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Abstract: Background and Objectives: Interest in artificial intelligence (AI) for outcome prediction has
grown substantially in recent years. However, the prognostic role of AI using advanced cardiac
magnetic resonance imaging (CMR) remains unclear. This systematic review assesses the existing
literature on AI in CMR to predict outcomes in patients with cardiovascular disease. Materials and
Methods: Medline and Embase were searched for studies published up to November 2021. Any study
assessing outcome prediction using AI in CMR in patients with cardiovascular disease was eligible
for inclusion. All studies were assessed for compliance with the Checklist for Artificial Intelligence in
Medical Imaging (CLAIM). Results: A total of 5 studies were included, with a total of 3679 patients,
with 225 deaths and 265 major adverse cardiovascular events. Three methods demonstrated high
prognostic accuracy: (1) three-dimensional motion assessment model in pulmonary hypertension
(hazard ratio (HR) 2.74, 95%CI 1.73–4.34, p < 0.001), (2) automated perfusion quantification in patients
with coronary artery disease (HR 2.14, 95%CI 1.58–2.90, p < 0.001), and (3) automated volumetric,
functional, and area assessment in patients with myocardial infarction (HR 0.94, 95%CI 0.92–0.96,
p < 0.001). Conclusion: There is emerging evidence of the prognostic role of AI in predicting outcomes
for three-dimensional motion assessment in pulmonary hypertension, ischaemia assessment by
automated perfusion quantification, and automated functional assessment in myocardial infarction.

Keywords: artificial intelligence; machine learning; CMR; systematic review; prognosis

1. Introduction

The application of artificial intelligence (AI) methods in cardiovascular imaging has
increased in recent years. Compared to traditional data models, AI can process large
amounts of data and identify potentially important relationships [1,2]. Cardiac magnetic
resonance imaging (CMR) allows for the non-invasive assessment of cardiac and related
vascular structures. CMR not only identifies structural disease (e.g., myocardial scar)
but can also provide quantitative information (e.g., myocardial volume) and estimates of
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physiological performance (e.g., myocardial function) [3]. However, CMR requires time-
and cost-intensive expert assessment.

Efforts to improve the efficiency of CMR analysis have, to date, focused primarily
on the automated segmentation of cardiac structures [4]. However, AI techniques for
automating diagnosis and prognosis are emerging [5,6]. AI methods can derive clinical
measures rapidly and have demonstrated accuracy comparable to expert human perfor-
mance [7] (Figure 1). Looking forward, AI is likely to play an important role in increasing
the efficiency of CMR reporting and improving prognostication through risk stratification
of patients with cardiovascular disease.
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function derived from the most basal slice using absolute perfusion quantification by Fermi-based 
deconvolution. (C3) A bullseye plot showing the results of segmental absolute perfusion quantifi-
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This study aims to evaluate the existing literature on the performance of AI tech-
niques in CMR for predicting outcomes in patients with cardiovascular disease. 

  

Figure 1. (A) A three-dimensional motion assessment model of the right ventricle in pulmonary
hypertension illustrates the regional contributions to survival prediction, reproduced with permis-
sion from Dawes et al., published by Radiology, RSNA, 2017 [8]. (B) A representation of manual vs.
automated segmentation of three levels using short-axis cine stack left ventricular (LV) volumetric
assessment by cardiac magnetic resonance imaging (CMR). (C1) An automated registration followed
by Deep-Learning-based contour detection. LV endocardial border (red), LV epicardial border (green),
blood pool (white circle) and right ventricular insertion point (blue dot). (C2) The input function de-
rived from the most basal slice using absolute perfusion quantification by Fermi-based deconvolution.
(C3) A bullseye plot showing the results of segmental absolute perfusion quantification.

This study aims to evaluate the existing literature on the performance of AI techniques
in CMR for predicting outcomes in patients with cardiovascular disease.

