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Abstract: Background and Objectives: Cataract is a disease that is globally prevalent in today’s pop-
ulation and occurs mostly in the elderly. It is an opacity of the lens that worsens vision and can
lead to blindness. One well-known risk factor of cataract is ultraviolet (UV) radiation. However,
increasing exposure to modern artificial light sources like light emitting diodes (LEDs) and displays
might have an impact on cataract formation due to possible high (and hidden) blue radiation. An
ex-vivo study indicates that intense blue radiation causes cataract in porcine lenses. The goal of
this work is the investigation whether violet or red light also lead to cataract formation in porcine
lenses and to compare the impact of the different wavelengths. Materials and Methods: LEDs with
wavelengths of 407 nm (violet), 463 nm (blue) and 635 nm (red) are used to irradiate ex–vivo porcine
lenses with a dose of 6 kJ/cm2. Before and after irradiation the lens transmissions are measured
and dark field images are taken to determine cataract formation. The same procedure is performed
for unirradiated controls. Results: The results of the transmission measurements are in accordance
with the results of the dark field images and state that 635 nm (red) is inducing no or only weak
cataract. In comparison to the dark field images the transmission measurements exhibit stronger
cataract formation for 407 nm than for 463 nm irradiation while the dark field images show similar
cataract formation for both wavelengths. Conclusions: Visible light of short wavelengths cause cataract
formation in porcine eyes, and it cannot be excluded that these wavelengths, which are emitted by
modern LED illuminants, also pose a danger to human eyes.

Keywords: cataract; porcine lens; visible light; violet light; blue light; red light; LED illuminants;
transmission; dark field image

1. Introduction

Cataract is lens opacity that worsens vision and can lead to blindness [1]. It can be
treated by surgery, which is not equally accessible to the world’s population [1]. Especially
in developing countries people might not have the necessary financial means or access to a
surgeon who can treat cataracts [1,2]. For this reason, the causes of cataract development
should be investigated in more detail. Contributing factors to the development of age-
related cataract are partially understood [1]. It is known that genetic and environmental
factors such as age, smoking, alcohol, diabetes, medications such as corticosteroids, malnu-
trition, high BMI (body mass index) and UVB radiation (ultraviolet radiation within the
spectral range 280–315 nm) contribute to an increased risk of developing cataract [1,2].

The exposure to artificial light has risen strongly over the last few years [3]. The reason
for this is that LED light sources are increasingly used, such as in illuminants, displays
and automotive headlights [4,5]. Fluorescent tubes and energy-saving lamps have been
emitting violet light for decades [6], and recently, due to the coronavirus pandemic, the
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use of violet LEDs in everyday life is also increasing, as light of this wavelength exhibits
antimicrobial and antiviral properties [7–9].

Cataract is distinguishable by anatomical location, color, size and opacity. To simplify
and unify cataract classification the WHO defined 3 different types of cataract: nuclear
(NUC), cortical (COR) and posterior subcapsular cataract (PSC) [10–12]. The different
types of cataract have different effects and origins. Nuclear cataract is a central opacity
of the lens originating from the nucleus [10,12]. It leads to a decrease in the patient’s
visual acuity [13]. In posterior subcapsular cataract, plaque-like opacifications occur in
the axial posterior region of the cortical layer or centrally or paracentrally on the posterior
capsule [10,12]. For this type of cataract, the patient becomes very sensitive to glare [13].
Cortical cataract usually has a wedge shape, which starts at the lens cortex and extends
to the center [10,12]. Often, however, not only one form of cataract occurs in patients, but
several at the same time [12]. In addition to the conventional cataract types, there are
special ones due to trauma, age or developmental disorders. They are often asymmetrical
and strongly separated from the rest of the tissue [14].

Since there is still no proven effective drug or other conservative treatment for cataract
diseases, the only way to improve the visual acuity is surgery. During surgery, the original
opaque lens is replaced by an artificial intraocular lens. The only exception to cataract
surgery is cataract due to galactosemia. This is a metabolic cataract, which occurs due to
the preserved galactose in the mother’s milk and can be treated non-invasively [15].

