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Abstract: Background and Objectives: A significant role was played by costimulatory molecules in renal
cancer. However, the lncRNAs regulating costimulatory molecules have not been fully investigated.
Materials and Methods: Data from the next-sequence file and clinical data were downloaded from the
Cancer Genome Atlas (TCGA) database. All analyses were conducted using the R and GraphPad
Prism software. Results: A total of 1736 costimulatory molecule-related lncRNAs were determined
under the threshold of |Cor| > 0.5 and p-value < 0.001. Furthermore, a prognosis prediction signature
consisting of five lncRNAs: LINC00941, AC016773.1, AL162171.1, HOTAIRM1, and AL109741.1 was
established with great prediction ability. By combining risk score and clinical parameters, a nomogram
plot was constructed for better clinical practice. A biological enrichment analysis indicated that E2F
targets, coagulation, IL6/JAK/STAT3 signaling, G2/M checkpoint, and allograft rejection pathways
were activated in high-risk patients. Furthermore, a higher infiltration level of resting CD4+ T cell,
M2 macrophage, and resting mast cells, while a lower CD8+ T cell infiltration was observed in
high-risk patients. It is worthy of note that, low-risk patients might respond better to PD-1 checkpoint
therapy. A correlation analysis of LINC00941 revealed that it was positively correlated with Th2
cells, Th1 cells, macrophages, and Treg cells, but negatively correlated with Th17 cells. A pathway
enrichment analysis indicated that the pathways of the inflammatory response, G2M checkpoint, and
IL6/JAK/STAT3 signaling were significantly activated in patients with high LINC00941 expression.
In vitro experiments indicated that LINC00941 can enhance the malignant biological behaviors of
renal cancer cells. Conclusions: Our study established a costimulatory molecule-related lncRNAs-
based prognosis model with a great prediction prognosis. In addition, LINC00941 could enhance the
malignant biological behaviors of renal cancer cells.

Keywords: renal cancer; costimulatory molecule; lncRNAs; immune; immunotherapy

1. Introduction

In 2020, there were approximately 420,000 new cases of renal cell carcinoma (RCC) and
180,000 deaths from it globally [1]. Among RCCs, clear cell renal cell carcinoma (ccRCC) is
the most common, characteristic of a worse prognosis and high mortality [2]. While many
promising treatments have been proposed for ccRCC patients, recurrence or metastasis
rates after surgery still exceed 20% [3]. Moreover, due to the insidious onset of symptoms,
a considerable proportion of ccRCC patients have progressed to an advanced stage by
the time of their first diagnosis, thus leading to the loss of the opportunity for surgery [4].
Consequently, the identification of effective molecular biomarkers for ccRCC therapy is
still imperative.
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Costimulatory molecules, consisting of the B7-CD28 family and tumor necrosis factor
(TNF) family, play a critical role in cancer biology [5]. Cell-mediated immunity is triggered
by molecules from the B7/CD28 family, including the most commonly observed PD-1/L1
axis. Meanwhile, members of the TNF/TNFR family are engaged in the later phases
of T-cell activation, as well as antitumor immunity [6]. In ccRCC, however, few studies
have been conducted on costimulation molecules and their biological functions. Long
noncoding RNA (lncRNA) has broad regulatory effects and participates in several stages
of cancer [7]. For instance, Li et al. revealed that the MRCCAT1 was overexpressed in
ccRCC tissue and could promote cancer metastasis [8]. Given the prominent values of
costimulatory molecules and lncRNA, it is essential to identify the costimulatory molecule-
related lncRNAs (CMLs) affecting the prognosis, which might be useful treatment options
and prognosis evaluations in ccRCC patients.