2. Materials and Methods

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
recommendations were followed [9] (Figure 2). This study was registered in the Interna-
tional Prospective Register of Systematic Reviews (PROSPERO; CRD42021291756) [10].
Ethics approval was not required.
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Figure 2. A search-strategy flow diagram adapted from Moher et al., 2009 [9], as per the Preferred
Reporting Items for Systematic Reviews (PRISMA) 2009 guidance.

2.1. Inclusion Criteria

Studies were considered for inclusion if they assessed the prognostic significance
of CMR using any AI technique in any cardiovascular disease. Studies were included
if they reported major adverse cardiac events (MACE) (all-cause mortality, reinfarctions,
revascularisations, strokes, congestive heart failure, or ventricular tachycardias) and death
as outcomes of interest.

2.2. Search Strategy

The search strategy is shown in Figure 2. The Medline and Embase databases were
searched using Healthcare Database Advanced Search (HDAS) on 18 November 2021. The
studies were published between 2017 and 2021. The references of relevant studies were also
manually searched. Animal studies, non-English language publications, and non-full-text
publications were excluded.

2.3. Study Selection and Data Extraction

The initial literature search was carried out by S.A., A.M., and M.S. in Sheffield. A more
detailed search was conducted by H.A. and R.L. in Norwich. Consistency was checked
by experts in the field (P.G., A.J.S., and D.P.R.). Two authors (H.A. and M.S.) screened
the titles and abstracts. Full texts of the identified studies were assessed for eligibility
and inclusion in the systematic review. A risk of bias analysis was performed by H.A.
Any queries regarding inclusion and risk of bias were discussed with a third author (S.A.).
Two authors (H.A. and S.A.) extracted relevant data according to a standardised checklist,
including study participants (number and sex), type of cardiovascular disease (coronary
artery disease, myocardial infarction, pulmonary hypertension, and tetralogy of Fallot),
and outcome characteristics (MACE or death) (Table 1).
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Table 1. A summary of the baseline characteristics and outcomes of the studies included in the
systematic review.

Study Disease State N Mean Age ± SD
(Years) Male (%) LVEF (%,

Mean ± SD)
FU ± SD
(Years) Deaths MACE

Dawes 2017 [8] PH 256 63 ± 17 44 61 ± 11 4 ± 1.7 93 1

Schuster 2020 [11] MI 1017 64 ± 8 75 47 ± 7 1 30 41

Diller 2020 [12] ToF 372 16 ± 4 55 58 ± 5 10 7 16

Knott 2020 [13] CAD 1049 61 ± 13 70 60 ± 13 1.7 ± 0.5 42 146

Seraphim 2021 [14] CAD 985 62 ± 10 67 62 ± 7 2.4 ± 0.5 53 61

Abbreviations: CAD, coronary artery disease; FU, follow up; LVEF, left ventricular ejection fraction; MACE, major
adverse cardiac events; MI, myocardial infarction; PH, pulmonary hypertension; ToF, tetralogy of fallot.

2.4. Study Evaluation

The key findings of each study were presented in a forest plot using MedCalc® Statis-
tical Software version 20.011 (MedCalc Software Ltd., Ostend, Belgium). The Checklist for
Artificial Intelligence in Medical Imaging (CLAIM) [15] was used to assess the quality of
reporting in the included studies. Data analyses were performed using SPSS (version 28.0,
IBM, Chicago, IL, USA) and confirmed in MedCalc. Continuous variables were expressed
as mean ± standard deviation (SD).

3. Results
3.1. Search Results

The database search identified 2475 records, of which 18 studies were deemed relevant
after screening the titles and abstracts. An assessment of the full texts identified five studies
that met the eligibility criteria (Figure 2).

