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Abstract: Background and objectives: This study investigated the usefulness of deep neural network 
(DNN) models based on 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) and 
blood inflammatory markers to assess the therapeutic response in pyogenic vertebral osteomyelitis 
(PVO). Materials and Methods: This was a retrospective study with prospectively collected data. Sev-
enty-four patients diagnosed with PVO underwent clinical assessment for therapeutic responses 
based on clinical features during antibiotic therapy. The decisions of the clinical assessment were 
confirmed as ‘Cured’ or ‘Non-cured’. FDG-PETs were conducted concomitantly regardless of the 
decision at each clinical assessment. We developed DNN models depending on the use of attributes, 
including C-reactive protein (CRP), erythrocyte sedimentation ratio (ESR), and maximum standard-
ized FDG uptake values of PVO lesions (SUVmax), and we compared their performances to predict 
PVO remission. Results: The 126 decisions (80 ‘Cured’ and 46 ‘Non-cured’ patients) were randomly 
assigned with training and test sets (7:3). We trained DNN models using a training set and evalu-
ated their performances for a test set. DNN model 1 had an accuracy of 76.3% and an area under 
the receiver operating characteristic curve (AUC) of 0.768 [95% confidence interval, 0.625–0.910] 
using CRP and ESR, and these values were 79% and 0.804 [0.674–0.933] for DNN model 2 using ESR 
and SUVmax, 86.8% and 0.851 [0.726–0.976] for DNN model 3 using CRP and SUVmax, and 89.5% and 
0.902 [0.804–0.999] for DNN model 4 using ESR, CRP, and SUVmax, respectively. Conclusions: The 
DNN models using SUVmax showed better performances when predicting the remission of PVO 
compared to CRP and ESR. The best performance was obtained in the DNN model using all attrib-
utes, including CRP, ESR, and SUVmax, which may be helpful for predicting the accurate remission 
of PVO. 
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1. Introduction 
Pyogenic vertebral osteomyelitis (PVO) invades the spine and adjacent structures, 

shows non-specific symptoms, and is usually progresses to destructive spondylodiscitis 
with abscess formation at the time of diagnosis [1–4]. Long-term intravenous antibiotics 
are generally recommended for 6 to 12 weeks for treating PVO, but treatment guidelines 
have not been clearly established due to the diversity of causative bacteria and antibiotic 
resistance in the regions [2,5–8]. Moreover, in the assessment of therapeutic response, 
blood inflammatory markers such as C-reactive protein (CRP) and erythrocyte sedimen-
tation rate (ESR) can be easily influenced by other physical conditions. Magnetic reso-
nance imaging (MRI), regarded as the best modality to present the anatomical state of the 
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spine, also has limitations in differentiating residual PVO and post-treatment structural 
abnormalities under the healing process [4,9,10]. 

To overcome these limitations, there has been new attempt to apply 18F-fluorodeox-
yglucose positron emission tomography (FDG-PET) in the assessment of the therapeutic 
response in PVO [11–13]. Changes in FDG uptake, presented as maximum standardized 
FDG uptake (SUVmax), showed superior outcomes for evaluating residual PVO compared 
to CRP and ESR [12–14]. However, SUVmax can also be variable depending on the struc-
tural features, including the anatomical location of major PVO lesions and the stabilization 
of the damaged intervertebral discs (autofusion) in cured PVO after sufficient antibiotic 
therapy [15,16]. These characteristics can also cause variability in the SUVmax, even in 
patients with cured PVO, and, therefore, blood inflammatory markers should also be con-
sidered for the assessment of therapeutic responses. 

