ Tregs subsets (CD8+CD28−, CD8+Foxp3+,
CD8+CD28−Foxp3+, CD8+CD122+) was also significantly elevated in OC patients com-
pared with BOT patients and HC. In addition, the proportion of CD3+Vδ1 T cells in OC
patients was higher than that in BOT patients and HC (Figure 1, P < 0.05). A similar percent-
age of CD4+CD25+, CD4+Foxp3+, CD4+CD25+Foxp3+, CD8+CD28−, CD8+CD28−Foxp3+,
CD8+CD122+ Tregs, and CD3+Vδ1 T cells were observed between BOT patients and HC
(P > 0.05). We found no significant difference in CD3+Vδ2 T cells proportion among the
three groups (P > 0.05).
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 Figure 1. Increased proportion of CD4+ Tregs, CD8+ Tregs, and CD3+γδ T cell subsets in peripheral
blood of OC patients. (a) Gating strategy for the analysis of Tregs by FCM; (b) representative dot
plots CD25 and Foxp3 expression on CD4+ Tregs from HC (n = 40), BOT patients (n = 32), and OC
patients (n = 36) are shown; (c) representative dot plots CD28, Foxp3, and CD122 expression on CD8+

Tregs from HC, BOT patients, and OC patients are shown; (d) representative dot plots Vδ1 and Vδ2
expression on CD3+γδT cells from HC, BOT patients, and OC patients are shown; (e) proportions
of circulating CD4+ Tregs, CD8+ Tregs, and CD3+γδ T cell subsets in HC, BOT patients, and OC
patients.* P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001.
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Table 2. Treg subsets levels (%) in ovarian cancer patients (OC), benign ovarian tumor patients (BOT),
and healthy controls (HC).

Variables OC BOT HC P-Value

CD4+ Tregs
CD4+CD25+, †† 8.03 ± 4.24 6.39 ± 3.63 5.15 ± 3.95 0.008

CD4+Foxp3+, ****, †††† 5.62 ± 3.31 2.42 ± 2.53 2.15 ± 1.37 <0.0001
CD4+CD25+Foxp3+, **, †††† 3.28 ± 1.70 2.00 ± 1.46 1.32 ± 0.91 <0.0001

CD8+ Tregs
CD8+CD28−, ****, †††† 65.61 ± 19.75 39.39 ± 21.25 42.73 ± 1.84 <0.0001

CD8+Foxp3+, *, ††† 4.63 ± 2.09 3.31 ± 2.47 1.66 ± 1.25 <0.0001
CD8+CD28−Foxp3+, **, †† 1.41 ± 0.87 0.74 ± 0.37 0.82 ± 1.09 0.002

CD8+CD122+, *, † 11.18 ± 6.73 7.56 ± 5.91 7.28 ± 8.59 0.043
CD3+ γδ T cells

CD3+Vδ1 T, ***, ††† 3.36 ± 3.68 0.92 ± 0.44 1.22 ± 0.65 <0.0001
CD3+Vδ2 T 2.76 ± 1.20 2.59 ± 2.57 3.43 ± 4.82 0.058

OC: ovarian cancer patients, BOT: benign ovarian tumor patients, HC: healthy controls. * P <0.05, ** P < 0.01,
*** P < 0.001, **** P < 0.0001, OC vs. BOT. † P < 0.05, †† P < 0.01, ††† P < 0.001, †††† P < 0.0001, OC vs. HC. One-way
ANOVA was used.

We next investigated the ability of each Treg subpopulation to distinguish between OC
patients, BOT patients, and HC (Figure 2). ROC analyses revealed that CD4+CD25+Foxp3+

Tregs (AUC:0.878 and 0.696, P < 0.0001 and P < 0.001), CD8+CD28− Tregs (AUC:0.795 and
0.816, P < 0.0001), CD8+Foxp3+ Tregs [(AUC:0.908 and 0.737, P < 0.0001 and P = 0.0008),
CD8+CD28−Foxp3+ Tregs [(AUC:0.878 and 0.776, P < 0.0001 and P < 0.0001), and CD3+Vδ1
T cells [(AUC:0.814 and 0.889, P < 0.0001 and P < 0.0001) could clearly both discriminate
between OC patients and HC, and OC patients and BOT patients with P < 0.05. The remain-
ing Treg subsets and CD3+Vδ2 T cells were poorly discriminative (P < 0.05). Altogether, our
data suggest a potential role for circulating CD4+CD25+Foxp3+, CD8+CD28−, CD8+Foxp3+,
and CD8+CD28−Foxp3+ Tregs and CD3+Vδ1 T cells in OC diagnosis.
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3.2. The Relationship between Proportion of Different Treg Subsets and Clinical Characteristics of
OC Patients