3.2. Characteristics of included studies

The characteristics of the five included studies are provided in Table 1. These included
a total of 3679 patients (mean age 53 ± 19 years, 67% male). Four were retrospective,
multicentre studies [8,11,13,14], and one was a prospective single-centre study [12]. All the
studies were published between 2017 and 2021. A total of 225 deaths (6%) and 265 MACEs
(7%) were reported during the median follow-up periods, which ranged between one and
ten years. Each study focused on specific diseases: pulmonary hypertension (PH) (7%) [8],
myocardial infarction (MI) (28%) [11], coronary artery disease (CAD) (55%) [13,14], and
tetralogy of Fallot (ToF) (10%) [12]. Four different CMR software solutions were used for
analyses, including CVI42 (Circle Cardiovascular Imaging, Calgary, AB, Canada) [11,13,14],
ViewForum workstation (Philips Healthcare, The Netherlands) [8], QMass (v3.1.16.0; Medis
Medical Imaging Systems, the Netherlands) [11], and TomTec (TomTec Imaging Systems,
Unterschleissheim, Germany) [12].

Three different AI techniques were used to predict outcomes: (1) three-dimensional
motion assessment model in pulmonary hypertension [8], (2) automated perfusion quan-
tification in patients with coronary artery disease [13,14], and (3) automated volumetric,
functional and area assessment in MI and ToF patients [11,12]. A summary of all the CMR
parameters and their significance for the studies included in this systematic review is
outlined in Supplementary Table S1.

3.3. Quality Assessment

The assessment of the included studies for compliance with CLAIM is shown in
Supplementary Table S2. Apart from the de-identification methods, almost all the items in
the CLAIM checklist were adequately reported, with an overall compliance of 93% to 98%
for all 42 of the checklist criteria.
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3.4. Outcome Prediction

The studies were grouped according to the type of AI technique used. A meta-analysis
of the two studies using automated perfusion quantification in patients with CAD was
performed [13,14]. The pooled analysis showed a total random effect of 2.02 (SE = 0.28, 95%
CI 1.47–2.58, p < 0.001, z = 7.13) (Figure 3).
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Figure 3. A forest plot of AI using CMR parameters and their significance for automated perfusion
quantification in patients with coronary artery disease [13,14]. Abbreviations: CAD, coronary artery
disease; MBF, myocardial blood flow; MPR, myocardial perfusion reserve; PTT, pulmonary transit
time; PBVi, pulmonary blood volume index.

Knott et al. [13] included patients with CAD, of which 4% died, and 14% experienced
MACEs during a follow-up period of 1.7 ± 0.5 years. Automatic myocardial blood flow
(MBF) and myocardial perfusion reserve (MPR) were the parameters most significantly
associated with MACE and death. The risk of MACE was found to be twice as likely for
each mL/g−1/min−1 decrease in stress myocardial blood flow (HR 2.14, 95% CI, 1.58–2.90,
p < 0.001) and 1 U decrease in MPR (HR 1.74, 95%CI, 1.36–2.22, p < 0.001).

Seraphim et al. [14] also included patients with CAD, of which 5% died, and 6%
experienced MACE during a follow-up period of 2.4 ± 0.5 years. An AI analysis of
perfusion metrics showed a significant association of outcomes between the pulmonary
transit time (PTT; HR 1.43, 95%CI 1.10–1.85, p = 0.007) and pulmonary blood volume index
(PBVi; HR 1.42, 95%CI 1.13–1.78, p = 0.002).

Schuster et al. [11] compared manual and commercially available AI methods in MI.
During a follow-up period of 1 year, 3% of patients died, and 4% experienced MACE. In
a multivariate Cox regression analysis, MACE was significantly associated with the left
ventricular ejection fraction (LVEF; HR 0.94, 95%CI 0.92–0.96, p < 0.001), infarction size (IS;
HR 1.05, 95%CI 1.02–1.07, p < 0.001), and microvascular obstruction (MVO; HR 1.07, 95%CI
1.01–1.1, p = 0.016) (Figure 4). A strong correlation between the three-dimensional right
motion and prognosis in patients with pulmonary hypertension was reported by Dawes
et al. [8]. During a follow-up period of 4 ± 1.7 years, 36% of patients died, and a single
patient (0.4%) underwent lung transplantation. Three-dimensional patterns of systolic
cardiac motion significantly predicted mortality (HR 2.74, 95%CI 1.73–4.34, p < 0.001) [8]
(Figure 4).
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Figure 4. A forest plot of AIs using CMR parameters and their significance for the three-dimensional
motion assessment model in pulmonary hypertension and automated volumetric, functional, and area
assessment in myocardial infarction [8,11]. Abbreviations: 3D, three-dimensional; IS, infarction size;
LVEF, left ventricular ejection fraction; MI, myocardial infarction; MVO, microvascular obstruction;
PH, pulmonary hypertension; RV, right ventricle.