Deep learning (DL) is an emerging technique, and its application is gradually increas-
ing in the field of medicine. DL differs from traditional machine learning methods, such 
as linear regression, artificial neural network, support vector machines, and naïve Bayes 
classifiers, by how representations are automatically discovered from raw data. The algo-
rithms of DL use multiple deep layers of perceptron that capture low- and high-level rep-
resentations of data, enabling them to learn richer abstractions of inputs [17,18]. In partic-
ular, a deep neural network (DNN), a type of DL, is a mathematical model that simulates 
the structure and functionalities of a biological neural network. It is a feed-forward neural 
network with multiple hidden layers, which can be applied in the problems of classifica-
tion and regression [19]. In particular, a DNN is a relatively simple algorithm compared 
to other DL techniques and shows excellent performance for clinical predictions by binary 
classification based on various clinical features. 

In this study, we used DNN to overcome difficulties in obtaining high objectivity for 
the assessment of therapeutic responses in PVO. DNN models were developed based on 
various combinations of SUVmax, ESR, and CRP, considering their relationships and com-
plementary effects, and their performances were evaluated and compared to predict the 
remission of PVO after antibiotic therapy. 

2. Patients and Methods 
2.1. Patients 

We retrospectively reviewed the prospective collected clinical and radiological data 
of 100 patients with PVO (63 men and 37 women) treated at single tertiary university hos-
pital from December 2017 to March 2021. The criteria of inclusion were as follows: (1) 
patients presented with clinical symptoms (fever, back pain, or neurological signs) and 
specific findings on MRI of PVO, (2) PVO was on thoracolumbar spine, (3) with/without 
identification of causative bacteria in the PVO lesion or ≥2 sets of blood cultures, and (4) 
above 20 years old. Patients with tuberculous vertebral osteomyelitis, a PVO lesion con-
taining instrumentation or bone cement, bone infection other than in the spine, recent 
trauma, tumor, pregnancy, or experiencing severe concomitant medical problems were 
excluded. 

Under the voluntary written informed consent, all patients participated in this study 
to receive a simultaneous FDG-PET/MRI at each clinical assessment during antibiotic ther-
apy. All clinical and radiological data were collected and analyzed under the approval of 
the institutional review board. 

2.2. Clinical Assessment and Determining Therapeutic Response 
All patients participating in this study underwent clinical assessments to determine 

therapeutic responses during antibiotic therapy based on clinical symptoms including fe-
ver, back pain, and CRP (normal range <0.5 mg/L in our institute), which were performed 
after the minimum intravenous antibiotic therapy of 3 weeks [20]. In addition, each clini-
cal assessment was conducted in the absence of any other medical problems that could 
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affect the decision making. The decisions for therapeutic responses by clinical assessments 
were classified as ‘Cured (group C)’ or ‘Non-cured (group NC)’. Simultaneous FDG-
PET/MRIs of the spine involving PVO were taken concurrently at each clinical assessment, 
regardless of the decision for therapeutic response. The choice of selective or empirical 
parenteral antibiotics was made after consultation with an infectious disease physician. 

At the clinical assessment, decisions based on the condition presenting with sus-
tained or aggravated clinical symptoms, sustained or re-elevated CRP, and aggravation 
of the PVO lesion on MRI (defined as newly developed or progressed epidural/intraver-
tebral/psoas abscess) and/or persistent causative bacteria on the PVO lesion were classi-
fied into group NC. When the decision was classified into group C by clinical assessment, 
antibiotic therapy was discontinued. The decision of group C was observed with a mini-
mum follow-up period of six months after discontinuing antibiotic therapy, and they were 
finally confirmed as group C if there was no recurrence [21]. Recurrence was defined as 
the condition presenting with a re-elevation of CRP ≥1 mg/L, aggravated clinical symp-
toms with/without fever, and aggravation of the PVO lesion on MRI during the follow-up 
period. If there was a recurrence in the initial decision of group C during the follow-up 
period, the follow-up was stopped and the decision was finally classified into group NC. 

