
eMethods  

Cluster derivation 

We applied an unsupervised ML approach to develop clinical phenotypes of DKT 

recipients in the UNOS/OPTN database by conducting unsupervised consensus clustering.[1] 

We performed consensus clustering analysis on the whole study population. We initially 

assessed the distribution and missingness in phenotyping variables. Subsequently, missing 

data were imputed through multiple imputation using multivariate imputation by chained 

equations (MICE),[2] and non-normal data were z-score normalized. Multiple imputation is a 

widely used approach to estimate variables when data are missing at random. MICE is optimal 

when less than 30% of a variable’s data are missing.[3-8] All of the extracted variables in our 

study had missing data less than 5%. We subsequently applied clustering using the consensus 

cluster algorithm. The algorithm begins by subsampling a proportion of items and a proportion of 

features from a data matrix. Each subsample is then partitioned into up to groups (k) by a user-

specified clustering algorithm. This process is repeated for a specified number of times. 

Pairwise consensus values, defined as ‘the proportion of clustering runs in which two items are 

grouped together, are calculated and stored in a consensus matrix (CM) for each cluster. 

Clustering settings used were as follows: maximum number of clusters, 10; number of iterations, 

100; subsampling fraction, 0.8; clustering algorithm, , K-means; Euclidean distance).[1] The 

number of potential clusters ranges from 2 to 10, to avoid producing an excessive number of 

clusters that would not be clinical useful. Pairwise consensus values, defined as ‘the proportion

of clustering runs in which two items are [grouped] together[1], are calculated and stored in a CM 

for each k. Then for each k, a final agglomerative hierarchical consensus clustering using 

distance of 1−consensus values is completed and pruned to k groups, which are called 

consensus clusters.  



The clustering algorithm is to maximize the potential number of clusters while 

maintaining high cluster consensus. The optimal number of clusters was determined by 

examining the CM heat map, cumulative distribution function, and cluster-consensus plots with 

the within-cluster consensus scores.[9, 10] The within-cluster consensus score, ranging between 0 

and 1, is defined as the average consensus value for all pairs of individuals belonging to the 

same cluster.[10] A value closer to one indicates better cluster stability.[10] To examine the cluster 

profile, we calculated and graphically displayed the standardized mean differences of the 

variables between each cluster and the overall study population. Calculation of the standardized 

difference of each parameter used the cutoff of ±0.3 to show subgroup features with the key 

features for each cluster [11-22].  

All cluster derivation analyses were performed using R, version 4.0.3 (RStudio, Inc., 

Boston, MA; http://www.rstudio.com/), with the packages of ConsensusClusterPlus (version 

1.46.0)[10]. We imputed missing data through multivariable imputation by chained equation 

(MICE) method.[2] All analyses were two-tailed, and P value < .05 was considered statistically 

significant. 

 

 

 

 

 

 

 

 

 

 



Figure S1. Consensus matrix heat map (k = 2) depicting consensus values on a white to blue 

color scale of each cluster 

 

 

 

 

 

 

 

 

 



Figure S2. Consensus matrix heat map (k = 3) depicting consensus values on a white to blue 

color scale of each cluster 

 

 

 

 

 

 

 

 

 



Figure S3. Consensus matrix heat map (k = 4) depicting consensus values on a white to blue 

color scale of each cluster 

 

 

 

 

 

 

 

 

 



Figure S4. Consensus matrix heat map (k = 5) depicting consensus values on a white to blue 

color scale of each cluster 

 

 

 

 

 

 

 

 

 

 



Figure S5. Consensus matrix heat map (k = 6) depicting consensus values on a white to blue 

color scale of each cluster 

 

 

 

 

 

 

 

 

 

 



Figure S6. Consensus matrix heat map (k = 7) depicting consensus values on a white to blue 

color scale of each cluster 

 

 

 

 

 

 

 

 

 



Figure S7. Consensus matrix heat map (k = 8) depicting consensus values on a white to blue 

color scale of each cluster 

 

 

 

 

 

 

 

 

 



Figure S8. Consensus matrix heat map (k = 9) depicting consensus values on a white to blue 

color scale of each cluster 

 

 

 

 

 

 

 

 

 



Figure S9. Consensus matrix heat map (k = 10) depicting consensus values on a white to blue 

color scale of each cluster 
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