In this study, cataract formation in porcine eyes is investigated. Porcine eyes have al-
ready been applied as a model for human eyes in several experimental investigations [16–18].
A main reason for the selection are the phylogenetic parallels between porcine and hu-
man eye, for example, the similar thickness, shape and size of the sclera, localization of
photoreceptors in the periphery of the retina or holangiotic retinal vascularization [19]. In
addition, the use of ex-vivo porcine eyes involves less ethical and economic constraints,
making the availability and procurement process of porcine eyes less critical compared to
other species [20].

The influence of conventional light sources such as LEDs or fluorescent tubes emitting
blue light has been mainly studied for its impact on the retina but has remained unexplored
for the lens. Haag et al. reported that blue light with a wavelength of 460 nm has the
greatest effect on cataract formation in ex-vivo porcine lenses in comparison to UVA and
UVB radiation [21]. Based on these results, this work analyses and compares the impact of
further visible wavelengths. The experiments are performed with LEDs of 407 nm (violet),
463 nm (blue) and 635 nm (red). These wavelengths have been selected because white
LEDs exhibit strong blue peak emissions, powerful red LEDs are an essential component
of all displays and illuminants with adjustable color and violet emission peaks around
405 nm are found in fluorescent and energy saving lamps and strong violet LEDs that are
recently applied for disinfection purposes. Different experimental methods are applied to
characterize the occurring cataract in the lenses like transmission measurements and dark
field image analysis. The results of both measurement methods are compared to each other
and evaluated for each wavelength.

2. Materials and Methods
2.1. Light Sources

The LED sources are selected so that an irradiance of about 70 mW/cm2 is achieved.
For determining the irradiance on the lens surface, an optical power monitor “OPM 150”
of Artifex (Emden, Germany) is placed at the position where the lens is located during
irradiation. Afterwards, the OPM is replaced by the lenses, which are to be irradiated. This
irradiance allows the application of a total dose of 6 kJ/cm2 within 24 h and a comparison
with the former results of Haag et al. [21]. The following light sources are chosen. For the
violet irradiation with a peak emission at 407 nm one single LED “LuxiGenTM 385–410 nm”
of OSRAM (Munich, Germany) is used. For the blue irradiation with a peak emission at
463 nm four LEDs “Nichia NCSB219B-V1 SMD-LED” of Nichia (Anan, Japan) are applied
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and for the red spectrum two LEDs type “LZ4-00R108“ of OSRAM with a peak emission at
635 nm are chosen.

For each wavelength, a specific LED-set is built. Each set consists of a ventilator, a
cooling element and one or more LEDs, which are attached to the cooling element by a heat
conduction pad. The illumination of the sample area is quite homogeneous with a loss of
up to 20% at the edges.

2.2. Experimental Setup

The experimental setup consists of a 3D-printed box to secure the samples from
environmental light, a LED-set and a custom-made Petri dish, which stores up to ten
samples and is made of black plastic to minimize reflections (see Figure 1). The bottom part
of the box, which is also the holder of the Petri dishes, is placed in a cooling water bath
“Thermocell Cooling & Heating Block” (model: CHB-202) of Bioer (Hangzhou, China). This
allows to hold the temperature of the samples at 20 ◦C during the illumination. The upper
cover of the box has a hole through which the LEDs illuminates the samples. A second box
with a closed upper cover is applied for the unirradiated controls.
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Figure 1. (A) Setup for irradiation of porcine lenses, consisting of a 3D-printed box, a cooling water
bath and a LED-set with a ventilator and cooling element. (B) Custom-made Petri dish with ten
holders for storing lenses during irradiation.

2.3. Experimental Procedure

The ex-vivo porcine eyes of 6 to 8 months old pigs, are obtained from a local slaugh-
terhouse and investigated on the day of enucleation. In the first step, eyes and lenses are
scanned for possible damages and already existing cataracts. Conspicuous samples are
sorted out and not considered for further experiments. The lenses are carefully dissected
from the eyes and stored in BSS (balanced salt solution), which is similar to aqueous hu-
mor [22]. Then transmission measurements and dark field image analyses are performed
to evaluate and quantify cataract development.