2.3. FDG-PET/MRI and Image Analysis 
Each patient underwent simultaneous FDG-PETs/MRIs (Biograph mMR; Siemens 

Healthcare, Erlangen, Germany) with fasting for more than 6 h to maintain a blood glu-
cose level of under 8.9 mmol/L before the intravenous administration of FDG (3.7 
MBq/kg). The acquisition of simultaneous FDG-PETs/MRIs was initiated 60 min after FDG 
injection, and the thoracolumbar spine centering PVO lesion was scanned under one–two 
bed positions with the approved surface coil. FDG-PET data acquisition was performed 
over 20 min, and the MRI data were also simultaneously obtained based on the predeter-
mined sequence protocol [14]. We applied a 3-dimensional ordered subsets expectation 
maximization iterative reconstruction (OSEM-IR) algorithm with 3 iterations and 21 sub-
sets for the FDG-PET data using a 172 × 172 matrix. To measure the FDG uptake value, 
we drew an ellipsoid volume of interest including the PVO lesion based on the spine 
structures of the MRI and confirmed the maximum standardized uptake value of FDG 
(SUVmax). 

2.4. Deep Neural Network Model 
We developed DNN models as pattern classifiers to predict the remission of PVO 

using supervised learning. This DNN is a type of feed-forward artificial neural network 
whereby logical units of one layer only communicate with the subsequent layer, and it 
consists of three kinds of layers including input, hidden, and output layers. DNN models 
were developed based on various combinations of the attributes including ESR, CRP, and 
SUVmax. The DNN model utilized the backpropagation rule for training, which repeti-
tively calculates the error function for each input and backpropagates the error to the pre-
vious layer. The weights were adjusted in direct proportion to the error in the neural 
nodes to which it was connected. The data of the ESR, CRP, and SUVmax were randomly 
assigned as 70% to the training set and 30% to the test set, respectively. The DNN model 
was developed using Keras 2.6.0 with a TensorFlow 2.6.0 backend, and all experiments 
were performed based on a single Nvidia GeForce RTX 2080 Ti graphics card. 

2.5. Statistical Analysis 
We used SPSS version 25.0 software (SPSS Inc., Chicago, IL, USA) for conducting the 

statistical analyses. Categorical and continuous variables are presented as numbers with 
percentages and median values with a range, respectively. AUCs were used to assess the 
performance of the DNN models to predict the remission of PVO. To compare the two 
population means, the Kolmogorov–Smirnov test was used to determine whether the 
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sample data had a normal distribution (normality test), and then the Student’s t-test and 
Mann–Whitney U test were used for parametric and non-parametric continuous variables, 
respectively. Probability values (p-values) of less than 0.05 were considered statistically 
significant. 

3. Results 
3.1. Demographic and Clinical Data 

Among 100 patients, 26 were finally excluded from this study due to the following 
reasons: only a back muscle abscess with no spondylodiscitis (n = 8), spinal screw within 
the PVO lesion (n = 6), tuberculous spondylodiscitis (n = 3), degenerative change (n = 1), 
trauma (n = 2), ankylosing spondylitis (n = 2), other severe concomitant medical problems 
(n = 1), and lost to follow-up or withdrawal of participation (n = 3). Final analyses were 
performed on 74 patients (47 men and 27 women) with a mean age of 67.27 ± 11.18 (37–
85) years. The main cause of PVO was injection or acupuncture (47.3%, 35/74). Back pain 
was the most common symptom (97.3%, 72/74) in the initial clinical features of PVO, and 
fever was present in half of the patients with PVO (50.0%, 37/74). The lumbar-sacral spine 
was the main location of the PVO (87.8%, 65/74). Detailed data are presented in Table 1. 

Table 1. Demographic and clinical data. 