The above results show that Treg subset proportions in the peripheral blood of OC
patients were related to FIGO stage, lymph node metastasis, distant metastasis, CA125, and
HE4. The proportion of CD4+CD25+, CD4+Foxp3+, CD4+CD25+Foxp3+, and CD8+CD28−

Tregs in OC patients at stage III–IV was higher than that of patients at stage I–II (Table 3,
P < 0.05; Table 4, P < 0.05). The proportion of CD4+CD25+Foxp3+, CD8+CD28−Treg in OC
patients with lymph node metastasis was higher than that without lymph node metastasis
according to the enhanced CT examination (Table 3, P < 0.05; Table 4, P < 0.05). Furthermore,
OC patients with distant metastasis at diagnostic had higher CD4+CD25+, CD4+Foxp3+,
CD4+CD25+Foxp3+, and CD8+CD28− Tregs than OC patients without distant metastasis at
diagnostic (Table 3, P < 0.05; Table 4, P < 0.05). Analysis showed that age, tumor size, and
histology did not correlate with the Tregs proportion (Tables 3–5).

Table 3. The association between the CD4+ Tregs proportion (%) and clinical characteristics of ovarian
cancer patients.

Variables CD4+CD25+ P-Value CD4+Foxp3+ P-Value CD4+CD25+Foxp3+ P-Value

Age (year)
<50 7.33 ± 5.15 0.44 4.94 (2.90–9.70) 0.365 2.43 ± 1.57 0.015 *
≥50 8.47 ± 3.61 5.20 (3.54–6.08) 3.81 ± 1.58

Tumor size (cm)
<5 7.01 ± 1.40 0.618 4.74 ± 1.76 0.58 2.85 (2.62–3.14) 0.195
≥5 8.15 ± 4.47 8.15 ± 4.47 3.00 (2.03–4.60)

Histology
serous 8.64 ± 4.70 0.528 5.96 ± 3.26 0.205 3.55 ± 1.74 0.267

endometrioid 8.17 ± 5.22 7.33 ± 5.20 2.75 ± 1.90
clear cell

carcinoma 7.20 ± 2.40 4.79 ± 1.96 3.30 ± 1.35

others 4.30 ± 0.97 1.72 ± 0.58 1.19 ± 1.31
FIGO stage

I–II 6.52 ± 3.08 0.031 * 4.50 ± 3.01 0.040 * 2.40 (2.01–3.01) 0.003 *
III–IV 9.53 ± 4.77 6.74 ± 3.29 3.86 (2.68–5.27)

Lymph node
metastasis

No 7.34 ± 3.68 0.256 4.48 ± 2.81 0.012 2.57 (2.03–3.23) 0.011 *
Yes 8.99 ± 4.89 7.21 ± 3.37 3.87 (2.81–5.40)

Distant
metastasis

No 5.38 (4.33–7.57) 0.001 * 3.99 (3.09–5.20) 0.002 * 2.57 (2.03–2.94) 0.003 *

Yes 9.55
(7.58–14.10) 6.04 (5.47–8.93) 3.87 (2.74–5.31)

FIGO: Federation of Gynecology Obstetrics. * P < 0.05 indicates a statistically significant difference. Independent-
sample t-test, one-way ANOVA, and Mann–Whitney U were used.

Table 4. The association between the CD8+ Treg subsets proportion (%) and clinical characteristics of
ovarian cancer patients.