Increasing amounts of public data have been generated in the era of Big Data, and
secondary analysis of these data can provide researchers with direction [9]. Here, we
comprehensively investigated the role of CMLs in ccRCC. A prognosis signature consisting
of LINC00941, AC016773.1, AL162171.1, HOTAIRM1, and AL109741.1 was established with
great prediction efficiency. We then investigated the underlying biological difference in
patients with high and low risk scores, including immune and pathway enrichment analysis.
It is worthy of note that low-risk patients might respond better to PD-1 checkpoint therapy,
which might be helpful for clinical treatment options. Finally, LINC00941 was selected
for further research. The results showed that LINC00941 could enhance the malignant
biological behaviors of renal cancer cells., which might be a potential biomarker of ccRCC.

2. Methods
2.1. Data Collection

Data from the next-sequence file and clinical data were downloaded from the Cancer
Genome Atlas (TCGA) database of the TCGA-KIRC project (72 normal tissue and 539 tumor
tissue). The original form of expression profile data was the “STAR-count” form. All the
data were preprocessed before analysis. The detailed clinicopathological parameters of
patients enrolled in our analysis are shown in Table 1. The collected list of costimulatory
molecules is shown in Table S1 [10].

Table 1. Clinical features of patients included in our analysis.

Features Group Number Proportion (%)

Age ≤60 262 51.0
>60 251 49.0

Gender Female 176 34.3
Male 337 65.7

Grade G1 12 2.4
G2 216 42.7
G3 201 39.2
G4 73 14.2

unknown 8 1.6
Stage Stage I 255 49.8

Stage II 56 10.9
Stage III 117 22.8
Stage IV 82 16.0

unknown 3 0.6
T-classification T1 261 50.8

T2 68 13.2
T3 173 33.8
T4 11 2.2

N-classification N0 229 44.7
N1 16 3.1

unknown 268 52.3
M-classification M0 407 79.3

M1 78 15.2
unknown 28 5.4
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2.2. Identification of CMLs

A correlation analysis was utilized to identify the relationship between costimulatory
molecules and lncRNAs data. The lncRNAs were considered as CMLs meeting the criteria
of |Cor| > 0.5 and p-value < 0.001.

2.3. CMLs Prognosis Analysis

For the enrolled patients, a 1:1 ratio was used to randomly assign patients to training
and validation groups. First, using a Univariate Cox regression analysis, CMLs associated
with patient survival were identified. (p value < 0.05). Following this, the Random Survival
Forests Variable Hunting (RSFVH) algorithm was utilized to identify lncRNAs. Addition-
ally, independent prognostic factors associated with CML survival were determined by a
multivariate Cox regression analysis. The formula of the risk score consisting of five CMLs
was as follows:

riskscore =
n

∑
i=1

coe f (lncRNAi) ∗ exp(lncRNAi) (1)

The survival difference between the two groups was compared using the Kaplan-
Meier (KM) survival curve. In the training and validation cohorts, the median value of the
risk score in each cohort was defined as the cut-off values to distinguish high- and low-risk
groups. The patients with a risk score higher than the median value were high-risk patients,
otherwise, they were considered to be low-risk patients.

2.4. Development of a Nomogram

Using the rms package, a nomogram was established for better application in the
clinic. Furthermore, the calibration curve for 3-, 5-, and 8 years was performed to compare
the predictive accuracies of the nomogram.

2.5. Biological Enrichment

To investigate the significant differences between the two risk groups, a gene set
enrichment analysis (GSEA) was performed. All annotated gene set files (n = 9) retrieved
from the MSigDB database were chosen as the gene set of reference.