Characteristics Values 
Age, years 67.27 ± 11.18 (37–85) 
Sex (Male/Female) 47/27 
Cause of PVO  
  Spontaneous 30/74 (40.5%) 
  Procedure-related 44/74 (59.5%) 
  Injection or acupuncture 35/44 (79.5%) 
  Operation  9/44 (20.5%) 
Initial clinical features at diagnosis of PVO  
  Fever (°C, >37.3) 37/74 (50.0%) 
  Back pain 72/74 (97.3%) 
  Radiculopathy 39/74 (52.7%) 
  Weakness 10/74 (13.5%) 
  Bowel and bladder symptoms 4/74 (5.4%) 
  Extent of PVO, levels 1.35 ± 0.53 (1–3) 
  Location of PVO  
    Thoracic spine 6/74 (8.1%) 
    Thoracic-lumbar spine 3/74 (4.0%) 
    Lumbar-sacral spine 65/74 (87.8%) 
  ESR (mm/h) 67.68 ± 30.21 (6–120) 
  CRP (mg/L) 9.84 ± 9.16 (0.03–33.8) 
Duration of follow up, months #  12.66 ± 8.81 (1–44) 
PVO, pyogenic vertebral osteomyelitis; ESR, erythrocyte sedimentation ratio (normal range of <20 
mm/h); CRP, C-reactive protein (normal range of <0.5 mg/dL), # after discontinuing of antibiotic 
therapy under the decision of ‘Cured’. 

3.2. Causative Bacteria and Antibiotic Therapy 
The rate of bacterial identification was 51.4% (38/74) in the blood and/or PVO tissue 

cultures. The main causative bacterium identified was methicillin-sensitive Staphylococcus 
aureus (34.2%, 13/38). The mean duration of parenteral antibiotic therapy was 44.14 ± 16.70 
(21–89) days. Detailed data are presented in Table 2. 
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Table 2. Microorganisms and antibiotics. 

Characteristics Values 
Identification of causative bacteria 38/74 (51.4%) 
Causative bacteria  

Gram-positive bacteria 35/38 (92.1%) 
Staphylococcus aureus 18/35 (51.4%) 

MSSA 13/15 (60.0%) 
MRSA 5/15 (40.0%) 

Coagulase-negative staphylococci 6/35 (17.1%) 
MRSE 3/6 (50.0%) 
Others 3/6 (50.0%) 

Streptococcus species 7/35 (20.0%) 
Enterococcus species 4/35 (11.4%) 

Gram-negative bacteria 3/38 (7.9%) 
Escherichia coli 2/3 (66.7%) 

Enterobacter species 1/3 (33.3%) 
Non 36/74 (48.6%) 

Routes of causative bacterial diagnosis  
Blood 10/38 (26.3%) 
PVO lesion 19/38 (50.0%) 
Blood and PVO lesion 6/38 (15.8%) 

Duration of parenteral antibiotics, days 44.14 ± 16.70 (21–89) 
MSSA, methicillin-sensitive staphylococcus aureus; MRSA, methicillin-resistant staphylococcus aureus; 
MRSE, methicillin-resistant staphylococcus epidermidis; PVO, pyogenic vertebral osteomyelitis. 

3.3. Clinical Assessment and Determination of Therapeutic Response 
Among the decisions of residual PVO (no remission), those showing a definite ag-

gravation of the PVO lesion on MRI and/or persistent causative bacteria on the PVO lesion 
were classified into group NC (n = 41), and the others (n = 25) with no aggravation of the 
PVO lesion on MRI and/or persistent causative bacteria on the PVO lesion were excluded 
due to the possibility of false positives for residual PVO caused by other general condi-
tions or the subjectivity of clinical symptoms. The 84 decisions with remission were fol-
lowed-up for 12.66 ± 8.81 (1–44) months. The 80 decisions with no recurrence were finally 
classified into group C, and 5 decisions with recurrence were classified into group NC. 
These five recurrences occurred at 2.20 ± 1.44 (1–4.5) months during the follow-up period. 
Therefore, the final analysis was performed with 80 patients in group C and 46 patients in 
group NC (Figures 1 and 2). There were statistically significant differences in the ESR, 
CRP, and SUVmax between groups C and NC (p < 0.001) (Table 3). 