Variables CD8+CD28− P-Value CD8+Foxp3+ P-Value CD8+CD28−Foxp3+ P-Value CD8+CD122+ P-Value

Age (year)

<50 63.73 ± 21.87 0.655 4.80
(1.88–6.96) 0.611 1.21 (0.64–2.17) 0.417 10.55

(6.98–17.45) 0.162

≥50 66.81 ± 18.72 4.30
(3.43–5.03) 1.32 (0.88–1.68) 8.66

(7.20–10.62)
Tumor size (cm)

<5 66.50 ± 15.72 0.926 3.4 ± 1.60 0.216 0.84 ± 0.48 0.171 9.65 ± 4.11 0.635
≥5 65.50 ± 20.41 4.78 ± 2.11 1.48 ± 0.89 11.37 ± 7.01
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Table 4. Cont.

Variables CD8+CD28− P-Value CD8+Foxp3+ P-Value CD8+CD28−Foxp3+ P-Value CD8+CD122+ P-Value

Histology
serous 70.43 ± 19.26 0.059 4.17 ± 1.73 0.259 4.71 ± 1.73 0.878 10.92 ± 5.23 0.481

endometrioid 67.72 ± 16.56 3.74 ± 0.71 3.74 ± 0.71 17.39 ± 15.02
clear cell carcinoma 59.05 ± 17.89 5.43 ± 3.08 5.43 ± 3.08 10.19 ± 3.94

others 34.60 ± 0.56 2.30 ± 1.66 2.30 ± 1.66 5.61 ± 0.32
FIGO stage

I–II 57.77 ± 20.72 0.015 * 4.34 ± 2.19 0.41 1.30 ± 0.30 0.453 10.54 ± 7.90 0.573
III–IV 73.46 ± 15.60 4.92 ± 2.00 1.52 ± 1.08 11.83 ± 5.46

Lymph node
metastasis

No 59.93 ± 20.11 0.039 * 4.21 ± 2.09 0.157 1.23 ± 0.60 0.139 10.08 ± 7.40 0.249
Yes 73.56 ± 16.78 5.22 ± 2.01 1.67 ± 1.21 12.73 ± 5.53

Distant metastasis

No 57.40 ± 20.59 0.006 * 4.36 ± 2.56 0.416 1.32 ± 0.86 0.518 8.01
(7.03–9.96) 0.056

Yes 74.78 ± 14.39 4.93 ± 1.42 1.51 ± 0.90 10.30
(7.86–17.30)

FIGO: Federation of Gynecology Obstetrics. * P < 0.05 indicates a statistically significant difference. Independent-
sample t-test, one-way ANOVA, and Mann–Whitney U were used.

Table 5. The association between CD3+γδ T cell subsets proportion (%) and clinical characteristics of
ovarian cancer patients.

Variables CD3+Vδ1 P-Value CD3+Vδ2 P-Value

Age (year)
<50 2.92 ± 2.03 0.58 3.16 ± 1.48 0.105
≥50 3.63 ± 4.45 2.50 ± 0.92

Tumor size (cm)
<5 6.99 ± 9.75 0.464 2.29 ± 0.95 0.42
≥5 2.90 ± 2.04 2.82 ± 1.23

Histology
serous 3.84 ± 4.28 0.782 2.42 ± 0.91 0.404

endometrioid 3.17 ± 4.35 3.20 ± 0.49
clear cell carcinoma 2.26 ± 1.38 3.01 ± 1.59

others 2.84 ± 1.80 4.53 ± 2.14
FIGO stage

I–II 3.16 ± 4.75 0.752 2.82 ± 1.43 0.789
III–IV 3.56 ± 2.89 2.70 ± 0.96

Lymph node metastasis
No 3.16 ± 4.38 0.707 2.83 ± 1.36 0.676
Yes 3.64 ± 2.51 2.66 ± 0.98

Distant metastasis
No 3.24 ± 4.59 0.845 2.66 ± 1.41 0.6
Yes 3.49 ± 2.43 2.87 ± 0.95

FIGO: Federation of Gynecology Obstetrics. Independent sample t-test, one-way ANOVA were used.

3.3. The Relationship between Proportion of Different Treg Subsets and CA125, HE4 of
OC Patients

High levels of CA125 and HE4 status have been reported in OC patients [16,17]. We
also investigated the levels of CA125 and HE4 in the serum samples of OC patients. In
agreement with previous reports, we found that CA125 and HE4 in OC patients were
elevated compared with BOT patients and HC (Figure 3a; P < 0.05).

