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Abstract: Immune organ failure is frequent in critical illness independent of its cause and has been
acknowledged for a long time. Most patients admitted to the ICU, whether featuring infection, trauma,
or other tissue injury, have high levels of alarmins expression in tissues or systemically which then
activate innate and adaptive responses. Although necessary, this response is frequently maladaptive
and leads to organ dysfunction. In addition, the counter-response aiming to restore homeostasis and
repair injury can also be detrimental and contribute to persistent chronic illness. Despite intensive
research on this topic in the last 40 years, the immune system is not routinely monitored in critical
care units. In this narrative review we will first discuss the inflammatory response after acute illness
and the players of maladaptive response, focusing on neutrophils, monocytes, and T cells. We will
then go through commonly used biomarkers, like C-reactive protein, procalcitonin and pancreatic
stone protein (PSP) and what they monitor. Next, we will discuss the strengths and limitations of
flow cytometry and related techniques as an essential tool for more in-depth immune monitoring and
end with a presentation of the most promising cell associated markers, namely HLA-DR expression
on monocytes, neutrophil expression of CD64 and PD-1 expression on T cells. In sum, immune
monitoring critically ill patients is a forgotten and missing piece in the monitoring capacity of
intensive care units. New technology, including bed-side equipment and in deep cell phenotyping
using emerging multiplexing techniques will likely allow the definition of endotypes and a more
personalized care in the future.
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1. Introduction

Critical illness is defined as the presence of organ dysfunction following an acute
insult, requiring medical interventions to restore homeostasis. Immune dysfunction is
common in critical illness, not only in the setting of infection, but also after trauma, single
organ infarction and neurocritical illness, among others [1].

The immune organ, in a simplified description, is a system capable of interacting
with the self and the external environment, distinguishing between the two and hence
guaranteeing a defense from external agents. It consists of an innate arm that allows a quick
response to endogenous and exogenous pathogenic stimuli, and an adaptive arm that,
upon antigenic recognition, produces a pathogen-specific immune response, developing
memory of the recognized antigens. Communication between these two arms takes place
through direct contact between cells, as well as through free molecules with an autocrine,
paracrine, or systemic effect, which includes cytokines and chemokines, among others [2].
The function of the immune system is, however, not limited to pathogen response but
has a fundamental role in tissue regeneration processes, both frequently disturbed during
critical illness.
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Notwithstanding, in-depth monitoring of the immune system in critically ill patients
has never become common practice, despite both broad research in the subject for the
last 40 years and common use of immune modulators like corticosteroids [3]. Despite,
rudimental monitoring of the immune response to track response to antibiotic therapy
is already in used, immune monitoring could be further enhanced to guide modulation
strategies, like corticosteroid therapy widely used in multiple critical ill scenarios or the
administration of monoclonal antibody therapy, such as tocilizumab (anti-IL-6 receptor)
recently used during the COVID-19 pandemic [4]. In sum, multilevel immune monitoring
is an important step towards the much-needed personalization of therapeutic interventions
(Figure 1) [5].

Medicina 2022, 58, x FOR PEER REVIEW 2 of 17 
 

 

response but has a fundamental role in tissue regeneration processes, both frequently 
disturbed during critical illness. 

Notwithstanding, in-depth monitoring of the immune system in critically ill patients 
has never become common practice, despite both broad research in the subject for the last 
40 years and common use of immune modulators like corticosteroids [3]. Despite, 
rudimental monitoring of the immune response to track response to antibiotic therapy is 
already in used, immune monitoring could be further enhanced to guide modulation 
strategies, like corticosteroid therapy widely used in multiple critical ill scenarios or the 
administration of monoclonal antibody therapy, such as tocilizumab (anti-IL-6 receptor) 
recently used during the COVID-19 pandemic [4]. In sum, multilevel immune monitoring 
is an important step towards the much-needed personalization of therapeutic 
interventions (Figure 1) [5]. 

 
Figure 1. Perspective on the application of immune monitoring in the intensive care unit. 

In this review, we will briefly introduce the acute inflammatory response in critical 
illness, discuss why monitoring is needed and list some of the most promising markers 
based on flow cytometry techniques. 

2. Why Monitor the Immune System during Critical Illness? 
Tissue and organ lesion and injury are the hallmark of patients admitted to the ICU. 

Critical care physicians are familiar with brain, heart, lung, gastrointestinal or kidney 
monitoring, but not with immune monitoring, nor how it reflects adequate or inadequate 
immunological function.  