 
Figure 1. Differences in FDG uptake between ‘Non-cured’ and ‘Cured’ FDG-PET/MRIs. A 54-year-
old male patient with lumbar PVO on L4-5 was treated with vancomycin and ciprobay for 46 days. 
The first clinical assessment on the 25th day of antibiotic therapy presented sustained back pain, 
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intermittent fever, and a CRP/ESR of 1.399/64 (‘Non-cured’). Compared to the initial MRI (a) per-
formed at the other hospital, the first FDG-PET/MRI (b) revealed an elevated FDG uptake (red ar-
row; SUVmax 6.58) and progression of the PVO lesion. After additional antibiotic therapy, the patient 
showed improved back pain and no fever, with a CRP/ESR of 0.325/31 in the second clinical assess-
ment on the 46th day of antibiotic therapy (‘Cured’). The second FDG-PET/MRI (c) also shows mark-
edly decreased FDG uptake and a reduced territory of the PVO lesion (blue arrow; SUVmax 4.3). 
However, determination of the therapeutic response seemed to be impossible based on the MRI due 
to the continuous enhancement of the PVO lesion even after successful treatment. FDG 18F, fluoro-
deoxyglucose; FDG-PET/MRI 18F, fluorodeoxyglucose positron emission tomography/magnetic res-
onance imaging; PVO, pyogenic vertebral osteomyelitis; CRP, C-reactive protein (mg/dL); ESR, 
erythrocyte sedimentation rate (mm/h); SUVmax, maximum standardized uptake value of FDG. 

 
Figure 2. Flowchart of the decision classification in the clinical assessment. Among the decisions 
with residual PVO (no remission), the decisions showing the presence of causative bacteria and/or 
an aggravated PVO lesion on MRI were only classified into group NC (n = 41), and the others (n = 
25) were excluded from the study. The 85 decisions with remission were followed-up with a mini-
mum of six months after discontinuing antibiotic therapy, and the 80 decisions with no recurrence 
were finally classified into group C. The five recurrences were classified into group NC. Therefore, 
the final analysis was performed with 80 patients in group C and 46 in group NC. PVO, pyogenic 
vertebral osteomyelitis; MRI, magnetic resonance imaging; Group C, cured; Group NC, non-cured. 

Table 3. Clinical features between groups C and NC. 

Attributes Group C (n = 80) Group NC (n = 46) Total (n = 126) 
ESR * 42.64 ± 27.76 (7–120) 71.57 ± 31.36 (7–120) 53.20 ± 32.20 (7–120) 
CRP * 0.80 ± 1.07 (0.02–5.93) 3.01 ± 3.20 (0.11–15.75) 1.61 ± 2.36 (0.02–15.75) 

SUVmax * 4.59 ± 2.15 (1.66–16.11) 7.30 ± 2.14 (3.61–14.65) 5.58 ± 2.51 (1.66–16.11) 
Group C, cured; Group NC, non-cured; ESR, erythrocyte sedimentation ratio (normal range <20 
mm/h); CRP, C-reactive protein (normal range of <0.5 mg/dL); SUVmax, maximum standardized 18F-
fluorodeoxyglucose uptake value on PVO lesion; * p < 0.001 between groups C and NC; p-values of 
<0.05 were considered statistically significant. 
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3.4. Development of DNN Model to Predict Remission of PVO 
The 126 decisions based on the clinical assessments were randomly divided into 70% 

for the training set (88 decisions; 56 in group C and 32 in group NC) and 30% for the test 
set (38 decisions; 24 in group C and 12 in group NC). The ESR, CRP, and SUVmax were 
used as the attributes. We developed four DNN models, depending on the involved at-
tributes to predict remission of PVO, as follows: DNN model 1 with ESR and CRP, DNN 
model 2 with ESR and SUVmax, DNN model 3 with CRP and SUVmax, and DNN model 4 
with ESR, CRP, and SUVmax. The performances of four DNN models were compared un-
der the same conditions. A rectifier linear unit (ReLu) for the activation functions in four 
hidden layers, softmax cross-entropy to calculate the loss, and adaptive moment estima-
tion for loss optimization with a learning rate of 0.001 were adopted. The dropout tech-
nique was used in the output layer to prevent overfitting with the training set. Our DNN 
models are summarized in Figure 3. 