2.6. Immune Features and Immunotherapy Response Prediction

The proportions of 22 different types of infiltrating immune cells in the tumor microen-
vironment were quantified using the CIBERSORT algorithm [11]. Each patient’s immune-
related function was quantified using the single sample gene set enrichment analysis
(ssGSEA) algorithm [12]. Tumor Immune Dysfunction and Exclusion (TIDE) and submap
algorithms were utilized to evaluate the immunotherapy responses between the two risk
groups [13]. For the TIDE algorithm, all patients were assigned a TIDE score based on their
expression profile data through the online portal website http://tide.dfci.harvard.edu/,
accessed on 21 June 2022. The patients whose TIDE score > 0 were regarded as immunother-
apy non-responders; otherwise, they were considered to be responders. The submap
algorithm can evaluate the patient’s response to two specific immunotherapy options,
CTLA4 and PD-1 therapy. The submap algorithm was conducted through the GenePattern
server (https://cloud.genepattern.org/, accessed on 23 June 2022). The method for p value
correction was “Bonferroni” and the output Bonferroni corrected p value could reflect the
similarity between selected patients and specific immunotherapy therapy cohorts (PD1-R =
response of PD-1 therapy, PD1-nonR = non-response of PD-1 therapy, CTLA4-R = response
of CTLA4 therapy, CTLA4-nonR = non-response of CTLA4 therapy), in which Bonferroni
corrected p value < 0.05 was considered as statistically significant.

2.7. Cell Lines and qRT-Pcr Assay

Normal renal epithelial cell lines (HK-2) and renal cancer cell lines (786-O, Caki-
1, Caki-2) were purchased from the Cell Bank of Shanghai Academy of Chinese Sci-
ences and routinely maintained at our laboratory. Total RNA was extracted using an

http://tide.dfci.harvard.edu/
https://cloud.genepattern.org/
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RNA extraction kit (Qiagen). The sequences of primers used in the study were as fol-
lows: LINC00941: forward primer, 5′-CAAGCAACCGTCCAACTACCAGACA-3′; re-
verse primer, 5′-AAATCAAGAGCCCAAACATTGTGAA-3′; GAPDH, forward primer,
5′-CTGGGCTACACTGAGCACC-3′, forward primer, 5′-AAGTGGTCGTTGAGGGCAATG-3′.

2.8. Cell Transfection

Cell transfection was carried out based on the lipofectamine 3000 regent following
the protocol. The control and sh-LINC00941 plasmids were purchased from Shanghai
GenePharma, whose target sequences were as follows: sh-LINC#1, 5′-GGACCAACTATGC-
TTATAA-3′; sh-LINC#2, 5′-GCCCTCGAGAAGTGTCTAA-3′; sh-LINC#3, 5′-GAGCATGTA-
TCCATCTTAT-3′.

2.9. Cell Proliferation Assay

Firstly, we resuspended and seeded 500 cells per well in a six-plate well. The cells
were then cultured for 14 days according to conventional cell culture conditions. Finally,
crystal violet staining was applied after the cells were mixed with formaldehyde. A CCK8
assay was conducted using a CCK8 kit (Dojindo, Shanghai, China) based on the protocol.

2.10. Transwell Assays

In a 24-plate well, an 8-um pore Transwell chamber was used to divide the plate into
the upper and lower chamber. To upper chamber were added 4 × 103 cells with medium
FBS. The lower chamber was filled with a medium containing 20% FBS. Cells were then
stained with crystal violet after being mixed with formaldehyde for 24 h.

2.11. Statistical Analysis

All statistical analyses were conducted using R software and GraphPad Prism 8.
Statistical significance was determined by a two-sided p-value less than 0.05. For the
variables conforming to a normal distribution, a Student’s t-test was used for analysis; for
the variables conforming to non-normal distribution, the Mann-Whitney U test was used for
analysis. All biological experiments were repeated three times to obtain a statistical p value.
The receiver operating characteristic (ROC) curve was utilized to assess the prediction
performance of the identified variables. The Area Under the Curve (AUC) value of the
ROC curve was calculated using the survivalROC package in R software.