Diller et al. [12] reported a cohort of patients with repaired ToF. The patients had a
mean age of 16 years old and were followed up for ten years, during which 2% died and
4% experienced MACE [12]. The study evaluated a total of ten parameters, comprising
area and strain measurements in the right atrium, right ventricle, and left ventricle. Uni-
variate Cox regression analysis showed a significant association between MACE and death
(Supplementary Figure S1).

4. Discussion

This systematic review evaluated the role of AI in CMR imaging to predict signif-
icant patient outcomes. Five studies were included, with three AI techniques and four
diseases represented.

Three studies assessed AI in ischaemic heart disease (MI and CAD). The presence and
extent of infarction size detected by CMR have been shown to predict MACE and death [16,17].
However, assessing the size of the ischaemic scar and the presence of microvascular
obstruction with CMR can be challenging. Schuster et al. [11] have shown that both
tasks can be performed using AI while adding prognostic value. These findings may be
somewhat limited by the selection bias arising from excluding clinically unstable patients
in this study. Stress-perfusion imaging also plays an increasing role in chest pain and
CAD assessment [18–20] and is performed using first-pass perfusion of the myocardium
using a vasodilator stress agent, most commonly adenosine. Stress perfusion can add value
by delineating the extent of infarcted myocardium and may be advantageous compared
to other imaging techniques in detecting myocardial disease caused by non-ischaemic
cardiomyopathies [21,22]. Previous studies have shown that the manual assessment of
myocardial stress, MBF, and MPR is associated with all-cause mortality in CMR [23] and
positron emission tomography (PET) [24–26]. Knott et al. [13] automated the process
of quantitative myocardial perfusion and reconfirmed the value of MBF and MPR on
CAD outcome prediction. However, the inability to attribute causation because of the
observational study design makes this study more prone to bias and confounding.

Similarly, two recently established biomarkers, PTT and PBVi, have been developed
for CMR perfusion imaging [23]. PTT is the time interval for a contrast bolus to pass from
the right-sided circulation to the left, and PBVi is the product of PTT and the cardiac index
(PBVi = PTT × cardiac output/body surface area) [14,27]. Both parameters are used for
the quantitative grading of haemodynamic congestion. While PTT and PBVi are strong
haemodynamic markers in PH [28], congenital heart disease (CHD) [29], and heart failure
(HF) [27], their role in CAD is unclear. Seraphim et al. [14] applied an automatic and
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standardised assessment of PTT and PBVi in patients with CAD. They concluded that for
every one SD increase in rest PTT, and one SD increase in PBVi, there was a significant
associated increase in the risk of MACE.

Dawes et al. [8] evaluated an automated three-dimensional motion assessment model
in patients with PH. A three-dimensional computational analysis of longitudinal, circum-
ferential, and radial RV motion relative to the long-axis was undertaken between the
end-diastole and end-systole. The resulting data were analysed using a supervised AI
algorithm to investigate the cardiac motion patterns that were more closely associated with
survival. Right ventricular function is a known prognostic parameter in PH, and changes
in its morphology, volume, or mass are associated with mortality [30–32]. This study’s AI
three-dimensional cardiac motion assessment has shown an incremental prognostic value
and further improved outcome prediction compared with conventional RV parameters.
However, this study included all non-congenital PH cases and treatment regimens, so the
AI method must be applied with caution in selective disease groups, as these findings
might not be applicable.