 
Figure 3. Structure of our DNN model. 

Here, we summarize the structure of the DNN developed in this study for the detec-
tion of residual PVO. The DNN consists of an input layer, multiple hidden layers, and an 
output layer. The input layer feeds clinical data consisting of input features x∈{x1, .. ., xn} 
to the first hidden layer, where n is the number of input features. The hidden layer consists 
of four layers; the first layer has 32 neurons, the second layer has 16 neurons, the third 
layer has 8 neurons, and the fourth is a ReLU activation layer. The last hidden layer con-
tains five neurons, followed by a dropout for regularization and a ReLU for activation. 
The output layer generates a probability distribution of the predictions using softmax 
cross-entropy activation. Adam for loss optimization with a learning rate of 0.001 was 
adopted (DNN, deep neural network; PVO, pyogenic vertebral osteomyelitis; ReLU, rec-
tifier linear unit; and Adam, adaptive moment estimation). 

3.5. Performances of the DNN Models for Predicting the Remission of PVO 

The performances of each DNN model were compared when they were trained at 
100 epochs. The sensitivity, specificity, positive predictive value (PPV), negative predic-
tive value (NPV), accuracy, and AUCs were 75%, 78.6%, 85.7%, 64.7%, 76.3%, and 0.768 
[95% confidence interval, 0.625–0.910] in DNN model 1; 75%, 85.7%, 90%, 66.7%, 79%, and 
0.804 [0.674–0.933] in DNN model 2; 91.7%, 78.6%, 88%, 84.6%, 86.8%, and 0.851 [0.726–
0.976] in DNN model 3; and 87.5%, 92.9%, 95.5%, 81.3%, 89.5%, and 0.902 [0.804–0.999] in 
DNN model 4. The performances of the DNN models are summarized in Table 4 and 
Figure 4. 
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Table 4. Performances of the DNN models for predicting remission in PVO. 

DNN Models Sensitivity Specificity PPV NPV Accuracy AUC 
DNN model 1 
(ESR and CRP) 75% 78.6% 85.7% 64.7% 76.3% 0.768  

[0.625–0.910] 
DNN model 2 

(ESR and SUVmax) 75% 85.7% 90% 66.7% 79% 
0.804 

[0.674–0.933] 
DNN model 3 

(CRP and SUVmax) 
91.7% 78.6% 88% 84.6% 86.8% 0.851 

[0.726–0.976] 
DNN model 4 

(ESR, CRP, and SU-
Vmax) 

87.5% 92.7% 95.5% 81.3% 89.5% 
0.902 

[0.804–0.999] 

DNN, deep neural network; PPV, positive predictive value; NPV, negative predictive value; AUC, 
area under the receiver operating characteristic; ESR, erythrocyte sedimentation ratio; CRP, C-reac-
tive protein; SUVmax, maximum standardized 18F-fluorodeoxyglucose uptake value on PVO lesion; 
[ ], 95% confidence intervals. 

 
Figure 4. AUCs of the DNN models. CRP, C-reactive protein (mg/dL); ESR, erythrocyte sedimenta-
tion rate (mm/h); SUVmax, maximum standardized uptake value of FDG; AUC, area under the re-
ceiver operating characteristic curve. 

3.6. Incorrectly Predicted Cases in the DNN Model 4 
DNN model 4 using ESR, CRP, and SUVmax showed the best performance with ap-

proximately 90% accuracy to predict the remission of PVO. There were 4 incorrect predic-
tions among the 38 cases in the test set. DNN model 4 showed opposite predictions for three 
cases in group C and one case in group NC. The detailed data are presented in Table 5. 