Alarmins released from injured and dying cells (DAMPs -damage-associated 
molecular patterns) together with molecules originated from microbes (PAMPs—
pathogen-associated molecular patterns) determine immune cell activation [6]. 
Responding immune, epithelial, or endothelial cells express alarmin receptors (PPR—
pattern recognition receptors) which include TLR (toll-like receptors), C-type lectin 
receptors, nucleotide-binding oligomerization domain-like receptors, retinoic-acid-
inducible gene-I-like receptors and RAGE [6,7]. One of the most studied is TLR4, that 
recognizes LPS molecule. Genetic polymorphisms associated with this molecule have 
been associated with an increased risk of critical illness such as sepsis or multiple organ 
failure after trauma [8,9]. Aside from TLR4, many other PPR have been implicated in the 
pathophysiology of critical illness (Figure 2) and strategies to modulate them might, in 
the future, help reprogram the immune response in the context of critical illness. 

Figure 1. Perspective on the application of immune monitoring in the intensive care unit.

In this review, we will briefly introduce the acute inflammatory response in critical
illness, discuss why monitoring is needed and list some of the most promising markers
based on flow cytometry techniques.

2. Why Monitor the Immune System during Critical Illness?

Tissue and organ lesion and injury are the hallmark of patients admitted to the ICU.
Critical care physicians are familiar with brain, heart, lung, gastrointestinal or kidney
monitoring, but not with immune monitoring, nor how it reflects adequate or inadequate
immunological function.

Alarmins released from injured and dying cells (DAMPs -damage-associated molec-
ular patterns) together with molecules originated from microbes (PAMPs—pathogen-
associated molecular patterns) determine immune cell activation [6]. Responding immune,
epithelial, or endothelial cells express alarmin receptors (PPR—pattern recognition recep-
tors) which include TLR (toll-like receptors), C-type lectin receptors, nucleotide-binding
oligomerization domain-like receptors, retinoic-acid-inducible gene-I-like receptors and
RAGE [6,7]. One of the most studied is TLR4, that recognizes LPS molecule. Genetic poly-
morphisms associated with this molecule have been associated with an increased risk of
critical illness such as sepsis or multiple organ failure after trauma [8,9]. Aside from TLR4,
many other PPR have been implicated in the pathophysiology of critical illness (Figure 2)
and strategies to modulate them might, in the future, help reprogram the immune response
in the context of critical illness.
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Figure 2. Schematic of initial triggering of inflammation. Main cell populations involved in
the process are depicted. DAMPS—damage-associated molecular patterns, ds—double stranded,
IFN—interferon, IL—Interleukin, IP—Interferon-gamma induced protein; LPS—Lipopolysaccharide,
PAMPS—pathogen-associated molecular patterns, ss—single stranded, TLR—Toll like receptor.

The downstream intracellular signaling of DAMPs or PAMPs involves different pro-
teins, a major one being MyD88, resulting in the subsequent activation of NF-kB and the
transcription of early cytokine genes, such as IL-1B, IL-8 or IL-6, and interferon genes [6].

Neutrophils are the most prevalent cells in circulation and constitute the first effectors
of the innate inflammatory response. Upon activation, neutrophils express chemokine
receptors such as CXCR2, which recognize molecules released by endothelial cells attracting
neutrophils into the interstitial space [10]. Furthermore, neutrophils can rapidly be recruited
by release from capillary beds, such as in the spleen and lung, where they have a slower
transit time [11,12].

Neutrophils are armed with potent antimicrobial molecules that, when released freely
like in degranulation or formation of extracellular webs, can also cause tissue damage.
The latter response, whilst being fundamental for neutrophil function, is at the base of
the pathophysiological process of pathologies such as ARDS [13] or ischemia-reperfusion
injury [14].

Simultaneously, once activated, dendritic cells migrate to the lymph nodes, and present
antigen to CD4 T lymphocytes, recruiting the adaptive immune response. These later
produce cytokines, like IL-8 or IL-17, that further recruit neutrophils, thus amplifying the
immune response. In addition to dendritic cells, monocytes change their phenotype from
M2 (anti-inflammatory) to M1 (pro-inflammatory), produce pro-inflammatory cytokines
and present antigens thus contributing to set off the adaptive immune response.

This response consists of antibody production, depending on B cell maturation and
differentiation into plasma cell. T cell associated responses involve either cytotoxic (CD8)
T cells, particularly relevant in viral infections, or T-helper (CD4) cells, fundamental to
cytokine production and for shaping myeloid and B cell responses. Recruitment of each
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cell type depends on their upregulation of chemokine receptors, which also reflects the
cell’s function, and the local tissue production of chemokines. This allows the infiltration of
different cells in tissues vital for the response against foreign agents or necrotic tissue.