High levels of CA125 and HE4 frequently correlate with poor prognosis [18]. Based
on the strong correlation between Treg subsets and OC, we interrogated subpopulations
of Tregs to identify which ones, if any, correlate with CA125 and HE4. The CD4+CD25+,
CD8+CD28−, CD8+Foxp3+, CD8+CD28−Foxp3+, CD8+CD122+ Tregs, and CD3+Vδ1 T
cells proportion in CA125 higher (>median) OC patients was higher than that in CA125
(<median) lower patients (Table 6; P < 0.05). The CD8+CD28− Tregs proportion in
HE4-positive (>140 pmol/L) OC patients was also higher than that in HE4-negative pa-
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tients (Table 6; P < 0.05). In addition, we examined the correlation between CD4+ Treg,
CD8+Treg, CD3+ T cell subsets, and CA125, HE4. Interestingly, CD4+Foxp3+, CD8+CD28−,
CD8+CD122+ Treg subsets, and CD3+Vδ1 T cells were all positively correlated with CA125
(r = 0.6221, P < 0.0001; r = 0.4999, P = 0.0019; r = 0.4705, P = 0.0038; r = 0.5212, P = 0.0011),
and CD4+Foxp3+ Tregs and CD3+Vδ1 T cell subsets were both positively correlated with
HE4 (r = 0.4403, P = 0.0072; r = 0.4165, P = 0.0115) (Figure 3b–d).
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Table 6. The association between CD4+ Treg, CD8+ Treg, and CD3+γδ T cell subsets proportion (%)
and tumor markers.

Variables
CA125 (U/mL)

P-Value
HE4 (pmol/L)

P-Value
<Median >Median ≤140 >140

CD4+CD25+ 7.13 ± 4.10 9.02 ± 4.29 0.186 8.15 ± 4.28 7.84 ± 4.33 0.835
CD4+Foxp3+ 3.87 ± 1.95 7.57 ± 3.46 0.000 * 4.02 (2.90–5.90) 6.05 (5.21–9.84) 0.008
CD4+CD25+Foxp3+ 2.86 ± 1.88 3.74 ± 1.37 0.122 3.18 ± 1.65 3.42 ± 1.81 0.683

CD8+CD28− 50.50
(38.40–60.40)

85.80
(77.85–88.05) 0.000 * 58.78 ± 16.85 76.35 ± 19.71 0.007 *

CD8+Foxp3+ 3.90 ± 2.01 5.44 ± 1.92 0.025 * 4.19 (3.44–5.05) 4.88 (3.24–7.38) 0.114
CD8+CD28−Foxp3+ 1.12 ± 0.56 1.74 ± 1.05 0.032 * 1.36 ± 0.83 1.49 ± 0.95 0.653

CD8+CD122+ 7.51 (6.31–8.05) 15.20
(10.13–17.80) 0.000 * 9.14 ± 4.75 14.39 ± 8.20 0.020

CD3+Vδ1 1.57 (1.01–2.56) 3.71 (3.39–4.31) 0.013 * 1.88 (1.40–3.58) 3.64 (1.48–5.11) 0.103
CD3+Vδ2 2.30 ± 1.36 2.49 ± 0.96 0.208 3.01 ± 1.33 2.36 ± 0.87 0.114

* P < 0.05 indicates a statistically significant difference. Independent sample t-test and Mann–Whitney U
were used.