3. Results
3.1. Construction of CMLs Prognosis Signature

Figure 1 illustrates a flowchart of the study design. In total, 1736 costimulatory
molecule-related lncRNAs were identified after co-expression analysis with |Cor| > 0.5
and p value = 0.001 (Figure 2A and Table S2). Based on these CMLs, a univariate Cox regres-
sion analysis was performed, identifying 219 lncRNAs strongly associated with survival
(Table S3). A random forest algorithm was then used to identify the most optimal lncRNA
combination with high variable importance for the signature, among which LINC00941
had the highest importance (Figure 2B,C). Finally, a multivariate Cox regression analysis
identified the signature combination consisting of five lncRNAs: LINC00941, AC016773.1,
AL162171.1, HOTAIRM1 and AL109741.1 had the most significant p value (Figure 2D). The
risk score was calculated using the formula “Riskscore = AC016773.1 ∗ 0.356 + LINC00941 ∗
0.319 + AL162171.1 ∗ −0.359 + HOTAIRM1 ∗ 0.132 + AL109741.1 ∗ −0.296” (Figure 2E). KM
survival curves showed that lncRNA AC016773.1, LINC00941, and HOTAIRM1 were the
risk factors, yet the AL162171.1 and AL109741.1 were the protective factors (Figure 2F–J).
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Figure 2. Identification of candidate lncRNAs and development of a molecule-related lncRNA
signature. Notes: (A) The identification of costimulatory molecule-related lncRNAs. (B) A random
survival forest analysis screened 10 lncRNAs. (C) After Kaplan–Meier analysis of 1023 combinations,
the top 20 signatures were sorted according to the p value of KM. The signature included five lncRNAs
that were screened out, as they had the biggest −log10 p value. (D) The forest plot of 17 prognostic
lncRNAs with HR > 5.0 or HR < 0.8, * = p < 0.05, ** = p < 0.01, *** = p < 0.001 (E) Patients were divided
into high- and low-risk groups according to the median risk score. (F–J) Kaplan-Meier survival curves
of five prognostic costimulatory molecule-related lncRNAs in KIRC.

3.2. Validation and Evaluation of the Prognosis Model

According to clinical correlation, risk score was correlated with worse clinical grade
and stage (Figure 3A). According to the KM survival curve, patients with high risk might
have a shorter OS (Figure 3B). Meanwhile, high-risk groups had a higher death rate
(Figure 3C). Based on our time-dependent ROC analysis, our model can predict patients
prognosis satisfactorily (Figure 3D, 3 years AUC = 0.782, 5 years AUC = 0.821, 8 years
AUC = 0.815). Validation group results showed the same trend (Figure 3E–G, 3 years
AUC = 0.716, 5 years AUC = 0.768, 8 years AUC = 0.786). A univariate and multivariate
analysis indicated that risk score could be an effective prognosis marker independent of
other clinical features (Figure 3H,I). A univariate Cox regression analysis indicated that
risk score could independently affect patients’ prognosis (Figure S1A). The N classification
data of patients has many unknowns, so it was not included in the analysis. Considering
the high correlation between clinical stage and T, and M classifications, we performed
a multivariate Cox regression analysis based on three modules (age, gender, grade and
stage/T classification/M classification). The results all indicated that risk score could be an
effective prognosis marker independent of other clinical features (Figure S1B,C).
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Figure 3. Evaluation and verification of the signature. Notes: (A) Pie charts showing the Chi-squared
test of clinicopathologic factors between two risk groups in KIRC. (B,E) Kaplan-Meier curve of the
signature prognosis in high- and low-risk groups. (C,F) The risk plot showed a higher percentage
of progressed patients in the high-risk group (training cohort and validation cohort). (D,G) Time-
dependent ROC curve of 3-, 5- and 8-year survival rates(training cohort and validation cohort).

3.3. Nomogram

For a better application in practice, a nomogram was constructed by combining the
risk score and clinical features to predict 3-, 5-, and 8-year OS time, whose C-index was
0.791 (Figure 4A). Furthermore, the calibration plot showed good agreement between the
actual observation and predicted survival of 3, 5, 8, and 10 years (Figure 4B–D).
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and clinical characteristics of KIRC were used to construct the nomogram, ** = p < 0.01, *** = p < 0.001.
(B–D) Calibration curves of the nomogram for the estimation of survival rates at 3 (B), 5 (C) and
8 years (D).