In parallel to the above, tissue regeneration is promoted. This supports a shift to
regulatory mechanisms, with an increase in regulatory T cells (Tregs) in tissues, in Th2
mediated response [15], and the production of cytokines such as TGFβ. Tissue regeneration
and complete recovery depends on stopping the inflammatory process. Dysregulation
at this stage, enabling chronic inflammation, may contribute to the persistence of organ
dysfunction and accumulation of fibrotic tissue [16].

Immune dysregulation can occur at several moments of critical illness combining
immune activation and suppression mechanisms. Cytokine storm with consequent multiple
organ failure is considered a pathogenic hallmark in distributive shock associated with
sepsis, trauma, or ischemia-reperfusion injury. In this context, high levels of cytokines such
as IL-1, IL-6, IL-18, IL-8 or TNF contribute to organ lesion by recruiting neutrophils, NK cells
and other lymphocytes to the tissues, by activating the endothelium and overall inducing a
new metabolic immune state, as recently reviewed in the context of COVID-19 [17].

After this acute phase, there is either complete recovery, death, or progression towards
an occult persistent immune dysregulation. This later phenomenon can occur in all settings
of critical illness [18], but it was in sepsis where it was primarily described. Immune
dysregulation has been associated with an increased risk of nosocomial infections [19], as
well as cognitive dysfunction, ICU acquired muscle weakness and increased mortality [20].
It is clinically represented by a group of patients with prolonged critical illness (more than
14 days of hospitalization in the ICU, persistence of organ dysfunction with evolution to
chronicity in some cases) [21]. Patients with this immune dysfunction are also represented
in cohorts of patients with post-intensive care syndrome (PICS), as defined in 2012 by
Moore, and immune dysfunction may partially explain its development [22].

The persistent immune dysregulation is characterized by a persistent activation of
the innate system, by DAMPS or PAMPS. If the initial stimulus of the septic episode starts
through PAMPS such as LPS, immune activation mediated by PAMPS might persist due
to reactivation of viruses such as CMV, EBV, HHV-6, or TTV, occurring in more than 40%
of septic patients [23], or due to nosocomial bacterial infection. At the same time, there
is the release of DAMPs such as S100, nuclear or mitochondrial DNA, HMGB1, RAGE,
IL-33, adenosine, amongst others, that perpetuate the inflammatory cascade in response to
injured tissue [24].

This persistence of alarmins causes an exhaustion of the immune system, which
is expressed by the absence in lymphopenia recovery, a decrease in the expression of
human leukocyte antigen DR (HLA-DR) in monocytes, and an increase in sPD-L1, which
might support a state of cellular anergy and a decreased response to new pathogens. This
immune-suppressive state can be seen as an adequate adaptive response to persistent
cellular activation and an attempt to enter the repair process. Whatever the interpretation,
this immunological picture has been called “immune paralysis” and is characterized by
(a) a lower ability to present antigen, (b) a lower production of inflammatory cytokines
and (c) a reduced clearance of bacteria. This phenomenon determines a greater risk of
nosocomial infections and a persistent chronic inflammatory state. It also contributes to
ongoing muscle catabolism marked by high levels of GLP-1 (15), whose pathophysiology
is related to mitochondrial damage and release of mitochondrial DNA and molecules
derived from reactive oxygen species. This process of prolonged immune dysregulation is
also associated with accumulation of myeloid suppressor cells, which can be monocytic
(M-MDSC) or polymorphonuclear (PMN-MDSC). These cells can also suppress lymphocyte
function and decrease cytokine production, contributing to decreased pathogen clearance.
The increase in myeloid suppressor cells is associated with a greater infection risk, ICU
length of stay, and greater mortality [25,26].

In addition to changes described in the innate system, multiple alterations in lympho-
cytes are also well-known. These range from persistent lymphopenia to modification in the
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profile of CD4 and CD8 T lymphocytes as well as of B cells [27], promoting dysregulated
immunoglobulin [28], interferon and cytokine production and clearance, all contributing to
organ dysfunction.

The presence of immune dysregulation is frequently observed in chronically ill patients.
Nevertheless, even this group is heterogeneous and might demand different strategies.
So, carefully assessing the immune system and monitoring throughout chronic disease
might have some benefits. For instance, we could better guarantee the enrolment of more
homogeneous groups of patients in clinical trials and in the future cater personalized
medicine. Although it is an area of active research, the clinical application of specific
biomarkers to aid monitoring the use of therapeutics in intensive care medicine such as
corticosteroids, or the risk assessment of secondary complications such as hospital-acquired
infection and immunosuppression associated with critical illness, is yet to be seen [5].