These methods allow a comparison of the opacity of lenses before and after irradiation
with different wavelengths. For visualizing cataract in the porcine lenses a single lens is
placed in a Petri dish with a mounting disk that prevents the lens from sliding around,
which is filled with BSS and a picture is taken with a dark field microscope [21]. The dark
field microscope camera generates a grayscale image. The evaluation of the gray images
is performed with MATLAB (MathWorks, Natick, MA, USA) according to the method of
Haag et al. [21]. A histogram linearization is performed to increase the contrast of the
captured original image. On this histogram linearized image, a circle is defined around the
lens to be cut out. To evaluate the cataract formation, the brightness of the lens structures
are determined by summing the pixel values of the cut out original image. In addition,



Medicina 2022, 58, 721 4 of 10

false color images are generated from the grayscale images to improve the visualization of
cataract formation.

For the transmission measurements the lenses are put in the wells of a 6x8 microtiter
plate “COSTAR48”, with 500 µL of BSS in each well. The measurements are performed in a
spiral, with a diameter of 5 mm from the central point of each lens with the microtiter plate
reader “CLARIOstar PLUS” of BMG Labtech (Ortenberg, Germany). The transmission
measurement is performed in a wavelength range of 220–1000 nm and measurements are
taken in 1 nm steps. Afterwards, the samples are irradiated for 24 h by one of the LED-sets at
the selected wavelength until a dose of 6 kJ/cm2 is reached. During this time, samples and
controls are stored in custom-made Petri dishes (see Figure 1B) filled with CAS (complex
antimicrobial saline). This solution is a composition of three different components: 94% BSS,
4% fetal calf serum (strong absorption at 405 nm) and 2% GVPC (Glycine, Vancomycin,
Polymyxin B, Cycloheximid). CAS reduces growth of microorganisms such as fungi and
bacteria and acts against the decomposition of biological samples.

During irradiation, the samples are kept at a constant temperature of 20 ◦C. The
control group of unirradiated lenses is stored under the same conditions as the irradiated
samples, but without irradiation. After the samples are irradiated for 24 h transmission
measurements are repeated again and dark field images are taken.

A total of 95 lenses are irradiated. 33 lenses with a wavelength of 407 nm (violet),
34 lenses with a wavelength of 463 nm (blue), 28 lenses with a wavelength of 635 nm (red).
For the control group 115 lenses are examined.

2.4. Transmission Analysis

The transmission spectra of the irradiated lenses are compared to each other to find out
whether a lens change has occurred and how strong it is. To quantify changes in the lenses
the spectra of the transmission of the lenses before and after irradiation or before and after
storage for the controls are converted to an area under the curve (AUC) in the wavelength
range from 400 to 750 nm. This AUC-value is applied to determine transmission changes.
Therefore, first the ratio of the change of the samples (see Equation (1)) and of the controls
(see Equation (2)) are calculated. A value of one means that there is no difference between
the lenses before and after storage or irradiation. The closer the value is to zero, the more
the lens is affected by aging or irradiation and the more the transmission spectra have
changed. With Equations (1) and (2) the change of the samples, which are irradiated in
comparison to the mean change of all stored control lenses taking into account the decay
effect is calculated by the ratio in Equation (3).

AUC ratio of sample change =
AUC sample after irradiation

AUC sample before irradiation
(1)

AUC ratio of control change =
AUC control after storage

AUC control before storage
(2)

RTrans =
AUC ratio of the sample change

mean of AUC ratio of the controls change
(3)

A value of one for the overall change in Equation (3) means that there is no difference
between an irradiated sample and the stored controls. If the distance to zero decreases, the
more the transmission spectra has changed. This means that the effect of the irradiation to
the samples has a high influence. It also considers potential decay effects of the lenses.

