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Abstract: Chronic obstructive pulmonary disease (COPD) is recognized as a disease of accelerated
lung aging. Over the past two decades, mounting evidence suggests an accumulation of senescent
cells within the lungs of patients with COPD that contributes to dysregulated tissue repair and the
secretion of multiple inflammatory proteins, termed the senescence-associated secretory phenotype
(SASP). Cellular senescence in COPD is linked to telomere dysfunction, DNA damage, and oxidative
stress. This review gives an overview of the mechanistic contributions and pathologic consequences
of cellular senescence in COPD and discusses potential therapeutic approaches targeting senescence-
associated signaling in COPD.
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1. Introduction

Chronic obstructive pulmonary disease (COPD) is a heterogeneous condition with
multiple phenotypes that gives rise to progressive and irreversible airflow limitation [1]. It
is a highly prevalent disease and a major cause of morbidity and mortality worldwide [2].
Exposure to smoke from cigarettes or biomass fuel is the most significant risk factor for the
development of COPD [3,4]. These exogenous insults trigger injury, inflammation, and
structural remodeling of the airways and lung parenchyma [5,6]. However, only a minority
of smokers develop COPD, suggesting alternative factors such as viral infection or genetic
differences that may contribute to its development [7]. Genetic predisposition may partly
determine the host’s susceptibility and response to environmental stressors. Genome-wide
association studies have identified multiple genetic risk loci for COPD and its subsets [8].
COPD is an aging-related disease, with the incidence rate rising with increasing age [9].
During the normal aging process, pulmonary function begins to decline as a consequence
of reduced elastic recoil of the lung and reduced compliance of the chest wall [10]. The
reduced elasticity largely stems from homogeneous, nondestructive dilation of the alveolar
spaces, which decreases the surface tension of the alveoli [11,12]. Reduced compliance
of the chest wall can be attributed to musculoskeletal changes that alter the shape of the
thorax and increase the forces needed to move the chest [13]. Elevated levels of reactive
oxygen species (ROS), low-grade inflammation, shortened telomeres, and an increased
number of senescent cells are observed in the aging lung [14].

Although elevated ROS are an essential part of natural aging, the appropriate levels are
exceeded in COPD [6]. This is a consequence of the high concentrations of inhaled oxidants
and the endogenous release of ROS by inflammatory cells, epithelial cells, and endothelial
cells, thereby creating an oxidant/antioxidant imbalance [15]. The lungs accumulate a
greater number of senescent lung fibroblasts, as well as epithelial and endothelial cells
when compared to the healthy aging lung [16–19]. The elevated frequency of senescent cells
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may be due to ROS and oxidative stress. Senescent cells further propagate inflammation
due to the adoption of a hyper-secretory phenotype, known as the senescence-associated
secretory phenotype (SASP) [20,21]. Accumulation of senescent cells can be attributed
to immunosenescence, a process that attenuates both innate and adaptive immunity [22].
Here we will give an overview of molecular mechanisms and mediators contributing to the
development of cellular senescence in COPD, discuss the contributions of senescent cells to
disease pathology, and review the development of therapies targeting senescent cells that
hold promise in treating COPD. Improved understanding of the role of senescence in aging
and COPD should pave the way for more effective treatments.

2. Overview of Cellular Senescence
2.1. Definition

Cellular senescence describes a state of irreversible growth arrest characterized by
morphologic changes and secretion of multiple extracellular factors (such as cytokines,
growth factors, and proteases) with autocrine and paracrine effects defined as the SASP.
Although markers specific to the senescent state or universal to all senescent cells are not
yet identified, most senescent cells express senescence-associated β-galactosidase (SA-βgal)
activity, a result of increased lysosomal mass in senescent cells, and show an absence of
proliferative markers and increased expression of cell cycle inhibitors, tumor suppressors,
and DNA damage markers [23]. See Table 1 for the different forms of senescence, SASPs
associated with each type of senescence, some of the pathways altered in these scenar-
ios, and whether the SASPs and the pathways are implicated in playing a role in early
emphysema development.

Table 1. Summary of the different types of senescence and readouts.

Senescence SASPs Known Pathways Involved

Replicative
senescence

* Angiogenin, * bFGF, * CCL2, CCL3, CCL8,
CCL16, * CCL20, * CCL26, * COX2, * CXCL1,

CXCL2, CXCL3, * CXCR2, Fas, * FGF-7,
* Fibronectin, * GM-CSF, * HGF, * ICAM-1, IFN-1,

* IGFBP1, IGFBP2, IGFBP3, * IGFBP4, IGFBP5,
IGFBP6, * IL1A, * IL1B, * IL6, IL7,

* IL8, * IL11, * IL13, * IL15, * Leptin,
* MIF, * MMP1, * MMP2, * MMP3, * MMP10,

* Osteoprotegerin, * PAI-1, PAI-2, * PGE2,
* PIGF, * SCF, * sgp130, sTNFRI, sTNFRII,

* TGFβ, * TIMP2, * tPA, * TRAIL-R3, * uPA,
* uPAR, and * WNT2

• DNA damage responses (due to telomere length)
• * Telomere activity regulated by telomere length, capping
and inhibition [16]
• Derepression of the CDKN2A locus
• DNA methylation pathways
• * p53 pathway [24–26]
• * p16 pathway [27]
• * p21 pathway [16,28–30]
• * SIRT1 [31,32] and * SIRT6 [31,33] signaling
• * Klotho signaling [34]
• * IGF1/Akt signaling [27]
• * SA-βgal activity [24,26,35–38]
• * ROS signaling [26,39,40]
• Increased methylation of promoter of rDNA and reduced
expression of 18S, 5.8S and 28S rRNA [41]
• * S100A9 and TLR4 pathway [42]

Oncogene-induced
Senescence (OIS)

* Angiogenin, * AREG, * A-SAA, * bFGF, * CCL1, *
CCL2, CCL3, * CCL7, CCL8, * CCL13, CCL16,
* CCL20, * CCL26, * COX2, * CXCL1, CXCL2,

CXCL3, * CXCL5, * CXCL6, * CXCL7, * CXCL11, *
CXCL12, * CXCL13, * CXCR2, * G-CSF, * GITR, *

GMCSF, * HGF, * ICAM-1, IFN-1, * IFNγ,
* IGFBP4, IGFBP6, * IGFBP7, * IL1A, * IL1B,
* IL6, * IL6R, IL7, * IL8, * IL13, * LIF, * MIF,

* MMP1, * MMP3, * MMP10, * Oncostatin M,
* Osteoprotegerin, * PAI-1, * PGE-2, * PIGF,

* sgp130, sTNFRI, * TNFRSF18, * t-PA, * TIMP1,
* TIMP2, * uPAR, and * VEGF

• * p53/p21WAF1/CIP1 pathway [24–26]
• * DNA damage responses (not due to telomere length) [28]
• * ADAM17 signaling [43] mTOR signaling [44]
• * Autophagy [45]
• * Phosphorylated H2AX [29]
• Nicotinamide phosphoribosyltransferase (NAMPT) activity
• * ROS signaling [26,39,40]
• * SA-βgal activity [24,26,35–38]
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Table 1. Cont.