In this field, data reanalysis of several randomized clinical trials have allowed to
recategorized patients into various phenotypes and reaccess the intervention results. In
ARDS, for example, patients were classified into a pro- and anti-inflammatory phenotype
profile, based on multiple parameters of which the most immunologically relevant were IL-
6, IL-8, TNFr1 and ICAM-1 [29]. This stratification allowed us to understand, for example,
that the effect of fluid restriction strategies [30] was not transversal between phenotypes
and could even be deleterious in the hyper-inflammatory group [31].

From these studies also emerges the concept that only a cluster of markers and not
isolated markers will allow the definition of homogeneous phenotypes. Artificial intelli-
gence systems facilitating the identification of clusters from clinical and lab data, associated
with an increased technical capacity at the bed side to simultaneously measure multiple
molecules, may aid us in the future to apply this paradigm [32].

3. Old Markers, any New Information?

The monitoring of the inflammatory response is currently done with generic tests that
do not allow to distinguish the type of response or the etiology of inflammation.

3.1. Leukogram and Neutrophil/Lymphocyte Ratio

The leukogram, one of the most frequently requested complementary test, is frequently
under-interpreted. After an acute inflammatory response, and upon release of adrenaline,
neutrophil demargination occurs, decreasing the transit time of these cells in the lung or
spleen, thus contributing to their rapid increase in number. This response is instantaneous,
brief, and unspecific to infection, yet it is a sensitive marker of an inflammatory or adrener-
gic response. Instead of neutrophilia, transitory neutropenia is also common, particularly
in sepsis, which may result from a decrease in the neutrophil’s average lifespan [33,34].

In addition to absolute and relative neutrophil counts, the predictive value of neutrophil-
lymphocyte ratio (NLR) for mortality has been demonstrated in multiple situations and
can be easily incorporated into clinical practice. In fact, the neutrophilia is commonly
accompanied by an abrupt decrease in the lymphocyte count during critical illness, which,
if persistent, is associated with higher mortality [35]. There are potentially multiple reasons
for this lymphopenia—increased apoptosis following rapid increase in pro-inflammatory
cytokines, massive migration to tissues, decreased lymphopoiesis as an acute response to
pathogenic stimuli, however a unifying pathophysiological mechanism has not yet been
described. NLR has been associated with increased mortality in SARS-CoV-2 infection [36],
abdominal trauma [37], pneumonia [38] and acute pancreatitis [39].

Thus, observing the NLR in critically ill patients (normal range: 1–2; pathological
above 3 and below 0.7), can be useful in the diagnosis and follow-up of inflammatory
situations [40], signaling clinical improvement or deterioration [41].

3.2. Soluble Biomarkers

Soluble markers like C-reactive protein (CRP), procalcitonin, or pancreatic stone
protein (PSP) are used at bedside and help to guide clinical decisions, particularly antibiotic
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treatment initiation and duration (Table 1). However, their intrinsic immune functions and
role within the immune response are frequently overlooked.

Table 1. Serum immune markers measurable in the ICU.

Biomarker Function Relation with Outcome References

C-reactive protein Bacteria opsonization
High levels not associated with prognosis

Decrease in the first 72 h of infection
associated with prognosis

Refs. [42–44]

Procalcitonin Immune function unknown
Increased in sepsis and in ischemia

High levels associated with mortality in
sepsis and pneumonia

Refs. [45–47]

Pancreatic stone protein Immune function unknown
Increased in sepsis, particularly

bacterial sepsis
Increased also in pancreatitis and trauma

Refs. [48–50]

suPAR Cell adhesion and migration
Immune activation

Increased in sepsis and associated
with prognosis Ref. [51]

IL-6 Pro-inflammatory

Elevated in sepsis and trauma
Associated with mortality in COVID-19

Associated with developing multiple organ
dysfunction in trauma

Refs. [52,53]

IL-8 Neutrophil recruitment,
endothelial activation

Associated with mortality in sepsis
Prediction of AKI after trauma Refs. [54,55]

IL-10 Anti-inflammatory

Elevated in sepsis
Higher levels in sepsis than in SIRS
Elevation associated with prognosis

in sepsis

Refs. [56,57]

IL-18 Neutrophil recruitment Associated with prognosis in ARDS
and sepsis Ref. [58]