Traditional automated volumetric, functional, and area assessments play a vital role
in assessing the prognosis of congenital heart disease. Diller et al. [12] evaluated the
prognostic role of AI in CMR measurements for predicting the outcome of death and
MACE in ToF patients [12]. They showed good agreement between AI and manually
derived left-ventricular volumetric parameters [12]. Previous studies have suggested an
association between moderate RV dysfunction and impaired RA function in ToF [33,34]. In
addition to the biventricular endocardial borders, Diller et al. [12] automatically traced the
endocardial borders of the right atrium and calculated the right atrial area using feature-
track-based strain. They concluded that subjects with an RA area of >22 cm2 and an RV
longitudinal strain <16% had a 4.5-fold increased risk of MACE compared with subjects
with an RA area of less than 22 cm2 and an RV strain of more than 16%. However, despite
a large patient cohort and long median follow-up, caution must be applied with a small
number of events, as the findings might not be enough to establish prognostic value.

An AI-based approach to predicting clinical outcomes from CMR images carries a
number of potential advantages. These include the simultaneous evaluation of multiple
parameters and increased efficiency and reproducibility in CMR image assessment. How-
ever, there are significant challenges to overcome in its development and implementation
in cardiovascular medicine. The quality of model training, and hence model performance,
is dependent on the size and characteristics of the dataset used. The lack of suitably large
datasets can be a major hurdle. The mix of cases included in datasets can introduce biases in
model training, potentially impairing model generalisability in the clinical setting. Models
trained on cases from a specific population with more homogeneous characteristics (for
example, only including a particular severity of disease or a narrow range of patient ages)
are less likely to perform accurately when applied to other populations. The use of large,
multicentre datasets that represent the clinically relevant population can help mitigate this.
For prognostication, model transparency is a key issue. Understanding exactly how an AI
model has predicted outcomes and from what combination of parameters is clinically im-
portant. This is likely to be of growing importance as AI continues to develop and integrate
an increasing number of parameters. Transparency depends not only on model design and
methods of evaluating performance but also on how studies are reported and published.
For the studies included here, compliance with the criteria of the CLAIM checklist was high,
reflecting good transparency in reporting. The use of purely retrospective datasets is conve-
nient for AI studies but can limit study design, and models trained on prospective datasets
may be needed for the accurate prediction of outcomes. Cardiovascular diseases are broad,
and prognostic information should be interpreted carefully to avoid over-generalisation. In
order to advance the field, future studies should ensure that a spectrum of disease types
and severities are assessed.

This systematic review has a number of limitations. Only five studies were included,
with three techniques and four disease types represented. However, the included studies
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demonstrate that AI-based approaches for outcome prediction are feasible and highlight
some of the existing approaches used. As the included studies covered different techniques,
disease types, and measured parameters, direct comparisons between all studies and formal
meta-analyses were not meaningful.

5. Conclusions

This systematic review evaluated existing studies using AI in CMR imaging for the
prediction of significant clinical outcomes. There is emerging evidence of the prognostic
role of AI in predicting outcomes for three-dimensional motion assessment in pulmonary
hypertension, ischaemia assessment by automated perfusion quantification, and automated
functional assessment in myocardial infarction.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/medicina58081087/s1, Table S1: A summary of all CMR parameters
and their significance for studies included in this systematic review; Table S2: A summary of
the CLAIM outcomes for all five assessed studies [15]; Figure S1: A forest plot of AI using CMR
parameters and their significance for automated volumetric, functional, and area assessment in
tetralogy of Fallot (ToF); Appendix SA: A database search strategy [8,11–15].
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Abbreviations

AI Artificial intelligence.
CAD Coronary artery disease.
CMR Cardiac magnetic resonance imaging.
HR Hazard ratio.
IS Infarction size.
LVEF Left ventricular ejection fraction.
MACE Major adverse cardiac events.
MI Myocardial infarction.
MPR Myocardial perfusion reserve.
MVO Microvascular obstruction.
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PH Pulmonary hypertension.
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses.
PROSPERO International Prospective Register of Systematic Reviews.
ToF Tetralogy of Fallot.
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