3.4. Biological Enrichment

A GSEA analysis was utilized to identify the biological difference between high- and
low-risk patients (Figure 5A). Results of the GSEA indicated that the terms of E2F targets,
coagulation, IL6/JAK/STAT3 signaling, allograft rejection, and G2/M checkpoint were
remarkably enriched in high-risk patients, while the top five hallmark terms enriched in
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low-risk group were TGF-β signaling, androgen response, UV response, Notch signaling
and heme metabolism (Figure 5B,C). In addition, the results revealed that the patients in the
high-risk group were enriched in primary immune deficiency, cell cycle arrest in response,
and doxorubicin resistance, and the low-risk group was related to stem-cell downregulated,
TNF signaling (Figure 5D,E). Importantly, the GO terms including renal system process
and kidney epithelium development, highly correlated with normal physiological progress
of the kidney, were enhanced in the low-risk group, showing a great difference from the
high-risk group (Figure 5F,G).
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Figure 5. Gene set enrichment analysis for costimulatory molecule-related lncRNA signature. Notes:
(A) GSEA analysis of the signature based on all annotated gene set files. (B,C) Different cancer
hallmarks are regulated in the high-risk group (B) and low-risk group (C) of the signature. (D,E)
Associated curated gene sets including KEGG terms enriched in the high-risk (D) and low-risk groups
(E). (F,G) GO terms enriched in the high-risk (F) and low-risk groups (G).

3.5. Immune Analysis

Diverse immune cells and functions infiltrate the tumor microenvironment and reg-
ulate the antitumor response. The results of CIBERSORT indicated a higher infiltration
level of resting CD4+ T cells, M2 macrophages, and resting mast cells, while a lower in-
filtration level of CD8+ T cells was noted in high-risk patients (Figure 6A). Meanwhile,
the result of an ssGSEA indicated a higher level of immature dendritic cells (iDCs), mast
cells, tumor-infiltrating lymphocytes (TIL), and type II IFN response, yet a lower level of
activated dendritic cells (aDCs), Th2, CD8+ T cells and Tfh cells was found in high-risk
patients (Figure 6B). According to TIDE results, high-risk patients had higher TIDE scores
and a lower percentage of immunotherapy responders than patients in low-risk groups
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(Figure 6C,D). Correspondingly, a subclass analysis found that the Bonferroni corrected
p value of PD1-R in low-risk patients was less than 0.05, indicating that low-risk patients
might respond better to PD-1 therapy (Figure 6E).
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Figure 6. Immune infiltration analysis and immunotherapy response prediction between two risk
groups. Notes: (A) Comparison of tumor-infiltrating immune cell proportion between the high-risk
group and low-risk group. (B) Comparison of immune-related functions proportion between the
high-risk group and low-risk group. (C) Unsupervised clustering of 510 KIRC patients using single-
sample gene set enrichment analysis scores from 27 immune cell types. (D) Comparisons of TIDE
score for chemotherapeutics and targeted therapy of the signature revealed that low-risk patients
were more likely to be suitable for immunotherapy. (E) Aubmap analysis indicated that KIRC patients
in the low-risk group could be more sensitive to the programmed cell death protein 1 inhibitor.

3.6. Exploring the Effect of LINC00941 in ccRCC

Considering that the LINC00941 had the most significant p value of the multivariate
Cox regression and has not been reported in ccRCC previously, we selected it for fur-
ther analysis to illustrate its role in ccRCC. According to an immune infiltration analysis,
LINC00941 was positively correlated with Th2 cells, Th1 cells, macrophages, and Treg,
but was negatively correlated with Th17 cells (Figure 7A). GSEA results showed that the
pathways of the inflammatory response, IL6/JAK/STAT3 signaling and G2M checkpoint
were upregulated in patients with high LINC00941 expression (Figure 7B). A clinical cor-
relation showed that LINC00941 was overexpressed in ccRCC tissue and associated with
more progressive clinicopathological parameters, including grade, clinical stage, and TNM
classifications (Figure 7C–J).
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Box diagram showing that the LINC00941 value was significantly upregulated in the medium or late
stages of KIRC, including the Grade 4, Stage IV, T4, N1, and M1 stages.