Senescence SASPs Known Pathways Involved

DNA-damage induced
senescence

* Acrp30, * Amphiregulin, * Angiogenin, * bFGF, *
BTC, * CCL1, * CCL2, CCL3, * CCL5, CCL8,

* CCL13, CCL16, * CCL20, * CCL26, * CCL27,
* CXCL1, CXCL2, CXCL3, * CXCL5, * CXCL6,

* CXCL11, * EGFR, Fas, * FGF-7, * GDNF, *
GM-CSF, * HGF, * ICAM-1, * IGFBP1, IGFBP2,

IGFBP3, * IGFBP4, IGFBP5, IGFBP6, * IL1A,
* IL1B, * IL6, * IL6R, IL7, * IL8, * IL11, * IL13,

* IL15, * IL1R1, IL2Rα, * Leptin, * MIF, * MMP1,
* MMP2, * MMP3, * MMP10, * MMP12,

* MMP13, * MMP14, * MSP-a, * Oncostatin M,
* Osteoprotegerin, * PDGF-BB, * PIGF, * SCF,

* SDF-1, * sgp130, sTNFRI, sTNFRII,
* TNFRSF18, * Thrombopoietin, * TIMP1,

* TIMP2, * tPA, * TRAIL-R3, * uPA, * uPAR, and *
VEGF

• * p16 pathway [27]
• * p38 MAPK signaling [46]
• NAD+/poly-ADP ribose polymerases mediated DNA
damage repair
• * p53 pathway [24–26]
• DNA damage responses
• Degradation of the transcription factor Sp1
• * ROS signaling [26,39,40]
• * NFκB signaling [47]
• * p21 pathway [16,28–30]
• * Endoplasmic reticulum (ER) stress [48]
• * SA-βgal activity [24,26,35–38]

Therapy-induced
senescence

* AREG, * CXCL8, * IL1A, * IL-1B, * IL-6, * IL8
* MMP2, * MMP3, * PAI-1, * SPINK1, * t-PA, and

WNT16B

• * p53 pathway [24–26]
• JAK/STAT signaling
• RAS/PI3K/AKT/mTOR signaling
• * p16 pathway [27]
• * p21 pathway [16,28–30]
• * SA-βgal activity [24,26,35–38]

Mitochondrial
dysfunctional-associated

senescence

Lacks IL-1-dependent factors (* IL-1A, * IL-1B,
* IL-6 and * IL8 are all reduced at the mRNA level),

but includes * IL10, * CCL27, and * TNFα

• * ROS signaling [26,39,40]
• * Telomere dysfunction [16]
• * Mitochondrial DNA damage [49]
• * Altered tricarboxylic acid (TCA) cycle [50]
• * Reduced Parkin translocation [51]
• * Cytoplasmic p53 accumulation [26]
• Low NAD+/NADH ratios [52]
• * Mitochondrial DAMPs [53]
• Malic enzymes 1 and 2
• * Phosphorylated H2AX [29]
• * SA-βgal activity [24,26,35–38]

Embryonic senescence * AREG, * CCL2, * GM-CSF, * IL1A, * IL1B, * IL6,
IL6R, * IL8, * ICAM1, * MIF, and * VEGF

• Shares many features to OIS
• * p21 pathway [16,28–30]
• * p15 pathway [24–26]
• * TGFβ/SMAD and PI3K/FOXO pathways [54]
• * Phosphorylated H2AX [29]
• * SA-βgal activity [24,26,35–38]

* Denotes a link to playing a role in early emphysema. SASPs data based on [20,55–60]. Abbreviations: Acrp,
catenin alpha like; AREG, amphiregulin; A-SAA, acute-phase serum amyloids; BTC, betacellulin; bFGF, basic
fibroblast growth factor; CCL, chemokine (CC-motif) ligand; COX, cyclooxygenase; CXCL, chemokine (C-X-C
motif) ligand; CXCR, C-X-C chemokine receptor; EGFR, epidermal growth factor receptor; FGF, fibroblast growth
factors; G-CSF, granulocyte-colony stimulating factor; GDNF, glial cell-line derived neurotrophic factor; GM-
CSF, granulocyte-macrophage colony-stimulating factor; HGF, hepatocyte growth factor; ICAM, intercellular
adhesion molecule; IFN, interferon; IGFBP, insulin-like growth factor binding protein; IL, interleukin; LIF,
leukemia inhibitory factor; MIF, macrophage migration inhibitory factor; MMP, matrix metalloproteinase; MSP,
macrophage stimulating protein; PAI, plasminogen activator inhibitor; PDGF-BB, platelet-derived growth factor;
PGE, prostaglandin; PIGF, placental growth factor; S100A9, S100 calcium-binding protein A9; SCF, stem cell factor;
SDF, stromal cell-derived factor; sgp130, soluble glycoprotein 130; sTNFR, soluble tumor necrosis factor receptors;
TGFβ, transforming growth factor beta; TIMP, tissue inhibitor of metalloproteinase; TNF, tumor necrosis factor;
TNFRSF18, tumor necrosis factor receptor superfamily member 18; tPA, tissue plasminogen activator; TRAIL-R,
tumor necrosis factor-related apoptosis-inducing ligand receptor; uPA, urokinase plasminogen activator; uPAR,
urokinase plasminogen activator receptor; VEGF, vascular endothelial growth factor; WNT, Wingless and Int-1.

2.2. Cellular Pathways

Cellular senescence was first described nearly sixty years ago in fibroblasts that have
lost their proliferative potential due to a permanent state of cell cycle arrest [61]. The
limited proliferation of cells in vitro is now recognized as a particular type of senescence
resulting from telomere loss [62,63]. Senescence may occur during embryonic development
or in response to multiple stressors such as DNA damage, oncogenic mutations, oxidative
stress, mitochondrial dysfunction, and autophagy inhibition [21,23,62]. These stimuli
activate multiple signaling pathways, including those mediated by MKK3/MKK6, RAS,
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MYC, PI3K, and TGFβ, which lead to the downstream activation of cell cycle inhibitors
and the tumor suppressor retinoblastoma protein (RB) [62]. These pathways interact
to promote senescence through de-phosphorylation and activation of RB, which arrests
cell proliferation by preventing the transcription of genes involved in the S phase of
the cell cycle [64]. Cyclin-dependent kinase (CDK) inhibitors, which maintain RB in
an unphosphorylated state, include the INK4 members p15, p16, p18, and p19 and the
CIP/KIP members p21, p27, and p57. Activation of the tumor suppressor p53 by the ataxia-
telangiectasia mutated kinase (ATM)/Rad3-related kinase (ATR) and Chk1/Chk2 kinases
following genomic damage promotes senescence through subsequent p21 activation and
RB dephosphorylation [64,65].

2.3. Markers of Senescence

Defining senescence in cell cultures and tissues generally requires a combination of
markers and functional assays, which include the CDK inhibitors p16 and p21, measure-
ments of telomere length, biochemical assays that measure senescence-associated products
such as SA-βgal and lipofuscin, proliferation studies, and markers of DNA damage such as
phosphorylated histone H2AX (γ-H2AX) [21,62]. Finding reliable markers of senescence
in COPD is limited by several factors. First, senescent cells exhibit significant hetero-
geneity with distinct proteomic and gene expression profiles depending on cell type and
stressors [21,62,66]. Second, senescence biomarkers, such as the pro-inflammatory factors
characteristic of the SASP, are often non-specific, occurring in other cellular contexts. Third,
multiple molecular mediators of senescence likely contribute to disease pathology, requir-
ing a collection of markers to establish a link between senescence and relevant disease
outcomes. For example, p16 knock-out (KO) mice exposed to chronic cigarette smoke (CS)
do not have decreases in lung inflammation or airspace enlargement compared to controls,
suggesting that pathways other than those regulated by p16 contribute to CS-induced
cellular senescence in COPD and emphysema [38]. Despite these complexities, multiple
studies have shown associations between senescent markers and pathologic processes in
COPD, as described in the following sections.

2.4. Immunosenescence

Senescent cells are cleared by a mixture of macrophages, natural killer cells, cytotoxic
T cells, B cells, neutrophils, mast cells, eosinophils, and dendritic cells. They make use
of pattern recognition receptors and release SASP factors that attract immune cells [67].
However, these immune cells are subject to aging, which causes impaired phagocytosis,
chemotaxis, and bactericidal activity. Furthermore, antigen presentation and pattern
recognition signaling become less effective [22]. The pool of naïve B and T lymphocytes
contracts while their corresponding memory cells undergo clonal expansion [68]. Levels
of CD4 + CD28null and CD8 + CD28null cells increase, which leads to inflammation
but compromises immune surveillance [68]. Many COPD patients display dysregulated
immunity overall, with CD8+CD28null cells demonstrating reduced HDAC2 expression
and corticosteroid resistance [69,70].