2.5. Dark Field Images

For the evaluation of the dark field images, first the average signal per pixel (pav) is
determined (see Equation (4)). Therefore, the summed pixel value per area of the cut out
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original image is calculated with the mean radius of the lens (rmean) and the summed pixel
values of the lens (psum).

pav =
psum

π rmean
2 (4)

The offset of the dark field image, which is determined by the mean dark value per
area, is subtracted from the average signal per pixel of the irradiated and non-irradiated
lenses. This true pixel value (ptrue) is used to determine the change in the lenses. Therefore,
first the ratio of the change in pixel values of the samples after irradiation (see Equation (5))
and of controls after storage are calculated (see Equation (6)). These are used to determine
the ratio RDFI, where the change in the pixel values of each sample compared to the mean
change of the stored controls is calculated to account for decay effects of the lenses (see
Equation (7)).

Ratio of sample change =
ptrue of sample after irradiation

ptrue of sample before irradiation
(5)

Ratio of control change =
ptrue of control after storage

ptrue of control before storage
(6)

RDFI =
ratio of sample change

mean of ratio of controls change
(7)

The closer the ratio RDFI is to one, the smaller is the effect of cataract formation If the
ratio RDFI is greater than one, irradiation has a greater impact on cataract formation than
the decay effect.

2.6. Statistical Analysis

The statistical evaluation of the data of RTrans and RDFI is performed with IBM SPSS
Statistics 25. A one-way ANOVA is performed followed by a post-hoc analysis. Depending
on whether the data show variance homogeneity, the Tukey test (variance homogeneity of
the data is given) or the Games-Howell test (variance homogeneity of the data is not given)
is performed as post-hoc analysis.

3. Results
3.1. Transmission

For comparison of the transmission results of the different wavelengths, the corre-
sponding ratios RTrans, which are calculated by Equation (3), are plotted in the boxplot
(see Figure 2). No change in transmission results in a value of one. A high change in
transmission causes a value closer to zero.

For irradiation with 407 nm, a median of 0.05 and a mean value with standard de-
viation of 0.16 ± 0.23 are found for RTrans. The upper whisker is just above 0.4 and the
lower whisker is close to 0. This shows a small scatter in the transmission change. 50%
of the values lie between 0.26 and 0. For irradiation with 463 nm a median of 0.64 and
a mean value of 0.66 ± 0.50 are observed. The upper whisker is just below 1.8 and the
lower whisker close to 0. Here a large scatter of the transmission change of the lenses is
revealed. 50% of the lenses exhibit an RTrans between 0.3 and 0.9. For the irradiation with
635 nm, a median of 1.03 and a mean value of 1.04 ± 0.52 are observed. The upper whisker
is just above 1.6 and the lower whisker just above 0.4. A relatively large scattering of the
results is visible. Performing a one-way ANOVA reveals that RTrans is statistically lower for
smaller wavelengths than for higher ones. Since variance homogeneity is not given, the
Games-Howell test is performed as post-hoc test and results in p < 0.05 for all tests.
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3.2. Dark Field Images

For each irradiation wavelength and for the controls, a representative lens was selected
exemplarily to visualize the change of the lens. The corresponding dark field images were
converted into false color image with the same scale, since these make the scattering of
the light more visible. In all images an outer ring and an inner ring can be observed (see
Figure 3). The outer ring is the edge of the mounting disk, in which the lens is stored in the
medium, so that the lens is kept in the right position during the dark field imaging. The
inner ring is the edge of the lens. The pixel values between the outer and the inner ring
were not considered in the evaluation.

Medicina 2022, 58, 721 7 of 10 
 

 

 
Figure 3. An outer and inner ring can be observed in the dark field image. The outer ring shows the 
edge of the mounting disk, in which the lens is stored in the medium and the inner ring represents 
the edge of the lens. 