IL-1RA Antagonist for IL-1 Elevated in sepsis and trauma Ref. [56]

IP-10 (CXCL10) Chemoattractant for
CXCR3 + cells

Associated with severity and prognosis
in COVID-19 Ref. [59]

Interferon γ
Antiviral and

antibacterial response

Associated with more severe outcome
in sepsis

Low levels in the chronic critical phase
associated with higher infection risk

Ref. [60]

Interferon α
Antiviral and

antibacterial response
Associated with severity and ARDS

progression in COVID-19 Ref. [61]

IL-17 Neutrophil recruitment Elevated in sepsis and linked
with prognosis Ref. [62]

IL-33 Promotes shift toward
type II immunity

Associated with prognosis in critically ill
Low levels linked with hepatic dysfunction Ref. [63]

sTNFr1 Receptor for TNF
Elevated in the inflammatory phenotype

of ARDS
Associated with prognosis in ARDS

Refs. [54,64]

ARDS—Acute respiratory distress syndrome, AKI—Acute kidney injury, SIRS—Systemic inflammatory response
syndrome, CXCR3—C-X-C Motif Chemokine Receptor 3, TNF—tumor necrosis factor.

CRP is mainly produced in the liver, as well as by smooth muscle cells, macrophages,
endothelial cells, lymphocytes, and adipocytes, in response to IL-6. So, in any given
clinical situation with high IL-6 levels there may also be high circulating levels of CRP.
CRP, in its monomeric or pentameric form, binds to complement molecules, contributing
to the opsonization of microorganisms, activation of neutrophils and monocytes, and
stimulation or inhibition of the inflammatory response, depending on the form in which
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it is presented (monomeric or pentameric) [65]. Most infectious diseases elicit a common
immune response, and so it is unsurprisingly that for diagnostic purposes, CRP’s predictive
value is low and it’s use is not recommended when deciding on antibiotic use. In contrast,
monitoring CRP may be useful to evaluate the response to interventions [66]. In fact, for
patients with community or hospital-acquired pneumonia, a halving of CRP value at 72 h
post antibiotic regimen initiation was associated with better prognosis and an effective
antibiotic response [42,67,68]. On the other hand, we must highlight that most existing
studies have relevant methodological gaps and are very heterogeneous, not allowing for
firm conclusions to be drawn in narrative reviews [69] or meta-analysis [70].

Procalcitonin is a molecule produced in both the parathyroids and in adipose tissue. In
the former, it is secreted as calcitonin, and depends on calcium and vitamin D levels, and in
the latter, it is released as procalcitonin in response to inflammatory stimuli such as IL-1 or
IL-6 [71]. Its expression in adipose tissue is inhibited by IFNγ (the main cytokine involved
in the anti-viral response) and by IL-17, released at higher levels during fungal infections,
partially explaining its lower levels in these settings. Its use is also not recommended
when diagnosing sepsis (48). Although an elevation in procalcitonin levels is associated
with a greater probability of severe infection and bacteremia, it does not have sufficient
sensitivity or specificity to exclude or diagnose sepsis. This has been evaluated in multiple
infection diagnostic protocols, with disparate results [72,73]. Its use in some specific
contexts like respiratory infections, is somehow more consistent [74], but not enough to
guide antibiotic treatment or establish prognosis. Procalcitonin should preferably be used
as a monitoring molecule for patient response and to promote earlier discontinuation of
antibiotic therapy [75,76], particularly in contexts where prolonged periods of antibiotic
therapy are anticipated [77,78].

Pancreatic stone protein (PSP) is an acute-phase protein that binds to neutrophils
and determines their activation, which may promote bacterial aggregation [79]. This pro-
tein is produced in the pancreas, and its local function is not completely known. After
non-pancreatic tissue injury, there is an increase in its production and release into the
bloodstream by the pancreas. Like CRP or even PCT, PSP also increases in multiple circum-
stances, such as trauma [49], however it might be more specific then PCT for diagnosing
infection [80]. In a meta-analysis published in 2021, Prazak et al. sought to aggregate all
studies that aimed to assess the diagnostic capacity of PSP in critically ill patients with
infection concluding that a cut-off of 44.18 ng/mL has greater specificity than either PCR or
PCT [80]. Notwithstanding, in patients undergoing cardiothoracic surgery, the predictive
value for infection of this marker was lower, with a precision of only 0.76, meaning surgical
technique or the use of extracorporeal circulation was not impacting its values [81].