3. Overview of Evidence for Cellular Senescence in COPD
3.1. Cellular Senescence Increased in COPD

Several groups have shown an increase in senescent cells in patients with COPD
compared to age-matched smokers or healthy non-smoking controls. Higher percent-
ages of type II pneumocytes [24,27,71], endothelial cells [71–73], and pulmonary artery
smooth muscle cells [74] with positive staining for p16 or p21 were observed in lung tissue
sections from patients with COPD or emphysema compared to smokers [27,71–73] or non-
smoking controls [27,71]. Compared to control smokers, endothelial [44,73] and smooth
muscle [44,74] cells from patients with COPD showed increased SA-βgal staining and
lower population doubling levels (PDLs). Increased p16 or p21 expression and increased
percentages of SA-βgal-positive cells were also observed in fibroblasts [16], small airway
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epithelial cells (SAECs) [28], and endothelial progenitor cells [29] from patients with COPD
compared to age-matched smokers [16] or non-smokers [28,29]. Significant correlations
between markers for cellular senescence such as p16, p21, or population doubling levels in
tissues and clinical parameters such as measures of airflow obstruction [71] lend additional
support to the contribution of senescence to the development of COPD.

3.2. Contribution of CS to Cellular Senescence

Most studies investigating the effects of CS on senescence were performed on sub-
merged cultured cells with CS extract (CSE), which can have different properties from
mainstream CS and thereby different biological outcomes [75]. In in vitro, senescence is
reduced early, but repeated exposure to CSE is required to induce an irreversible senescent
state [76]. Studies have demonstrated that CSE induces cellular senescence associated with
increased SA-βgal activity, cell morphology changes, or irreversible growth arrest through
activation of the ATM-p53-p21 and p16-Rb pathways in multiple cell types, including
SAECs and alveolar epithelial cells [24–26] and fibroblasts [25,26,28,76,77]. Similar to CSE
in cell cultures, acute and chronic CS exposure increase senescence in mouse lung tissues
as shown by increased SA-βgal activity, increased p16, p21, or p53 levels, and lipofuscin
accumulation [24,26,35–38].

CSE and CS exposure may contribute to cellular senescence in cell cultures and
murine lung tissues by inducing telomere damage or shortening [25,28,78], mitochon-
drial dysfunction [26,78], and DNA damage [37,38,79]. Both p16 and p21 were investi-
gated in mouse models as mechanisms linking CS-induced cellular senescence to relevant
outcomes in COPD, such as increased inflammatory responses, cellular apoptosis and
proliferation, declines in lung function, and emphysema development. Deletion of p21
in mice attenuates CS-induced DNA damage, inflammatory responses, and oxidative
stress [37,79] and promotes pulmonary epithelial cell proliferation [80], suggesting a pro-
tective effect of senescence-associated p21 inhibition in vivo. Increased p21 expression in
alveolar macrophages from smokers is associated with a reduction in apoptosis induced
by oxidative stress [30]. The deficiency of p16 in mice reduced SASP and inflammatory
cytokine expression, increased type 2 pneumocyte proliferation, and protected against
emphysema development in response to CS exposure [27]. Another study found that p16
deficiency protected against inflammatory cellular influx in response to acute CS exposure
but did not attenuate declines in lung function or airspace enlargement in chronic CS-
exposed mice [38]. Differences in outcome between these studies may be due to differences
in p16 KO models used (p16-deficient mice in the latter study died prematurely due to
spontaneous tumor formation in lymphoid organs) and suggest the need for further studies
to delineate mechanisms regulated by p16 that contribute to pathogenic processes in COPD.

A recent study utilizing RNA sequencing approaches in CSE exposure and senescent
conditions in airway epithelial cells demonstrated that CS and senescence conditions induce
common signaling responses, including genes that regulate ROS, proteasome degradation,
and NF-κB signaling [47]. Voic and colleagues report 243 common gene expression changes
in epithelial cells when exposed to CSE or induced senescence [47]. Several of these
genes are already reported to play significant roles in COPD pathogenesis, such as MMP-
1 [81] and S100A9 [42], suggesting shared changes induced by CSE and senescence in the
pathogenesis of COPD.

4. Mechanisms Contributing to Senescence in COPD
4.1. Telomere Dysfunction

Replicative senescence occurs once a cell has reached its Hayflick limit, the maximum
number of times a cell is capable of dividing. Telomeres, tandem repeats of TTAGGG
arranged in a T-loop structure at the ends of chromosomes, progressively shorten after
each cell division until a critical length is reached and telomeres become uncapped [82].
Several studies have demonstrated that telomere attrition occurs in COPD. Decreased
telomere lengths are observed in peripheral leukocytes [83,84], and endothelial cells [71,73]
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of COPD patients compared to non-smoking [71] or smoking [73,83,84] control subjects.
However, a study by Müller, et al. demonstrated that senescent lung fibroblasts from
patients with emphysema failed to display a reduction in telomere length [16]. Tsuji, et al.
found a significant negative correlation between telomere length and p21 or p16 levels
in type II alveolar and endothelial cells, showing an association between telomere length
and senescence [71]. Thus, it was proposed that replicative senescence was at work here,
perhaps as a consequence of the continuous alveolar turnover and regeneration that occurs
in emphysema [71]. Telomere dysfunction can also induce senescence independently of
telomere shortening. Birch, et al. found an increase in telomere-associated DNA damage
foci (TAF) in SAECs from patients with COPD who had normal telomere lengths for their
sex and age [28]. TAF co-localized with p16 in epithelial cells in lung tissue samples from
patients with COPD, suggesting a role for TAF in inducing senescence. TAF were thought
to have resulted from the telomeres’ susceptibility to oxidative stress [28]. This is a type
of stress-induced premature senescence that is telomere-independent and is elicited by
various factors that cause cellular stress, including CS. Houben, et al. showed lower levels of
superoxide dismutase (SOD) in leukocytes from patients with COPD compared to controls
and a positive correlation between telomere lengths and SOD [83], suggesting that oxidative
stress may also contribute to telomere shortening in patients with COPD. Telomerase
mutations, which lead to short telomeres and altered telomerase activity, were also shown
to be a risk factor for severe or early-onset emphysema in patients who smoke [28,78,85].
Finally, maintaining sufficient telomere capping is another important means of preventing
telomere dysfunction by protecting the chromosomes against deterioration or end-to-end
fusion. CS can cause a reduction of the telomere capping protein (TPP1) that could augment
cellular senescence in COPD/emphysema [25]. The E3 ubiquitin ligase FBW7 could be
regulating this TPP1 response [85]. See Figure 1 for possible mechanisms to senescence
in COPD.

Figure 1. Possible mechanisms for senescence in COPD. Created with BioRender.com.
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4.2. DNA Damage

Phosphorylated histone H2AX (γH2AX) is a sensitive indicator of double-stranded
DNA breaks and appears as distinct nuclear foci by immunofluorescent microscopy [72,86–89].
Once phosphorylated, γH2AX can recruit DNA repair proteins such as phosphorylated
ATM/ATR substrates and phosphorylated 53BP1 to the damage site, and, if the DNA is
unable to be repaired, a cell fate process is initiated [72]. Paschalaki, et al. observed an
increased number of blood outgrowth endothelial cells (BOEC), endothelial progenitor
cells with proliferative and angiogenic potential, containing γH2AX and 53BP1 nuclear
foci in smokers and patients with COPD compared to healthy nonsmokers, which were
age-independent [29]. Both γH2AX and 53BP1 expression correlated strongly with SA-βgal
activity and smoking pack-years but not with age, suggesting a causative link between
DNA damage and senescence which may be due to CS exposure [29]. Birch, et al. showed
increased γH2AX foci colocalizing with telomeres in lung tissues and SAECs cultures
from patients with COPD compared to controls, in aged compared to young mice, and in
MRC-5 fibroblasts and primary SAECs exposed to CSE in vitro [28]. Similarly, Aoshiba,
et al. demonstrated that alveolar type I and II cells and endothelial cells of COPD patients
had a larger number of γH2AX foci than asymptomatic smokers and non-smokers. The
greater number of foci observed in COPD patients was linked to apoptosis, senescence, or
inflammation [72]. Increased 53BP1 foci were also observed in bronchial epithelial (Club)
cells from mice with short telomeres, which, compared to wild-type animals, develop
greater emphysema after CS exposure [80].