The first three images in the top row of Figure 4 illustrate the lenses before irradiation 
and the bottom row gives the same lenses after irradiation. The last lens exhibits the con-
trol in comparison before to after storage. The first lens (407before) before irradiation with 
407 nm reveals a slight star cataract, but otherwise no opacity is visible. After irradiation, 
a strong nuclear cataract formation is observed in the lens (407after). The irradiation with 
463 nm has induced subcapsular and cortical cataract in the lens (463after). In comparison, 
the lens before irradiation (463before) exhibits a more regular structure without clear opac-
ity, but a preexisting star cataract is recognizable. Before and after irradiation with 635 nm 
no clear opacity of the lens can be observed. The lens (635before) is more transparent before 
irradiation. After irradiation, only a small area with increased scattering of light in the 
middle of the lens is induced (635after) and a slight nuclear cataract is visible. The last im-
ages illustrate the decay effect of the control lenses after a storage of 24 h without irradia-
tion. It can be observed that the scattering of light after storage (Cafter) is higher than before 
storage (Cbefore) only in the center of the lens. 

 
Figure 4. False color images converted from captured gray images. The first three lenses 407before, 
463before and 635before in the upper row were taken before irradiation and in the lower row the 
same lenses 407after, 463after and 635after were taken after irradiation with 407 nm, 463 nm and 635 

Figure 3. An outer and inner ring can be observed in the dark field image. The outer ring shows the
edge of the mounting disk, in which the lens is stored in the medium and the inner ring represents
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The first three images in the top row of Figure 4 illustrate the lenses before irradiation
and the bottom row gives the same lenses after irradiation. The last lens exhibits the control
in comparison before to after storage. The first lens (407before) before irradiation with
407 nm reveals a slight star cataract, but otherwise no opacity is visible. After irradiation,
a strong nuclear cataract formation is observed in the lens (407after). The irradiation with
463 nm has induced subcapsular and cortical cataract in the lens (463after). In comparison,
the lens before irradiation (463before) exhibits a more regular structure without clear opacity,
but a preexisting star cataract is recognizable. Before and after irradiation with 635 nm no
clear opacity of the lens can be observed. The lens (635before) is more transparent before
irradiation. After irradiation, only a small area with increased scattering of light in the
middle of the lens is induced (635after) and a slight nuclear cataract is visible. The last
images illustrate the decay effect of the control lenses after a storage of 24 h without
irradiation. It can be observed that the scattering of light after storage (Cafter) is higher than
before storage (Cbefore) only in the center of the lens.
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Figure 4. False color images converted from captured gray images. The first three lenses 407before,
463before and 635before in the upper row were taken before irradiation and in the lower row the same
lenses 407after, 463after and 635after were taken after irradiation with 407 nm, 463 nm and 635 nm.
The last lens Cbefore and Cafter illustrates an unirradiated control lens. Here, a false color image was
generated before and after a storage period of 24 h.

To quantify the change in lenses for each wavelength, the corresponding ratios of
pixel change RDFI of all lenses, calculated according to Equation (7), are presented in the
boxplots in Figure 5. The ratios RDFI for the irradiation with 407 nm and 463 nm exhibit
similar median values with 1.40 and 1.41 but the mean value with standard deviation at
407 nm of 1.61 ± 0.83 is higher than the mean value at 463 nm of 1.26 ± 1.52. 50% of the
ratios RDFI at 407 nm are between 0.93 and 2.05 and those at 463 nm are between 0.80 and
1.64. The maximum change of RDFI = 3.04 after 407 nm irradiation is higher compared to
the maximum change of RDFI = 2.17 after 463 nm irradiation. The mean and median values
for the results of the irradiation with the red LED are 1.22 ± 0.55 and 1.05, respectively.
50% of the quotient values are between 0.83 and 1.53. The lens with the maximum change
after irradiation with 635 nm is indicated with the ratio RDFI of 1.92. The scattering in
the pixel change is higher for 407 nm and 463 nm in comparison to 635 nm. Outliers can
be observed within the results of all three wavelengths. Performing a one-way ANOVA
reveals that there are no statistical differences in RDFI for different wavelengths. Since
variance homogeneity is given the Tukey test is performed as post-hoc test and results
in p < 0.05 for all tests. Nevertheless, the mean value of RDFI decreases with increasing
wavelength.
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nm. The last lens Cbefore and Cafter illustrates an unirradiated control lens. Here, a false color image 
was generated before and after a storage period of 24 h.