Medicina 2023, 59, 205 9 of 13

3.4. The Relationship between Proportion of Different Treg Subsets and TGF-β of OC Patients

In addition to the proportion changes of the Treg subsets, OC patients showed vigorous
TGF-β levels in serum. The results of the ELISA indicated that TGF-β increased signifi-
cantly in OC patients (664.44 ± 232.72) when compared with BOT patients (389.09 ± 143.46)
and HC (265.45 ± 160.45) (Figure 4a, P < 0.05). Previous studies have shown that high
levels of TGF-β may be involved in the induction of Treg production [18,19]. We fur-
ther analyzed the relationship among CD4+Treg, CD8+Treg, CD3+Vδ1 T, CD3+Vδ2 T cell
subsets, and TGF-β. As shown in Figure 4c–e,g,h, we found that CD4+Foxp3+ (r = 0.3562,
P < 0.0001), CD4+CD25+Foxp3+ (r = 0.5499, P = 0.0330), CD8+CD28− (r = 0.5499, P = 0.0005),
CD8+CD28−Foxp3+ (r=0.3637, P=0.0292), and CD8+CD122+ (r = 0.5502, P = 0.0005) Treg
subsets were all positively correlated with TGF-β. No significant association was found
among CD4+CD25+ Tregs, CD8+Foxp3+ Tregs, CD3+Vδ1 T cells, CD3+Vδ2 T cell subsets,
and TGF-β (Figure 4b,f,i,j; P > 0.05).
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(b–j) The association among CD4+CD25+, CD4+Foxp3+, CD4+CD25+Foxp3+, CD8+CD28−,
CD8+Foxp3+, CD8+CD28−Foxp3+, CD8+CD122+ Tregs and CD3+Vδ1 T cells, and CD3+Vδ2 T cells
and TGF-β. * P < 0.05, *** P < 0.001, **** P < 0.0001.
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4. Discussion

Tregs are frequently infiltrated in the tumor microenvironment, about 10 to 50%, as
opposed to 2 to 5% in nontumor individuals [20]. In previous studies, we and others
have shown elevated levels of Tregs in tumors tissues and peripheral blood of patients
with OC [21–23]. Notably, elevated expression of some molecular markers on the sur-
face of T cells can be used to distinguish Tregs, including interleukin-2 receptor α chain
(CD25), CD127, and CD28. Human CD4+ Tregs express high levels of the CD25 and the
forkhead winged-helix transcription factor (Foxp3), which are pivotal for their develop-
ment and function [24]. However, in most studies, only one specific Treg subpopulation
was analyzed. Our data first show a higher level of CD4+Treg subsets (CD4+Foxp3+ and
CD4+CD25+Foxp3+) in OC groups than in BOT and HC groups (Figure 1), suggesting an
immunosuppression potential of these subsets in patients with OC. Additionally, CD8+

Tregs were the first identified cell subset with a suppressive potential in 1972 [25], and they
are associated with different phenotypes depending on the studies (CD28, CD122) [26–29].
Our studies have examined how CD8+Treg subpopulations in tumor tissues and peripheral
blood contribute to the prognosis of OC [12,29]. However, the key Treg subsets in patients
with OC remain disputed. Here, we found the difference among CD8+ Treg subpopulations
(CD8+CD28−, CD8+Foxp3+, CD8+Foxp3+CD28−, CD8+CD122+) in OC patients compared
with BOT and HC groups (Figure 1). Interestingly, the downregulated expression of CD28,
not the upregulated expression of Foxp3 in CD8+ Tregs, have stronger resolution potential
between OC patient and BOT patients or HC. Therefore, we speculate that Tregs share
many features, but possess distinct differences according to cancer type.

More and more studies have suggested that γδ T cells also have immunosuppressive
effects on TME [30,31]. Our previous study has also shown a higher level of tumor-
infiltrating γδ T cells and CD3+γδ+Vδ1 T cells in OC patients than in paired BOT patients
and normal ovarian tissue, suggesting a poor prognosis in OC patients [32–34]. Our results
are consistent with these studies, but the primary elevated γδ T cell subsets were CD3+Vδ1
T cell populations in peripheral blood (Figure 1). These results suggested that CD3+Vδ1
T cell subsets have a strong ability to distinguish OC patients from BOT patients and HC.
Overall, analysis of the Treg subpopulations in peripheral blood is undeniably important
in studies of different cancer immunology.

Combined with the above results, we proved that the high abundance of CD4+ Treg
and CD8+ Treg subpopulations but not CD3+γδ T cell subpopulations were associated with
FIGO stage, lymph node metastasis, and distant metastasis status at the diagnosis of OC
patients (Tables 3–5). Our study is the first to show a positive association between αβ and
γδT cells and OC stage/metastatic status, although many studies have revealed a correla-
tion between Tregs in tumor lesions and patient prognosis. Okla K. et al. demonstrated the
increased frequency of M-MDSC in the tumor lesions in EOC and its correlation with stage,
but not Tregs [35]. Other studies showed that a higher level of CD30+OX40+ Tregs were
associated with improved overall survival, whereas CD39+γδ Tregs were associated with
poor prognosis in colorectal cancer. These results confirm the tremendous heterogeneity of
the clinical relevance of Treg subpopulations in human cancers.