4.3. Oxidative Stress

The exact mechanism of oxidative stress-induced aging is still unknown. However,
tissue damage in COPD from CSE-induced oxidative stress likely results from mitochon-
drial dysfunction and an imbalance between the production of ROS and the expression or
activity of molecules involved in antioxidant responses [90]. Cigarette smoke contributes to
cellular senescence in COPD by inducing mitochondrial dysfunction with increased ROS,
DNA damage, and impaired mitophagy mediated by the PINK1-PARK2 pathway [26,39,40].
Specifically, CS exposure caused perinuclear accumulation of damaged mitochondria in
human lung fibroblasts and SAECs due to reduced Parkin translocation, a family of pro-
teins that function as ubiquitin E3 protein-ligases [51], to damaged mitochondria and
cytoplasmic p53 accumulation [26]. Mitochondria-targeted antioxidant restored impaired
mitophagy, decreased mitochondrial mass accumulation, and delayed cellular senescence
in Parkin-overexpressing cells [26]. CSE stimulation reduced Miro1 and Pink1 levels in
primary human epithelial cells to regulate mitophagy and mitochondria dysfunction [39].
Therefore, oxidative stress induced by CS exposure impacts mitochondrial function, which
influences senescent responses. Oxidative stress induced by CS may also induce senes-
cence by accelerating telomere dysfunction and activating the SASP (through IL-6 and IL-8
secretion) [28]. Additional evidence pertaining to oxidative stress is described in further
detail in Sections 5.1, 5.4 and 5.8–5.10 below.

5. Molecular Mediators of Senescence in COPD
5.1. Sirtuins

Several sirtuins (SIRTs), a group of class III deacetylases, are believed to have protective
effects against COPD progression [91]. SIRT1 [31,32] and SIRT6 [31,33] levels are decreased
in lung tissues, airway epithelial cells, and blood outgrowth endothelial cells from patients
with COPD and smokers compared to NS controls [29] and in response to CSE or oxidative
stress in a monocyte-macrophage cell line and human bronchial epithelial cells [32,33,92].
Recent evidence suggests that CSE-induced suppression of SIRT1 and SIRT6 levels or
activity could lead to exaggerated senescence, an effect mediated through the upregulation
of specific miRNAs in response to oxidative stress [33,93,94]. Levels of miR-34a are induced
by oxidative stress through PI3K signaling and are increased in lung tissues and primary
epithelial cells of patients with COPD compared to control subjects [31]. Inhibition of
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miR-34 in primary epithelial cells from patients with COPD increases SIRT1 and suppresses
p16 and p21 levels, linking miR-34-mediated SIRT1 loss in COPD to cellular senescence.
Oxidative stress induced by hydrogen peroxide stimulation also suppresses SIRT1 and
SIRT6 mRNA and protein levels directly in bronchial epithelial cells [31]. MiR-34a has
also been shown to induce senescence in lung fibroblasts [93] and negatively regulates
apoptotic cell clearance (efferocytosis) in human and murine alveolar macrophages in part
through SIRT1 suppression [94]. A recent study demonstrated that inhibition of miR-570-
3p, a microRNA increased in COPD lung tissues and peripheral blood mononuclear cells,
reverses cellular senescence by restoring the expression of SIRT1 [92]. Oxidative stress
upregulates miR-570-3p expression through p38 MAP kinase-c-Jun signaling and miR-570-
3p inhibition restores cellular growth and prevents SASP release in SAECs from COPD
subjects [92,94]. Oxidative stress may also promote senescence by activating the DNA
damage response (DDR), which negatively regulates SIRT1 levels [29]. Blood outgrowth
endothelial cells from smokers and COPD patients have increased DNA double-strand
breaks and senescence compared to nonsmokers. This senescent state is reversed with
the SIRT1 activator, resveratrol [29]. Similarly, SIRT1 activation or overexpression protects
against CSE-induced telomere DNA damage in lung fibroblasts [25,33]. SIRT6 inhibition
by CSE contributes to senescence in HBEC through activation of IGF-Akt-mTOR signaling
and insufficient autophagocytic removal of damaged cellular components [33].

5.2. MicroRNA (miRNA)

Other miRNAs, in addition to miR-34a and miR-570-3p described in Section 4.3, could
influence senescence in COPD. Shen, et al. found that miR-200b was downregulated in
a pulmonary emphysema mouse model and overexpressing miR-200b in mouse lung
epithelial (MLE) cells attenuated CSE-induced cellular senescence, implicating miR-200b
as a negative modulator of senescence in COPD [95]. Mechanistically, miRNA200b may
protect against senescence and inflammation in MLE cells by downregulating the expression
of zinc finger E-box binding homeobox 2 (ZEB2), which is a transcription factor consisting
of many functional domains that interact with transcriptional co-effectors implicated in the
attenuation of the inflammatory response pathway in pulmonary emphysema [95,96].

5.3. Klotho

Klotho, an antiaging gene, encodes a membrane-bound protein that may promote
epithelial cell viability and protect against emphysema by regulating cigarette smoke-
induced oxidative stress and cellular senescence [97]. Klotho overexpression in human
bronchial epithelial (BEAS-2B) cells decreased ROS, increased p21 levels, and decreased
cytotoxicity in response to CSE [97]. Cigarette smoke decreases klotho expression in primary
airway epithelial cells, and klotho-deficient mice develop emphysema and increased airway
inflammation [98].

5.4. Lamin B1

Alterations of lamin proteins, which maintain nuclear structural integrity [99] and
regulate cell cycle progression, DNA replication, and gene silencing [100], are implicated in
disorders of accelerated aging [101]. Loss of lamin B1 is associated with senescence [99,102].
Freund, et al. found that the decline of lamin B1 in senescent human and murine fibroblasts
precedes the onset of morphological changes, SA-βgal activity, and SASP and occurs upon
activation of either the p53-p21 pathway or p16-Rb regardless of the stimulus used to induce
senescence. Saito, et al. reported reduced lamin B1 levels in airway epithelial cells from
patients with COPD compared to smokers or non-smokers, in mice exposed to CS, and in
HBECs treated with CSE. Lamin B1 silencing in normal primary HBECs induced senescence,
which was enhanced by CSE treatment, as shown by increased SA-βgal, phosphorylated
histone H2AX, p16, and p21 levels [78]. Furthermore, the expression of lamin B1 in HBECs
was found to correlate directly with pulmonary function [78]. Reduced lamin B1 may be a
promising marker for detecting senescence COPD and used to indicate disease severity.
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5.5. Mammalian Target of Rapamycin (mTOR)

Houssaini, et al. showed activation of the mTOR signaling pathway in lung tissues
and cultured endothelial and smooth muscle cells from patients with COPD compared to
age- and sex-matched control smokers [44]. Lung expression of p16 correlated positively
with p-Akt, p-GSK3, p-S6K, and p–4E-BP1 protein levels. Inhibition of mTOR by rapamycin
increased cell PDLs and decreased percentages of SA-βgal-positive cells in patients with
COPD and controls. Activation of mTOR signaling in mice through constitutive or condi-
tional deletion of the tuberous sclerosis complex heterodimer TSC1, a negative mTORC1
regulator, in smooth muscle or endothelial cells induced senescence, emphysema, and
pulmonary hypertension. Saito, et al. showed that CS-induced mTOR activation, mito-
chondria accumulation, and cellular senescence are mediated by lamin B reduction and
downstream inhibition of DEPTOR, an mTOR regulator, in primary HBECs, murine lung
airway epithelial cells, and COPD lungs [78]. Therefore, mTOR signaling could influence
senescence in COPD pathogenesis.

5.6. Werner’s Syndrome Protein

Nyunoya, et al. demonstrated that CSE-induced senescence in fibroblasts was accom-
panied by a decrease in Werner’s syndrome protein (encoded by the WRN gene) [77]. The
WRN protein interacts with proteins involved in telomere maintenance, DNA replication,
and DNA repair [103]. This is of importance in the context of accelerated aging in COPD,
as loss-of-function mutations of the WRN gene in Werner’s syndrome causes premature
aging [104]. Loss of WRN expression in fibroblasts results in increased susceptibility to CS-
induced cellular senescence and cell migration impairment [77]. The antioxidant treatment
enhances WRN levels and reduces CSE-induced senescence [77].