To quantify the change in lenses for each wavelength, the corresponding ratios of pixel 
change RDFI of all lenses, calculated according to Equation (7), are presented in the boxplots 
in Figure 5. The ratios RDFI for the irradiation with 407 nm and 463 nm exhibit similar median 
values with 1.40 and 1.41 but the mean value with standard deviation at 407 nm of 1.61 ± 
0.83 is higher than the mean value at 463 nm of 1.26 ± 1.52. 50% of the ratios RDFI at 407 nm 
are between 0.93 and 2.05 and those at 463 nm are between 0.80 and 1.64. The maximum 
change of RDFI = 3.04 after 407 nm irradiation is higher compared to the maximum change of 
RDFI = 2.17 after 463 nm irradiation. The mean and median values for the results of the irra-
diation with the red LED are 1.22 ± 0.55 and 1.05, respectively. 50% of the quotient values 
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4. Discussion

The boxplots for the transmission change due to irradiation (see Figure 2) reveal, that
irradiation with a wavelength of 407 nm (violet) exhibits the strongest cataract formation.
This is proven by the mean, which is nearly zero. The results for the wavelength of 463 nm
(blue) reveal a wide scattering of the ratios RTrans. The induced cataract ranges from nearly
no cataract to very strong opacity in the lens and are in agreement with the previously
reported results for blue light [21]. At 635 nm (red) the results show no up to a slight
cataract formation, which is represented by a mean near to one.

By the results of the dark field image analysis the conclusion can be drawn, that
irradiation with all three wavelengths is inducing cataract since the ratio RDFI is higher than
one. Considering the median of the boxplots, which is more robust against outliers than
the mean, it can be stated, that irradiation at 407 nm and 463 nm induce similar degreed of
cataract and in contrast the irradiation at 635 nm induces no to weak opacity in the lenses.

The results of the transmission measurements are in accordance with the results of the
dark field images, except of the violet irradiation, since for the irradiation with 407 nm the
transmission measurement shows stronger cataract formation in comparison to the dark
field images. Possible reasons are a very strong scattering and shielding of the light, which
result in lower pixel values for the dark field images.

These investigations have been performed with ex-vivo porcine eyes and high irradia-
tion doses of 6 kJ/cm2. It is a reasonable question whether these results can be transferred
to in-vivo human eyes and whether human eyes are exposed to such doses under realistic
circumstances. Unfortunately, we cannot answer these questions for human eyes, but
Wang et al. investigated the effect of blue light (460 nm) on in-vivo rat eyes [23]. For 4 to
12 weeks they kept rats under a blue illumination of 3000 lux for 12 h a day and observed
cataract formation. Even the shortest period of 4 weeks of 3000 lux @ 460 nm is equivalent
to a total dose of blue light of about 9 kJ/cm2 and in the same order of magnitude as
the here applied of 6 kJ/cm2. (The conversion from lux or lm/m2 to W/m2 and J/cm2

was performed with the help of the standard conversion formula for monochromatic light
sources φv = 683 lm/W V(λ) φe, with the luminous flux φv in lm, the radiant flux φe in W
and the luminous efficiency V(460 nm) = 0.06).

Therefore, at least ex-vivo porcine and in-vivo rat eyes don’t appear to be totally
different regarding cataract formation by blue light and it seems to be reasonable that
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in-vivo human eyes or lenses might exhibit a similar risk of cataract formation by blue and
probably also by violet (LED) light.

5. Conclusions

Short wavelengths visible (violet and blue) light causes cataract formation in ex-vivo
porcine eyes. Though there is still no prove, this might also happen to human eyes. This
is important as modern artificial light sources like LEDs or energy-saving lamps with
their strong blue and violet emissions are more and more replacing filament bulbs that
exhibit only weak blue emissions. Therefore, though these modern illuminants do not emit
ultraviolet radiation, which is known for its cataract generation, they still might lead to
additional cataracts and cataract surgery.
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