  



Medicina 2022, 58, 1693 9 of 13 
 

 

Table 5. Incorrect predictions in DNN model 4. 

Number of Case ESR CRP SUVmax Prediction of DNN Model 4 Actual Result 
# 33 79 5.104 6.38 Non-cured Cured 
# 45 25 0.537 7.79 Non-cured Cured 
# 107 97 3.222 6.2 Non-cured Cured 
# 126 7 0.149 4.6 Cured Non-cured 

DNN, deep neural network; ESR, erythrocyte sedimentation ratio (normal range <20 mm/h); CRP, 
C-reactive protein (normal range <0.5 mg/L); SUVmax, maximum standardized 18F-
fluorodeoxyglucose uptake value on PVO lesion. 

4. Discussion 
To date, the assessment of therapeutic responses in PVO has been performed mainly 

based on changes in clinical symptoms and blood inflammatory markers. However, no 
clear standards have yet been established. Generally, compared with ESR and white blood 
cell (WBC) count, CRP was highly correlated with clinical symptoms and rapidly de-
creased as the clinical condition improved [22]. In particular, WBC count is known to be 
less useful for applications related to diagnosis and the assessment of therapeutic re-
sponses because WBC count often provides false-negative results despite the presence of 
PVO in elderly or immunocompromised patients [23,24]. In addition, there are also no 
definite guidelines for antibiotic therapy due to frequent negative cultures for causative 
bacteria and various causative bacteria with different antibiotic resistance rates by region. 
Kim et al. [5] reported that identifying the causative bacteria was possible in only half of 
all patients. S. aureus was the main causative bacteria, and approximately 40% had methi-
cillin resistance. For the treatment of PVO, an average of 6 weeks of parenteral antibiotics 
is usually recommended, although there some studies that considered 2–4 weeks suffi-
cient [2,25–27]. Here, a clinical assessment based on clinical symptoms and a CRP was 
performed after more than 3 weeks of intravenous antibiotic therapy. 

The application of FDG-PET to assess therapeutic responses in PVO has been at-
tempted for the last 10 years [12–14]. The literature has reported that FDG-PET was af-
fected less by other general conditions and, therefore, it objectively represents PVO lesions 
compared to blood inflammatory markers [12]. In particular, Jeon et al. [14] confirmed 
that FDG-PET, using the degree of FDG uptake, had higher accuracy compared to a CRP, 
an ESR, and an MRI for detecting residual PVO. The difference in FDG uptake mediated 
by glucose transporters in the cell membrane, depending on the phases of PVO, can be 
explained based on the pathophysiological features of osteomyelitis [28–30]. Activated 
neutrophils accumulate in the early phase, which shows high glucose consumption for 
chemotaxis and phagocytosis. Lymphocytes, plasma cells, histiocytes, and some polymor-
phonuclear leukocytes are predominant inflammatory cells in the chronic or recovery 
phase and have low glucose consumption. In addition, fibrosis and granulation tissues 
form around the foci of inflammation and bone marrow during the recovery phase, and 
there are fatty changes, increased new bone formation by osteoblasts, and dilated blood 
vessels. The mechanical stress on intervertebral structures including the intervertebral 
disc and endplates associated with the patient’s activities, in addition to the changes dur-
ing the recovery phase, can result in a sustained increase in localized FDG uptake at the 
intervertebral structures, even after successful treatment, compared to widespread FDG 
uptake when residual PVO continues [14]. 