5.7. Plasma Membrane Proteins

Caveolin-1, the structural protein component of caveolae, has been shown to protect
against emphysema through the regulation of cellular senescence. Volonte, et al. showed
that smoke-induced pulmonary emphysema and senescence were reduced in caveolin-1-
deficient mice. Caveolin-mediated oxidative stress-induced senescence in lung fibroblasts
through sequestration of PP2A and Mdm2, which led to downstream p53 and p21 activa-
tion [105]. CS also inhibits PP2A responses, which contributes to COPD pathogenesis [106],
further linking caveolin-1 signaling to cellular senescence and emphysema.

5.8. Lipids

Prostaglandin E2 (PGE2), a pro-inflammatory lipid synthesized from arachidonic acid
by cyclooxygenase, is produced by various resident cells of the airways, including epithe-
lial cells, fibroblasts, and alveolar macrophages. In COPD, the cells overproduce PGE2,
sometimes in amounts high enough to be detectable in exhaled breath [107]. Martien, et al.
demonstrated that upregulation of COX2 and PGE2 occurs in senescent human lung fibrob-
lasts [108]. They posited that COX2′s contribution to senescence is the generation of its own
ROS species that can form DNA adducts. COX2′s overall impact on senescence, however, is
mediated by PGE2 via PGE2 receptors [108]. Dagouassat, et al. showed that PGE2 secreted
by senescent COPD fibroblasts induces cellular senescence and inflammation in neighbor-
ing fibroblasts in an autocrine and paracrine manner [109]. Cellular senescence induced
by PGE2 and COX2 signaling also occurs in response to elevated 27-hydroxycholesterol
(27-OHC) levels in the airways of patients with COPD [110]. Finally, insulin-like growth
factor binding proteins (IGFBP) are elevated during exacerbations of COPD [111], and
IGFBP-3 and -7 are linked to senescence-associated emphysema [16,27].

5.9. Creatinine Kinase

Creatinine kinase (CK) catalyzes the reversible phosphorylation of creatinine by ATP,
allowing energy to be stored in the form of phosphocreatine (PCr), a fundamental process
for maintaining the energy homeostasis of cells [112]. Dysregulation of the CK/PCr path-
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way is implicated in hypoxic and inflammatory disorders [113]. Energy status is considered
an important determinant of senescence [112]. Activated 5′-adenosine monophosphate-
activated protein kinase (AMPK)induced by increased AMP:ATP and ADP:ATP ratios
during energy stress can induce senescence by directly phosphorylating p53 or by degrad-
ing the mRNAs of p16 and p21 inhibitors [114]. CK is subject to oxidation during ROS
exposure which can impair enzymatic activity [112,115,116]. It is postulated that CS can
downregulate CK and inactivate it by oxidation. Hara, et al. found that brain-type CK
(CKB) levels and activity were markedly reduced in HBECs of smokers with COPD and
that suppression of CKB led to induction of senescence [112].

5.10. Alpha-Antitrypsin Deficiency (AATD)

Telomere length is reported to be better preserved in peripheral blood cells in AATD
patients with COPD than in non-deficient patients but is independent of changes in lung
function both in subjects with AATD and in COPD controls [117]. Accelerated telomere at-
trition is observed in children and teenagers with AATD [118]. Therefore, senescence could
influence the pathogenesis of AATD-related emphysema, but further studies are required.

6. Pathologic Consequences of Cellular Senescence in COPD
6.1. Dysregulated Inflammation

Kumar, et al. coined the term “COPD-associated secretory phenotype” (CASP) to refer
to the inflammatory mediators that are increased in COPD and provided a comparison of
CASP and SASP factors [119]. In summary, some of the factors that are upregulated in both
CASP and SASP include the interleukins IL-1α, IL-1β, IL-6, IL-8, IL-13; chemokines GRO-α,
GRO-β, GRO γ, MCP-2, MIP-1α, MIP- 3α; proteasesMMP-1, MMP-3, MMP-10, MMP-12,
MMP-13, MMP-14; growth factors EGF, bFGF, VEGF, angiogenin, IGBP; and nitric oxide,
ROS, and extracellular matrix proteins [119]. Their large degree of overlap supports the
notion that they are strongly linked and reinforces the theory that senescence, along with
SASP, is a major contributor to the inflammation that defines COPD.

Typically, cells undergoing senescence chemoattract immune cells, resulting in clear-
ance of these senescent cells by immune cells such as NK cells and macrophages [120,121].
However, senescent cells in diseased tissues can also impede innate and adaptive immune
responses [47,122]. As previously mentioned, senescent cells accumulate in tissues during
aging [123,124] and could influence several pathological features observed in COPD, such
as inflammation-associated tissue damage and remodeling. For comprehensive reviews
of the influence of senescence on inflammatory responses, see Langhi Prata, et al. [67]
and Vincente, et al. [125]. It is difficult to determine whether inflammation observed in
COPD is primarily due to senescence, as many other contributing factors within the disease
may contribute. However, the presence of enhanced senescent cell frequency in the lungs
does contribute to a modified immune response that may influence several aspects of
COPD pathogenesis.

Senescent cells secrete several factors that can influence inflammation responses, such
as GM-CSF, GROα (and γ), MCP-1 to 4, IL-6, IL-8, IL-1β, MIP-1α (MIP-3α), MMPs (1,
3, 9, and 12), RANTES, RARRES2, TIMPs, and TGF-β [126,127]. Moreover, senescent
cells secrete microvesicles, exosomes, microRNAs, other non-coding RNAs, mitochondrial
DNA fragments, prostanoids, ceramides, bradykines, protein aggregates, and additional
factors that could exacerbate inflammation [128–131]. The majority of these secreted
cellular components are observed at elevated levels in age-related diseases, including
COPD. Activation of either p21 or p16 is associated with the secretion of these potential
inflammatory factors [132]. Conversely, chronic inflammation stresses cells and can lead
to the spread of the senescent phenotype. This is observed in mice deficient for the anti-
inflammatory genes Il-10 [123] and Nfκb1 [133], with elevated levels of senescent cells in
both animal phenotypes. TNFα promotes senescence by inducing ROS and activating the
JAK/STAT signaling pathway [134]. Oxidative stress-mediated inflammation is observed
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in COPD, most notably with loss of NRF2 expression resulting in suppressed antioxidant
production, elevated ROS, and enhanced inflammation [135,136].

To fully understand the influence of senescent cells on the pathogenesis of COPD, we
must first examine inflammatory-associated senescent cell signaling that could contribute
to the disease process. The influence of age on inflammation is extensively studied, with
aged mice exhibiting diminished anti-inflammatory potential in bone marrow-derived
mesenchymal stromal cells [137]. Alternatively, transcriptome studies in multiple organs
demonstrated that aging is characterized by the up-regulation of multiple genes that encode
inflammatory mediators [138]. A recent systematic study of epigenomic and transcrip-
tomic changes across tissues during aging in mice revealed the up-regulation of immune
system response pathways, including the interferon response [139]. However, minimal
transcriptome data is available for inflammation in senescent lung cells. Morrow, et al.
demonstrated enrichment of COPD-relevant lung tissue B cell gene expression in peripheral
blood, with CD28 expression altered in COPD [140]. CD28 is needed for effective primary
T-cell expansion and activation of regulatory T-cells (Treg cells), and its loss could play a
role in senescence and inflammation in COPD [141]. CD8/CD28(null) cells are increased
in both current- and ex-smoker COPD subjects and these cells express more IFN-γ, OX40,
4-1BB, CTLA4, granzyme, and perforin [142]. Equally, mice exposed to CS have increased
CD8/CD28(null) T cells in their airways [142], which could contribute to elevated inflam-
mation. The same research group demonstrated that these CD28 null cells are senescent
and exhibit elevated inflammation and enhanced glucocorticoid resistance [143]. Impor-
tantly, transcriptional noise increases with aging, possibly due to deregulated epigenetic
control [144], which may contribute to the lack of extensive senescent transcriptional data in
COPD. In the same single-cell sequencing study, a pro-inflammatory signature is observed
in aging lungs, with upregulation of Il6, Il1b, Tnf, and Ifnγ and downregulation of Pparg
and Il10 [144]. New approaches to characterize senescence with transcriptome profiles will
further enhance our knowledge of senescence in COPD [145].