However, none of these soluble markers help define immune dysfunction, and do not
reflect the overall host response to a danger stimulus.

In this regard, cytokine and chemokine quantification might be closer to help define
immune responses.

The quantification of serum cytokines has been performed in multiple research settings
and has changed the comprehension of critical illness pathophysiology. This allowed
to create endotypes for multiple critical ill syndromes like ARDS or sepsis [29,82,83].
Increasing availability of point of care tests for the quantification of these molecules, may in
the future help integrate them in clinical decision protocols, targeting infection and immune
dysfunction diagnosis (Table 1).

Some of these markers have already been used in clinical practice. IL-6 assays are used
to monitor rheumatoid arthritis patients in clinical follow-up or integrated in clinical trial
design [84]. In critically ill patients, IL-6 measurements were massively used during the
pandemic and helped guide the use of tocilizumab [85,86]. In addition, increased levels of
IL-10 (an immune suppressor molecule) and IL-8 (neutrophil recruitment molecule) have
popped-up as relevant prognostic molecules in most large database studies [87,88].

Nevertheless, none of these biomarkers are surrogates for cell associated immunity,
which we will discuss in the next chapter.
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4. Can We Monitor the Immune System in Depth? The Clinical Application of
Flow Cytometry

The frequency and absolute numbers of immune cells, such as monocytes, neutrophils
or lymphocytes, or their sub-types, such as CD4 + T cells—further subdivided into TH1,
TH2, TH17 and regulatory T cells (Tregs)—can be used to monitor the immune system.
Flow cytometry has fueled the identification of these immune subsets and their monitoring
in different disease settings [89,90]. Currently, completely automatized flow cytometry
methods are used for performing routine full blood counts or lymphocyte phenotyping
(T, B and NK cells) commonly used in situations like HIV infection or after treatment with
rituximab [91].

Flow cytometry can rapidly analyze multiple immune populations in solution at
the single cell level. Cell shape and complexity can be inferred, as well as the presence
of a specific cell associated protein when immunoassayed with fluorescently conjugated
antibodies [92]. In addition, to cell associated markers, when coupled to cell stimulation
assays, flow cytometry-based techniques can be used to determine cell function, such
as per cell cytokine production, oxidative function, cytotoxic activity, and to ascertain
cell division [93,94]. Besides cellular immunophenotyping, flow cytometry can also be
applied to detect and quantify soluble proteins, such as cytokines and chemokines, in mul-
tiplexed assays with the equivalent assaying power of 100 Enzyme-Linked Immunosorbent
Assays(ELISA) assays [95]. It can also be used to determine an array of inflammatory medi-
ators allowing a better discrimination for diagnosis [96], and, in a recent study, quantitative
flow cytometry was used to assess the number, viability and drug-resistance of common
disease-causing bacteria [97].

4.1. Limitations and Challenges to the Use of Flow Cytometry

There are, however, some downsides to flow cytometry that hinder its use for clinical
immune monitoring. Flow cytometry is an open technique, with many different analyzers
and often homemade protocols that lead to variation in results and their interpretation.
This leads to decreased reliability and major issues in standardization [98] crucial for com-
paring results between centers. These are now starting to be overcome [99]. Standardized
immunostaining protocols between labs, calibration, and daily quality control of flow
cytometers with specific beads, the use of same batch antibodies with stable fluorophores
or the use of calibrated beads that convert fluorescence intensities to numbers of antibodies
bound per cell, are some of the strategies to implement reliable flow cytometry proto-
cols. Besides standardization issues, this technique requires specialized technicians and
increasingly complex and expensive instruments which availability can be challenging
in some centers [100–102]. Nevertheless, the investment in cutting-edge flow cytometry
techniques for critical care will surely prove to be fruitful, like it already is for deep im-
mune monitoring in transplant patients, or those receiving immunotherapy for several
malignancies [103,104].

4.2. New Techniques for in Depth Monitoring

A recent upgrade, spectral flow cytometry, is simplifying the access to in-depth im-
munophenotyping. As opposed to conventional flow cytometers, spectral cytometers
capture the full spectral emission of each fluorophore. Therefore, while it is already chal-
lenging to assess 18 markers by conventional analyzers, spectral flow cytometers allow for
the relatively easy detection of more than 40 markers per cell. While they require similar
controls as with conventional cytometers, spectral analyzers possess universal instrument
settings and allow for a standardized output across all instruments, a clear advantage
during multi-center clinical studies. Nevertheless, these instruments’ availability is still
low, and their cost elevated.