3.7. LINC00941 Promotes Cancer Cell Proliferation, Invasion, and Migration

We further investigated whether LINC00941 could promote ccRCC cell malignant
behavior. A higher level of LINC00941 was noticed in 72 paired ccRCC and adjacent tissues
obtained from the TCGA database (Figure 8A). Furthermore, the renal cancer cell lines all
showed a higher LINC00941 expression level than the normal HK-2 cell line (Figure 8B).
The knockdown efficiency of LINC00941 was then validated (Figure 8C). According to
CCK8 and colony formation assays, the inhibition of LINC00941 significantly hampered
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cancer cell proliferation (Figure 8D–F). In addition, the inhibition of LINC00941 could
significantly decrease the invasion and migration ability of cancer cells (Figure 8G).
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tion in vitro. Notes: (A) LINC00941 expression in paired KIRC tissues, *** = p < 0.001. (B) LINC00941
mRNA expression in KIRC cell lines and normal renal epithelial cell lines, *** = p < 0.001. (C) mRNA
expression in LINC00941 knockdown cell lines, *** = p < 0.001. (D) Colony formation assay of 786-O
and A498 after the knockdown of LINC00941, *** = p < 0.001. (E) CCK8 assay of 786-O and A498
after the knockdown of LINC00941, ** = p < 0.01. (G) The downregulation of LINC00941 reduced the
number of migration and invasion cells in the Transwell assay, *** = p < 0.001.
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4. Discussion

RCC is still a serious health concern due to its high probability of metastasis and
recurrence, in which ccRCC is the most dominant pathologic subtype [14]. Meanwhile,
approximately 30% of patients diagnosed with ccRCC have metastasized at the time of
their diagnosis because of their insidious symptoms at the time of diagnosis [15]. Thus,
identifying new biomarkers associated with ccRCC diagnosis and treatment is important.

In this study, we first identified 1736 CMLs based on a co-expression analysis. Based
on a univariate Cox regression analysis, 219 lncRNAs related to prognosis were screened.
Furthermore, a CMLs-based prognosis model was established based on five lncRNAs:
LINC00941, AC016773.1, AL162171.1, HOTAIRM1, and AL109741.1 through survival forest
algorithm and multivariate Cox regression analyses, among which LINC00941 had the
highest importance. Both the training and validation cohorts showed a high level of OS
prediction efficiency. We further constructed a nomogram based on the risk score and
other clinicopathological features to provide a quantitative approach for clinicians. The 3, 5
and 8 years of calibration analysis demonstrated that this nomogram provided accurate
survival predictions. Subsequently, a GSEA enrichment analysis showed that metabolism,
tumorigenesis, and immune-related functions pathways were highly activated in the
high-risk group, suggesting the possible mechanism affecting the cancer progression [16].
Furthermore, patients at high and low risk showed a different pattern in the immune
microenvironment. Moreover, we found that low-risk patients might respond better to
PD-1 therapy.

On the one hand, emerging studies have corroborated that cancer cells can function-
ally reprogram the surrounding cells, including the innate immune cells (monocytes and
macrophages), affecting the development of various cancer including ccRCC [17]. Our
study identified a higher level of TIL, iDCs, tumor-infiltrating mast cells, M2 macrophages,
and type II IFN response in high-risk patients, yet a lower level of CD8+ T and Th2 cells.
Correspondingly, previous publications by Vuong et al. revealed that there was a correla-
tion between higher levels of TILs identified by morphology and higher recurrence rate
in ccRCC [18]. In addition, tumor-infiltrating mast cells could contribute to the evasion of
anti-tumor immunity through the release of IL-10 and TGF-β in ccRCC [19]. In addition,
the lower CD8+ T cell level in high-risk patients might be one reason for its more pro-
gressive clinical status. For tumor-associated macrophages (TAMs), M0 macrophages can
differentiate into M1 and M2 macrophages, among which M2 macrophages generally exert
a cancer-promoting role [20]. All of these findings in our study about immune cells and
status indicated that these members play important roles in the regulation of the ccRCC
immune response and might be responsible for the prognosis difference in patients from
different risk groups.