6.2. Role of Senescence during Development and Disease

Although the word senescence means “to grow old” and senescent cells accumulate
in aged tissues, senescence is not synonymous with aging. Senescence occurs during
embryonic development and physiologically in adult cells such as megakaryocytes and
placental syncytiotrophoblasts [62]. Developmentally programmed senescence is driven
by the TGFβ/SMAD, PI3K/FOXO, and ERK signaling pathways and contributes to mor-
phogenesis through the elimination of transient embryonic structures such as interdigital
webs [146]. Senescent cells formed during normal development produce a SASP that can
activate the immune system and apoptosis to induce their own clearance [62]. In adult
tissues, reactivation of senescence-induced pathways in response to external stressors may
have beneficial or harmful effects depending on the cellular trigger, cell type, or SASP [62].
Senescence has shown protective roles in some diseases and detrimental ones in others.
The concept of senescence as a mechanism for tissue repair, remodeling, and regeneration
that may be impaired during aging and particular disease states is particularly relevant to
COPD given the risks of advanced age and exposure to damaging environmental stimuli
that predispose to its development.

6.3. Impaired Tissue Regeneration

Overexpression of p16 contributes to replicative failure within many regenerative cell
types [147,148]. Conversely, p16 downregulation ameliorates age-associated functional and
proliferative impairments in stem and progenitor cells [149], suggesting that senescence
contributes to the decline of tissue regeneration. In mice, short telomeres limit epithelial
cell recovery after CS exposure, whereas p21 deficiency promotes increased alveolar and
Clara cell proliferation in terminal bronchioles [80]. Similarly, Nyunoya and colleagues
report that acute exposure to CS inhibits normal fibroblast proliferation required for lung
repair, but chronic CS exposures trigger an irreversible state of senescence in cells that could
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contribute to the impaired tissue regeneration observed in COPD [76]. Extended exposure
to CSE can induce two different fibroblast phenotypes: a senescent and a non-senescent
phenotype, with the non-senescent cells exhibiting enhanced profibrotic signaling [150].
These non-senescent cells may contribute to fibrotic lesions in COPD, while the senescent
cells contribute to emphysema development. In smokers and COPD patients, reduced
angiogenic ability and increased apoptosis are observed in endothelial progenitor cells,
which show increased senescence and DNA damage [29]. Recent evidence suggests that
basal progenitor cells, which are important for airway epithelial differentiation, exhibit a
reduced regenerative capacity in COPD [151,152], but this was deemed to be independent
of senescence [153].

6.4. Dysregulation of Apoptosis and Cellular Proliferation

Elevated numbers of apoptotic alveolar epithelial [154] and endothelial [155] cells are
found in the lungs of patients with COPD. Apoptosis-positive type II alveolar epithelial
cells are observed in the alveolar walls of patients with pulmonary emphysema [156].
The apoptotic index is significantly higher in emphysematous lungs compared to controls
(p ≤ 0.01), particularly in AATD emphysema [157]. Emphysema may result from different
rates of cellular proliferation and apoptosis and the insufficient proliferative capacity of
cells to replace apoptotic cells [157]. Several senescence-associated signaling molecules
contribute to altered cellular proliferation and apoptosis in COPD. An inverse correlation
was found between p16 INK4a expression and PCNA expression in alveolar epithelial cells
and vascular endothelial cells, indicating that alveolar cell senescence is associated with a
decrease in cellular proliferation and regeneration [71]. The expression of p16 is known
to increase in aging cells and reduces the proliferation of stem cells [147]. Levels of the
tumor-suppressor protein p53 are elevated in patients with emphysema who smoke [158],
and p53 activation by CS induces endothelial cell apoptosis, which is inhibited by upstream
p53 inhibition by macrophage migration inhibitory factor (MIF) [159].

7. Therapeutic Implications

There is increasing interest in the resolution of abundant senescence as a potential ther-
apeutic approach in COPD. Here we mention some promising therapeutic approaches other
than possible mRNA targets, sirtuin-activating drugs, and next-generation antioxidants
well described by other reviews [160]. See Table 2 for a summary of therapeutic options.

7.1. Senolytics

Senolytic agents, compounds that facilitate the elimination of senescent cells, have
received considerable attention lately as a potential treatment for COPD [160]. However,
the investigation of these agents is limited by the lack of universal markers of senescence.
A better understanding of pathways that induce and reinforce senescence in COPD may
allow us to discover possible biomarkers that could serve as targets for these senolytic
therapies [19,160,161]. The current proposed senolytic agents are compounds that activate
sirtuins, PTEN, AMPK, or NRF2 or inhibit PI3K, mTOR, BCL-2/XL, FOXO4, and SASPs.
Kaempferol and apigenin are also suggested senolytic agents.

Liu, et al. reported that 25(OH)D1alpha hydroxylase knockout mice, when com-
pared with wild-type mice, had more DNA damage, ROS production, inflammatory in-
filtration of the colon, and production of inflammatory cytokines related to SASP [162].
1,25-dihydroxyvitamin D3[1α,25(OH)2D3] has antiaging effects by upregulating nuclear
factor (erythroid-derived 2) -like 2 (Nrf2), reducing ROS, decreasing DNA damage, re-
ducing p16/Rb and p53/p21 signaling, increasing cell proliferation, and reducing cellular
senescence and the SASP [163]. Supplementation with exogenous 1,25(OH)2D3 or with
combined calcium/phosphate and the antioxidant N-acetyl-l-cysteine prolonged their
average lifespan to more than 16 months and nearly 14 months, respectively [163].
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7.2. Metformin

Metformin, a biguanide class and anti-diabetic drug, may prove beneficial for the
treatment of COPD. Metformin reduces cardiovascular mortality, all-cause mortality, and
cardiovascular events in type 2 diabetic patients with coronary artery disease [164]. Inter-
estingly, a recent retrospective study demonstrated that metformin treatment for 2-years
improved survival rates in COPD patients with type 2 diabetes [165]. Equally, reduced
mortality was observed in patients with chronic lower respiratory diseases treated with
metformin [166]. In an unmatched cohort study in Taiwan, type 2 diabetic patients who
used metformin were less likely to develop COPD, with a hazard ratio of 0.56 (95% CI
0.537–0.584) [167]. In a prospective open-label trial of patients with moderate and severe
COPD who also had type 2 diabetes, the use of metformin showed improvement in symp-
toms compared to baseline as measured by the St George’s Respiratory Questionnaire and
transitional dyspnea index scores [168]. Metformin is also used to treat severe COPD exac-
erbations [169]. Metformin reduces the frequency of lung infections due to Staphylococcus
aureus [170], Pseudomonas aeruginosa [171], and Legionella pneumonia [172] by modifying
glucose flow across the respiratory epithelium. Whether these effects on exacerbations
are senescence-based is unknown. Recently, it was suggested that activation of AMPK by
metformin could reduce abnormal inflammatory responses in mice with elastase-induced
emphysema, as well as cellular senescence [173]. Metformin prevented CSE-induced HBEC
senescence and mitochondrial accumulation due to increasing DEPTOR expression [78].

7.3. Rapamycin

Cell senescence in COPD is linked to mTOR activation. Rapamycin binds to mTORs
immunophilin FK-binding protein (FKBP12), and the Rapamycin FKBP12 complex then
interacts with mTOR to inhibit its function [174]. Inhibition of mTOR with rapamycin
prevented cell senescence and inhibited the proinflammatory SASP in mice and in lung
vascular cells or alveolar epithelial cells [44]. Rapamycin also reduces inflammatory cells in
BALF and decreases mean linear intercepts, destructive index, and mean alveolar airspace
area in CS-exposed mice [175].

7.4. AMP-Activated Protein Kinase (AMPK) Activators

The AMPK activator, 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), is an
analog of adenosine monophosphate that is capable of stimulating AMP-dependent AMPK
activity, reduces CSE-induced IL6 and IL8 in HBECs (cell line BEAS-2B) and SAECs and
elastase-induced emphysema in mice [173]. AICAR treatment also reduced the expression
of p16, p21, and p66shc but augmented klotho gene expression in both BEAS-2B and SAECs
treated with CSE, indicating the role of AMP as a therapeutic target in both inflammatory
and senescent pathways [173].