Another method allowing the analysis of over 50 markers is mass cytometry. In
this technique, also known as cytometry by time-of-flight (CyTOF), instead of using flu-
orophores, the antibodies are conjugated with heavy metal reporter ions and cells are
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analyzed by time-of-flight mass spectrometry to quantify the isotopic masses and, thus, the
bound antibodies and the expression of markers of interest. This technology reduces the
problems related with spectral overlap and sample autofluorescence present in flow cytom-
etry, and the wide availability of heavy metal isotopes allows for multiplexing. Besides the
assessment of surface cell lineage markers, mass spectrometry allows for the simultaneous
quantification of many intracellular targets, such as cytokine production, transcription
factors and protein phosphorylation, which can inform on cell states and response to stim-
uli. More recently, this technique was repurposed to allow for the multiplexed imaging of
tissue markers, which would permit clinicians to understand immune pathology at tissue
level [105,106].

Several other ways to monitor the immune system in-depth are growing more popular
nowadays. For instance, gene expression profiling by RNA-sequencing techniques is
allowing for the comprehension of bulk or single cell heterogeneity in homeostasis and
disease. Moreover, spatial biology methods emerging in the recent years allow for the
extraction of spatially resolved molecular information from tissue biopsies.

Therefore, there are a plethora of techniques available that can in the future assist in
clinical decisions as well as fuel translational research to improve critical care.

Next, we will discuss some of the more promising cell associated immune markers
and how they might shape clinical decisions.

5. What Are the More Promising Immune Cell Associated Markers?

The assessment of the inflammatory response is undoubtedly incomplete if it is only
based on soluble markers and if it does not consider the cellular phenotype and per cell
expression of biomarkers (Table 2). These reflect specific immune alterations and contribute
to a better characterization of the immune profile.

Table 2. Cell associated immune markers associated with prognosis in critically ill patients.

Cell Marker Immune Function Cohorts Studied Possible Clinical Use References

Monocytes HLA-DR Antigen presentation

Septic shock
Trauma

Major Surgery
Decompensated cirrhosis

Trajectories identify patients
with increased infectious risk

Persistent decreased levels
associated with prognosis

Refs.
[107–111]

Neutrophils
CD64 Neutrophil activation

and phagocytic activity Sepsis

High levels associated with
infectious inflammation

Associated with mortality
in sepsis

Refs.
[112,113]

CXCR2 Neutrophil migration Sepsis Higher in infected patients
with sepsis Ref. [10]

T cells

CD8: PD-1 Decrease cell activation Sepsis
COVID-19

High levels associated with
mortality in sepsis and

increased risk of
secondary infection

Ref. [114]

CD4: PD-1 Decrease cell activation Sepsis
COVID-19

High levels associated with
mortality in sepsis and

increased risk of
secondary infection

Refs.
[115,116]

CD4: CD127 IL-7 receptor Sepsis Low levels associated
with prognosis Ref. [117]

5.1. T-Cell Associated Markers

As previously stated, acute inflammation is frequently characterized by lymphopenia,
and its persistence is associated with worse prognosis [118]. Although the mechanisms
are not completely understood, it is likely that IL-7 responses contribute, and phase II IL-7
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trials in sepsis are ongoing [119]. The levels of IL-7 receptor can easily be monitored in
different immune cells by targeting CD127 (IL7 receptor alpha) [120] and are associated
with mortality, particularly if low at day 3 of septic shock [121]. In addition to T cells counts
normalization, retaining a diverse T cell repertoire [122] and a balanced frequency of each
phenotype is probably relevant for full return to homeostasis. All these parameters can be
assayed. For instance, persistent increase in Treg frequency has been linked with increased
risk for secondary infection and persistent organ dysfunction, as recently reviewed by Gao
and collaborators [123]. Also, high levels of PD-1 expression on T cells, reflecting T cell
response to high and persistent activation levels, might impair T cell ability to respond [124].
For the patients with this profile, repurposing immune therapy already used in cancer
could help prevent and treat nosocomial infections [125].

5.2. Monocyte Associated Markers

Monocytes, which represent about 10–20% of circulating leukocytes, are involved
in the process of amplifying the inflammatory response. Although there are essentially
two phenotypes described, M1 (inflammatory) and M2 (non-inflammatory), there are
intermediate stages and plasticity between them [126]. Monocytes are antigen presenting
cells that modulate the adaptive and innate response and influence the type of T cell
response. Antigen presentation is dependent on the number HLA-DR molecules. Its
expression in monocytes in patients with sepsis has been exhaustively studied and protocols
for flow cytometry standardization have already become available [127]. More importantly,
the trajectory of HLA-DR levels stratifies patients [128] and it has been used in small clinical
series to guide immune stimulation with Interferon γ [129]. This was also measured in
COVID-19 cohorts with similar results [130]. Strikingly, in some patients the levels of this
molecule only return to normal values 6 months post illness [131].