On the other hand, a pathway enrichment analysis indicated that the G2/M check-
points and E2F targets were activated in high-risk groups. In the cell cycle, the G2/M
checkpoint is crucial. The abnormal state of the G2/M checkpoint could lead to unrestricted
proliferation ability [21]. Most tumors lack tumor suppressor genes, so the upstream G1/S
checkpoint is inactivated, allowing them to survive. In the meantime, to protect their
genome from disrupting factors, tumor cells including ccRCC rely heavily on the G2/M
checkpoint [22]. Consequently, the difference in the G2/M checkpoints pathway in high-
and low-risk groups might result in a difference in prognosis. A major function of E2F
target genes is to ensure DNA replication and the progression of the cell cycle [23]. There
is evidence that many cancer patients have shown poor prognoses when targeting mem-
bers of the E2F target gene set [24]. These functional pathways suggested the underlying
mechanism of prognosis difference between the high- and low-risk groups.

Based on our analysis, LINC00941 had the highest importance in identified CMLs
and was therefore selected for further research. LINC00941 has been reported in multiple
cancers. For example, in colon cancer, Wu et al. indicated that by preventing the degrada-
tion of SMAD4 protein, LINC00941 facilitates cancer metastasis [25]. In papillary thyroid
cancers, Gugnoni et al. found that LINC00941 is a TGF-β target gene that could facilitate
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cancer cell metastasis by regulating CDH6 [26]. Xu et al. revealed that the interaction
between LINC00941 and MST1 enhanced glycolysis and the development of pancreatic
cancer [27]. Research on LINC00941 in ccRCC, however, is limited. Our study is the first
one exploring the role of LINC00941 in ccRCC through bioinformatics analysis and in vitro
experiments, which enriched the regulatory effect of LINC00941 in cancer. In fact, plenty
of RNA therapeutics are in phase II or III clinical trials [28]. The extensive regulatory and
diverse functions of lncRNA provide numerous opportunities for targeted therapeutics,
whose effect patterns include transcriptional and post-transcriptional inhibition, protein
structural block, steric inhibition, etc. [29]. For example, some preclinical studies have
begun to focus on the potential of targeting certain specific lncRNAs to complete tumor
therapy and related drug development, such as H19, HOTAIR, LUNAR1, etc. [30]. Based
on the patient-derived xenograft models (PDX), HOTAIR [31] and SAMMSON [32] were
targeted using siRNAs or ASOs in breast and melanoma models, respectively. Furthermore,
studies have shown that the BC819 (also named DTA-H19), a double-stranded DNA plas-
mid, could cause an anti-tumor effect in a variety of solid tumors under the regulation of
H19 gene promoters, which has gotten satisfactory results in phase I/IIa clinical trials in
patients with invasive bladder cancer [33]. Furthermore, CRISPR-Cas9 and 3D organoid
systems have been used in lncRNA targeting and related studies [34]. In general, the
development of lncRNA drugs should be based on a comprehensive understanding of
their action mode in diseases. Consequently, we think more studies focused on the specific
biological mechanism of LINC00941 in ccRCC are required in the future.

In this study, we successfully constructed a CMLs-based prognosis model and demon-
strated the oncogenic role of LINC00941 in ccRCC. However, it invariably has some lim-
itations that need to be addressed. Firstly, the patients enrolled in the analysis were
predominantly Caucasian, which introduced a bias to the application of our conclusion to
other populations. Secondly, due to the limitations of data, we only performed an internal
validation for our survival prediction model based on TCGA data. Thirdly, the TCGA
database has no laboratory findings of enrolled patients, which might bring potential bias to
the evaluation of the overall condition of the patients. Fourthly, the underlying mechanism
of LINC00941 in ccRCC has not been fully explored.
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