7.5. Mitogen-Activated Protein Kinase (MAPK) Inhibitors

p38 MAP kinases are a family of four serine/threonine kinases activated by cytokines
and cellular-induced stress. p38 MAPK is a key mediator of the SASP through regulation of
NF-κB activity and stabilization of SASP effector mRNA in senescent fibroblasts [176,177].
Hongo, et al. reported the potential usefulness of a p38 MAPK inhibitor for the prevention
of cellular senescence in cultivated human corneal endothelial cells [178]. p38 MAPK acti-
vation is increased in small airways of COPD patients and implicated in the pathogenesis
of COPD [179]. Acumapimod, an oral p38 inhibitor currently undergoing clinical trials
in severe acute COPD exacerbations, showed an improvement in lung function (forced
expiratory volume in 1 s; FEV1) when compared to a placebo [180]. Doramapimod, a highly
potent inhibitor of p38 MAPK, may also be effective in ameliorating inflammatory condi-
tions in older populations [181]. Furthermore, Dabrafenib and Trametinib were approved
by the FDA in 2018 for the treatment of melanoma and are used together to target different
aspects of the MAPK pathway. Dabrafenib has anti-inflammatory properties, inhibiting
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hyperpermeability, CAM expression, and adhesion of leukocytes [182]. Therefore, MAPK
inhibitors, similar to AMPK activators, may target inflammatory and senescent pathways.

7.6. B-Cell Lymphoma-2 (BCL-2) Inhibitors

BCL-2 inhibitors are a family of proteins which selectively inhibit the anti-apoptotic
protein localized on the outer membrane of the mitochondria. Long-term retention of
senescent cells can be attributed to increased expression of Bcl-family proteins, which can
promote tissue damage through a SASP [183]. Chang, et al. showed that ABT263, an
inhibitor of BCL-2 and BCL-xL, has the potential to selectively eliminate senescent cells
through the induction of apoptosis [184]. Senolytic agents Venetoclax (ABT-199) and Navi-
toclax (ABT-263) induced apoptotic cell death in soft-tissue sarcomas [185]. Venetoclax was
the first selective BCL-2 inhibitor to be approved for the treatment of chronic lymphocytic
leukemia and acute myeloid leukemia [186]. Zeng, et al. suggested the involvement of
BCL-2 in the pathogenesis of COPD [187]. BCL-2 inhibitors may have anti-neoplastic as
well as anti-inflammatory and anti-aging properties.

7.7. Heat Shock Protein 90 (HSP90) Inhibitors

A recent study identified HSP90 inhibitors as possible senolytic agents by utilizing a
library of compounds and identifying inhibitors of the HSP90 chaperone family as having
significant senolytic activity in mouse and human cells [188]. HSP90, an ATP-dependent
molecular chaperone involved in signal transduction, cellular transport, and protein de-
struction, is a therapeutic cancer target. Stroissnigg, et al. suggested that treatment of
Ercc1−/∆ mice, a mouse model of a human progeroid syndrome, with the HSP90 in-
hibitor 17-DMAG significantly delayed the onset of several age-related symptoms [188]. In
November 2021, clinical trials began with Gamitrinib, a mitochondrial HSP90 inhibitor with
anti-TNF-receptor associated protein 1 (TRAP-1) and anti-neoplastic properties. Gamitrinib
promotes the activation of cyclophilin D (CypD), mitochondrial permeability transition
pore opening (MTPT), and the release of cytochrome c, which induces cell death [189].
Cells isolated from Trap1−/− mice demonstrated both impaired cellular metabolic activity
and impaired cellular division. Inhibiting HSP90 and TRAP-1 may potentially decrease the
accelerated metabolic activity of senescent cells [189].

7.8. Eicosanoids

There are serval studies to suggest that eicosanoids could be utilized as a means of
countering lung diseases and possibly senescence. Endogenous PGE2 suppresses inflamma-
tion via PGE receptor 4 (PGER4) activation. The PGER4 receptor agonist (ONO-AE1-329)
modulated cytokine levels in asthma and COPD models [190]. Inhalation of exogenous
PGE2 prevents bronchoconstriction provoked by aspirin [191,192]. Treatment with Cele-
coxib, a nonsteroidal anti-inflammatory COX2 inhibitor, inhibited interalveolar wall dis-
tance and pulmonary inflammation in the lungs of CS-treated rats [193]. Celecoxib prevents
TNF-α-induced cellular senescence in human chondrocytes [194] but little is known about
its role in regulating senescence in lung cells or tissue.

7.9. The Future of Senolytic Therapy

The following candidates for future senolytic therapies based on early-stage re-
search were conducted in human cell lines in vitro: FOXO4-related peptides [195], pre-
vious mentioned BCL-2 inhibitors [196,197], USP7 inhibitors [198], Quercetin plus Dasa-
tinib [199], Fisetin, [200,201] Piperlonguimine [200,202], BIRC5 gene knockout [203], GLS1
inhibitors [204], procyanidin C1 [205], and EF-24 [196]. Medications or potential therapeutic
targets studied in either mice or xenograft models include src inhibitors/dasatinib [206],
Navitoclax [207], senescence-specific killing compound 1 (SSK1)/gemcitabine [208], and
anti-glycoprotein nonmetastatic melanoma protein B (anti-GPNMD) [209]. Equally, acti-
vation of nuclear factor-E2-related factor 2 (NRF2) through sirtuin signaling can alleviate
oxidative stress by suppressing cellular senescence [210]. NRF2 signaling wanes during the
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aging process while senescent responses increase [211] and melatonin can enhance NRF2
responses to suppress senescence [212]. Melatonin is an antioxidant hormone produced
primarily by the pineal gland and melatonin can also inhibit the p53-mediated senescence
pathway through the elimination of ROS or p53 deacetylation induced by upregulation of
SIRT1 expression [213]. Below, we highlight other possible candidates for future senolytic
therapy.

7.9.1. 25-Hydroxycholesterol (25HC)

25HC, an endogenous metabolite of cholesterol synthesis, represents a potential new
class of senolytics. Limbad, et al. utilized single-cell RNA sequencing to identify CRYAB, a
small heat shock protein, and HMOX1 (heme oxygenase 1) as robust senescence-induced
genes and senolytic targets. They further characterized 25HC, which interferes with CRYAB
aggregation, and reported a decrease in fibro-adipogenic progenitor (FAP) and satellite
cell (SC) concentrations in the presence of 25HC [214]. These two cell types are linked to
muscle stem cell dysfunction in aged skeletal muscles [215]. 25HC targets CRYAB in many
cell types, including the lung, and is localized in alveolar macrophages and pneumocytes
of COPD patients [216].

7.9.2. Azithromycin and Roxithromycin

Ozvari, et al. treated human MRC-5 and BJ fibroblast cell lines with a DNA-damaging
agent and measured protein content as a determinant of cell viability. Treatment of human
fibroblasts with azithromycin and roxithromycin induced aerobic glycolysis and autophagy,
but their effects on mitochondrial oxygen consumption rates varied [202]. These glycolysis
and autophagy changes may explain the potential senolytic activity of these macrolide
antibiotics. Azithromycin is widely studied for the treatment of patients with COPD exac-
erbations; long-term administration suppresses inflammatory cytokine release, increases
macrophage phagocytosis, and induces anti-inflammatory cytokine expression [217].

7.9.3. Cardiac Glycosides

Cells undergoing oncogene-induced senescence (OIS), a sustained antiproliferative re-
sponse due to an oncogene mutation or the inactivation of the tumor-suppressor gene [218],
display cellular alterations in electrolytic chemical composition. Guerrero, et al. compared
normal and senescent intracellular concentrations of sodium, calcium, and potassium using
a fluorescent probe and found that senescent cells contained an increased number of these
cations [219]. Treatment of these cells with Ouabain, an inhibitor of the Na+, K+-ATPase,
induced a subset of pro-apoptotic BCL-2 proteins, activated JNK, GSK3-β, and p38 in senes-
cent cells, and showed increased senolytic activity [219]. Moreover, Triana-Martinez and
colleagues showed that the senolytic effect of cardiac glycosides was effective in the elimi-
nation of senescent-induced lung fibroblasts [220]. Ouabain and digoxin exhibit senolytic
effects on p16-expressing human airway epithelial cells [221,222] suggesting there may be
a potential benefit of using these medications to target senescent cells and prevent airway
inflammation in patients with COPD.