Persistent decrease in HLA-DR in monocytes (CD14 + cells) is associated with higher
mortality with significant differences for survivors at days three to four of the septic
episode. Four sepsis-response endotypes can be described [128]. For patients whose levels
do not increase or who have a progressive decrease in monocyte associated HLA-DR levels,
the prognosis is worse. In addition to prognostic classification, the level of HLA-DR in
monocytes could be used to assess responses to immunomodulatory therapy such as IFNγ

in patients with infection or persistent lung injury [132].

5.3. Neutrophil Associated Markers

Another relevant molecule extensively studied in critically ill patients is CD64, an
FC gamma receptor, which binds to the FC portion of antibodies, and is constitutively
expressed on monocytes and at very low levels on non-active neutrophils. The expression
of this receptor on neutrophils increases in response to inflammatory cytokines produced
in the presence of external agents such as bacteria or after exposure to endotoxin [133].
As for HLA-DR, the quantification and use in clinical practice of this marker depends
on standardized flow cytometry techniques. In a prospective observational study, its
potential for monitoring critically ill patients was evaluated, including 468 patients, of
which 103 had sepsis. With a cut-off of 230 in mean fluorescence intensity (MFI), and
particularly if combined with abnormal CRP values, a probability for sepsis of 92% was
described; importantly, if values were both normal, sepsis could be excluded with 99%
confidence [134]. In 2015, a first meta-analysis was published that included 8 studies and
1986 patients. Since the cut-off used in each study differed, it was difficult to combine
results. Nevertheless, an AUC-ROC value of 95% was assigned for the diagnosis of infection
using the cut-off of 230, with a particularly high specificity [135].

5.4. Combination of Markers

At the end, most of the studies addressing immune function use combination of biomark-
ers. For example, in the multicentric English INFECT study, authors evaluated CD88 levels on
neutrophils, HLA-DR levels on monocytes and the frequency of Tregs. All were associated
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with an increase increased risk of secondary infections (from 2.18 to 3.44 increase in odds ratio)
particularly from day 3 through 9 [136].

Nowadays, in critical care units, more than one variable is used for stablishing a
hemodynamic profile, likewise more than one marker can be expected to be needed to
create reliable endotypes that reflect immune organ function.

6. Future Perspectives and Challenges

Critical care syndromes will be progressively defined, and new clinical entities will be
identified. Some of them will be based on the immune response to a bug or a danger stimu-
lus [137]. In-depth monitoring the function of the immune system will then be necessary to
individualize treatments according regulated pathways. This will contribute to personalize
care in the ICU. Nevertheless, for immune monitoring in this field to become tangible, there
is still a large knowledge gap to be filled in immune response trajectories and the markers
that better define them. Even for the most promising markers like HLA-DR expression
by monocytes, clinical trials are still needed that associate the use of this knowledge with
patient centered outcomes. Importantly, despite the overall goal to scientifically prove
the benefit of immune monitoring, new trial designs must be implemented to overcome
sample size and inclusion criteria must consider patients more likely to benefit from this
individualized approach. For instance, including all septic shock or ARDS patients will
lead to negative studies. A way to go could be to use this strategy only in highly complex
patients, such as the ones fulfilling chronic critical illness criteria, or the ones in whom
corticosteroid treatment is considered.

In addition, immune monitoring is likely to increase costs in the management of ICU
patients, and cheaper tools must emerge to allow the application of tools like flow cytometry.

Finally, specific management strategies according to immune profiles are still to be
defined, like immune stimulation strategies, immune based treatments to promote regener-
ation or specific infection prevention programs. Repurposing the use of already used drugs
might be the smarter solution [138].

7. Conclusions

Although monitoring the inflammatory response using flow cytometry has not yet
been demonstrated to have a prognostic impact, we do believe it will be essential to
personalize treatment in critically ill patients. This strategy based on flow cytometry will
allow for smarter enrollment in randomized clinical trials, targeting specific populations
with immune modulators. It will also help to identify at risk patients for chronic disability
and ensure personalized strategies targeting a specific risk profile. At the end, the correct
evaluation of the response to therapies, such as antibiotics, corticosteroids, or IFNγ, will
help to move critical care in the direction of personalized care.
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