CA125 (also known as mucin 16) and human epididymis protein 4 (HE4; also known
as WFDC2) are often used to screen benign and malignant pelvic tumors. Both CA125 and
HE4 are tumor markers associated with the ovary. In this study, we observed elevated levels
of CA125 and HE4 in the serum of patients with OC compared to BOT patients and HC
(Figure 3a). It is worth noting that the diagnosis of ovarian cancer usually occurs in the late
stage of the disease. Importantly, >80% of patients have asymptomatic tumor recurrence,
and recurrent OC is most often detected by elevated levels of CA125 [29]. However, not
all patients with recurrent tumors have elevated serum CA125 levels, and early detection
of recurrence by detecting CA125 levels cannot evaluate the prognosis of patients. In
these patients, alternative biomarkers, such as HE4, might be of use for the monitoring
of recurrent cancer, but this needs further evaluation. Here, we assessed the potential
clinical relevance of Treg and γδ T cell subpopulations in monitoring the recurrence of OC
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and demonstrated the positive correlations between these cell subpopulations and CA125
or HE4 (Figure 3b–d, Table 6). The use of Treg and γδ T cell subpopulations might be
potential biomarkers for OC monitoring, but we need to do further exploration to confirm
the above hypothesis.

Tregs exert their immunosuppressive activity by secreting various cytokines, and a
high level of TGF-β has been identified as a marker of advanced malignancy and poor
overall prognosis in a variety of malignancies, including OC [36–38]. TGFβ released
by cancer cells in TME promotes cancer progression by shaping the architecture of the
tumor and by suppressing the antitumor activities of immune cells, thus generating an
immunosuppressive environment that prevents or attenuates the efficacy of anticancer
immunotherapies. The repression of TGFβ signaling is therefore considered a prerequisite
and major avenue to enhance the efficacy of current and forthcoming immunotherapies [39].
TGF-β promotes T cell differentiation into Tregs [40] and enables Tregs to inhibit adaptive
and innate immune responses. CD4+ T cells can acquire cytotoxic activity when TGF-β
signaling is inactivated [41]. Importantly, CD4+ T cells exhibit considerable plasticity in
TME, depending on the cytokine environment, specifically TGF-β levels [42]. Consistent
with our previous reports [43], we confirmed that the levels of serum TGF-β in OC patients
was higher than in BOT patients and HC here. Tregs exert an immunosuppressive function
mainly by secreting cytokines to inhibit T cell proliferation and downregulate the immune
function of Th1 cells, but the link between Tregs and tumor cytokine signaling remains
largely unexplored. We found that the TGF-β-induced p38 MAPK signaling pathway
contributes to the activation of CD8+ Tregs in the OC microenvironment, suggesting Tregs
respond to TGF-β, and high levels of TGF-β were positively associated with the proportion
of CD4+ Tregs and CD8+ Tregs but not γδ T cell subpopulations (Figure 4b–j), suggesting
Treg subsets could be a robust indicator of OC patient survival. Whereas monitoring
disease progression in patients with OC by TGF-β levels, TGF-β inhibition is combined
with immune checkpoint inhibition to affect the production of Tregs, thereby targeting
the immunosuppressive microenvironment, ultimately breaking immune tolerance and
improving immunotherapy efficacy.

5. Conclusions

In summary, we showed that circulating CD4+Treg, CD8+Treg, and CD3+γδ T cell
subpopulations presented in OC patients at a significantly higher level than BOT patients
and HC, and there is a positive correlation with FIGO stage/metastatic status, CA125,
HE4, and TGF-β. Specifically, Treg phenotype molecules, including Foxp3 in CD4+ Tregs,
CD28 in CD8+ Tregs, and Vδ1 in CD3+γδ T cells exert a significant difference. These results
provide a piece of preliminary evidence that the proportion of circulating Treg subsets has
represented a promising marker for the immunologic surveillance of OC.
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