Table 2. Therapeutic options to target senescence.

Medication/Therapeutic Target Mechanism of Action FDA Approved or Experimental

AICAR:
5-aminoimidazole-4-

carboxamide riboside

AMPK activation; reduces the expression of p16,
p21, and p66shc [173]; reduces IL6 and IL8 in

HBECs [173].

Experimental; only used in several
investigations in humans [223–225].

Metformin
AMPK activation reduces elastase-induced

emphysema and senescence in mice [173]; modifies
glucose flow across respiratory cells [170–172].

Approved in 1995 for diabetes; used for PCOS;
shown to inhibit the SASP [226].

Rapamycin mTOR inhibition [44]; reduction of inflammation
and mean alveolar space [175].

Approved in 1999 as an immunosuppressant
agent [227,228].
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Table 2. Cont.

Medication/Therapeutic Target Mechanism of Action FDA Approved or Experimental

Acumapimod
Doramapimod

Dabrafenib/Trametinib

p38 MAPK inhibition; regulation of NF-κB, and
stabilization of SASP effector mRNA [177,178];
inhibition of CAM expression and leukocyte

adhesion [183].

Experimental.
Experimental.

Approved in 2018 for the treatment of
melanoma [172].

Navitoclax (ABT-263)
Venetoclax (ABT-199)

BCL-2 inhibition leads to the induction of
apoptosis through a SASP [184,185].

Approved, both in 2016 and 2020, for chronic
lymphocytic leukemia and acute myeloid
leukemia [229]. Tests were conducted in

human cell lines in vitro [201].

Gamitrinib
HSP90 inhibition with anti-TNF-receptor

associated protein 1 properties; activation of
cyclophilin D; release of cytochrome c [189,223].

Experimental and undergoing clinical trials.
Promising therapeutic advantages for

pulmonary hypertension and senescence [230].

FOXO4-DRI Blocks interaction of FOXO4 and p53 and prevents
apoptosis [231].

Experimental promising senolytic [232]. Tests
were conducted in human cell lines in vitro

and in mice models [231].

25-Hydroxycholesterol

Interferes with CRYAB aggregation and decreases
FAP and SC concentration [233]; localized in

alveolar macrophages and pneumocytes in COPD
patients [216].

Experimental. Currently considered for
COVID-19 treatment [234]; evidence regarding

possible role use in COPD [235].

Melatonin

Melatonin prevents senescence by activating Nrf2
and inhibiting ER stress [212] and p53

deacetylation induced by upregulation of
SIRT1 [213]

Experimental.

Matrine
PI3K inhibition; Chinese herbal medication led to a
reduced number of senescent cells; decreased IGF1

and pAKT [236].

Experimental. Found to induce apoptosis in
acute myeloid leukemia [236].

Dasitinib+ Quercetin Src tyrosine kinase inhibition; PI3K pathway
inhibition [206,233].

Approved in 2017 for the treatment of
leukemia in pediatric patients. Quercetin
shows anti-inflammatory potential [237].

Eicosanoids and COX2 inhibitors

Endogenous PGE2 suppressed inflammation via
PGE Receptor 4 (PGER4) activation. The EP4
receptor agonist (ONO-AE1-329) modulated

cytokine levels in asthma and COPD models [190];
Inhalation of exogenous PGE2 prevents

bronchoconstriction provoked by aspirin [191,192];
Celecoxib inhibited interalveolar wall distance and

pulmonary inflammation in the lungs of
CS-treated rats [193].

Experimental.

Celecoxib is typically used to treat mild to
moderate pain and help relieve symptoms of

arthritis.

Kaempferol
Apigenin

NF-κB p65 inhibition via activation of the
IRAK1/IκBα signaling pathway [238]. Experimental.

Azithromycin
Roxithromycin

Macrolide antibiotics that induce aerobic glycolysis
and autophagy [202]; suppression of cytokine

release in COPD exacerbations [217].

Approved in 1987 and 2002; used for
prevention and treatment of exacerbations in
COPD [217]. Tests were conducted in human

cell lines [202].

Ouabain
Digoxin

Cardiac glycosides that inhibit the Na+, K+-ATPase,
induce pro-apoptotic BCL-2 proteins and activate

JNK, GSK3-β, and p38 in senescent cells [219].

Ouabain is not approved in the USA, France,
or Germany, but digoxin was approved in

2002. Tests were conducted in human cell lines
and mice models [221,222].

Gemcitabine SSKI with potent cytotoxicity for aged cells
through interaction with MAPK pathway [208].

Approved in 2011 for metastatic breast cancer
treatment. Tests were conducted in mouse

models [208].

AMPK: AMP-activated protein kinase; mTOR: mammalian target of rapamycin; MAPK: mitogen-activated protein
kinase; NFκB: nuclear factor kappa B; SASP: senescence-associated secretory phenotype; CAM: cell adhesion
molecule; BCL-2: B-cell lymphoma 2; HSP90: heat shock protein 90; Anti-TNF-receptor: anti-tumor necrosis factor
receptor; FOXO4: forkhead box O4; CRYAB: crystallin alpha B; FAP: fibro/adipogenic progenitor; SC: satellite
cell; COPD: chronic obstructive pulmonary disease; Nrf2: nuclear factor-erythroid factor-2 related factor 2; PI3K:
phosphoinositide 3-kinase; IGF1: insulin-like growth factor 1; pAKT: phosphorylated serine/threonine kinase;
IRAK1: interleukin 1 receptor-associated kinase 1; JNK: c-Jun N-terminal kinases; GSK3-β: glycogen synthase
kinase 3; SSKI: senescence-specific killing compound.
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8. Conclusions

Overall, there is mounting evidence to suggest that senescence could contribute to
cells being resistant to apoptosis, exhibiting elevated inflammation, and reduced dead cell
clearance, resulting in extensive tissue remodeling observed in COPD. Targeting senescent
cells using senolytics to selectively remove senescent cells or modulate SASP using small
molecules or antibodies represents a novel approach to countering COPD progression.
Several treatments that may target cellular senescence are in development.

There are many pathways linked to driving senescence, including DNA damage re-
sponses (due and not related to telomere length), telomere activity regulated by telomere
length, capping and inhibition, DNA methylation pathways, the p53 pathway, the p16
and p21 pathways, the SIRTs, Klotho signaling, IGF1/Akt signaling, SA-βgal activity, ROS
signaling, ADAM17 signaling, mTOR signaling, autophagy, phosphorylated H2AX, p38
MAPK signaling, NAD+/poly-ADP ribose polymerases mediated DNA damage repair,
degradation of the transcription factor Sp1, ROS signaling, NFκB signaling, p21 pathway,
ER stress, JAK/STAT signaling, RAS/PI3K/AKT signaling, mitochondrial DNA damage,
TCA cycle, and mitochondrial DAMPs. Many of these pathways are linked to COPD initial
and progression. However, the question remains whether targeting senescence will reverse
all or some of these altered pathways. Equally, few studies have investigated telomerase
activity in CS-exposures or disease conditions [239]. Several commercially available kits
to measure telomerase assays, such as the TRAPeze™ RT Telomerase Detection Kit from
Millipore/Sigma, could be useful approaches to determining telomere dysfunction. Al-
though there is substantial evidence to demonstrate that senescence is occurring in COPD,
many studies report elevated SASP but without evidence that these readouts were due
to senescence directly. It is difficult to rule out the influence of other pathways playing a
role in the production, release, and signaling of these SASP-associated mediators. Finally,
would targeting senescence in COPD also treat other comorbidities? To determine whether
therapies directly impact senescence-driven COPD, better markers of senescence and dis-
ease progression are needed. It is also important to study senescence through each stage of
COPD progression to identify the best treatment strategy to begin administering senolytics
for therapy.
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