However, FDG uptake presented as SUVmax also showed some variability, although 
it was less than that observed for CRP. Here, we discuss the reasons for the abnormally 
increased FDG uptake on the FDG-PET imaging of cured PVO, which was obtained at the 
time of antibiotic therapy discontinuation and showed no recurrence during the follow-
up [15,16]. First, when the main PVO lesions containing SUVmax were located in the bone 
marrow within the vertebral body or presented as a form of intramuscular abscess, the 
SUVmax was higher than that observed on the intervertebral structures. However, the value 
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of SUVmax was not related to the clinical symptoms, and the destruction of the interverte-
bral structure as the main PVO lesion was the main cause of the sustained back pain, even 
after successful treatment. Second, when the damaged intervertebral structure of the PVO 
was healed by autofusion with a loss of joint function during the follow-up period, a 
higher SUVmax was observed in the intervertebral structure, including the endplate and 
disc on FDG-PET imaging, of those with cured PVO. We hypothesize that these various 
features of FDG uptake on the FDG-PET imaging of cured PVO patients might be an im-
portant reference for interpreting the value of SUVmax to assess therapeutic responses. 
However, considering the variability in FDG uptake as described above, FDG-PET is still 
limited for use as an absolute standard method to assess therapeutic responses in PVO. It 
will be effective to supplement FDG-PET with hematological inflammatory makers, 
which are still used as a popular treatment method. As a result, we analyzed the perfor-
mance of ESR, CRP, and SUVmax applied together based on a DNN in this study. 

Back pain is one of the main clinical symptoms of PVO and can be considered an 
indicator for assessing therapeutic responses in PVO. However, back pain can easily be 
influenced by individual subjective factors or psychological status. It is difficult to meas-
ure back pain objectively and the reliability of the measurement result may be low. In this 
study, we developed DNN models using only automatically and objectively measured 
ESR, CRP, and SUVmax to increase the reliability of the results. All DNN models developed 
in this study were started to overfit with the presenting estrangement of loss between the 
training and test sets at approximately 100 epochs, and there was a decrease in accuracy 
with training at over 100 epochs. Therefore, a comparison of the performances between 
the DNN models depending on the use of attributes was possible and appropriate at 100 
epochs. The best performance was obtained with DNN model 4, which had an accuracy 
of 89.5% and an AUC of 0.902. DNN model 1 had the lowest performance, with an accu-
racy of 76.3% and an AUC of 0.768 when using ESR and CRP. Of note, ESR and CRP, 
currently used as important measurement methods at clinical assessment, were confirmed 
to have the lowest performance even after using deep learning. These results might be 
explained by the fundamental limitations of ESR and CRP themselves, which are suscep-
tible to other general conditions. Overall, the DNN models that included SUVmax as an 
attribute showed better performances than models without it. It is thought that the FDG 
uptake of FDG-PET also indicated the status of PVO lesions more objectively than ESR 
and CRP under a predictive DNN model, as confirmed in previous studies using conven-
tional statistics. 

DNN model 4 based on the ESR, CRP, and SUVmax as attributes showed approxi-
mately 90% accuracy for predicting the remission of PVO, and there were incorrect pre-
dictions in 4 out of 38 cases in the test set. DNN model 4 showed opposite predictions for 
three cases in group C and one case in group NC. In two cases in group C (case numbers 
33 and 107), there were sustained increases in ESR and CRP levels, with a moderate ele-
vation of the SUVmax. These are likely to be judged as ‘Non-cured’ using blood inflamma-
tory markers in the currently applied clinical assessment. In one other case in group C 
(case number 45), a markedly elevated SUVmax value led to a ‘Non-cured’ decision under 
DNN model 4, although it was highly likely to be judged as ‘Cured’ based on the ESR and 
CRP levels by clinical assessment. An elevated SUVmax value was identified in three out of 
four incorrect predictions. Based on the aforementioned theory, we may consider the rea-
sons for elevated SUVmax values in terms of the location of the main PVO lesion and au-
tofusion. However, although these analyses of the characteristics of PVO lesions can help 
to understand elevated SUVmax values in cases with cured PVO, additional studies with 
more cases are required to apply these theories to the DNN model for predicting the re-
mission of PVO. Considering the possibility of false-positives of SUVmax as seen for the 
above incorrect predictions, blood inflammatory markers can partially contribute to 
achieving improved performance in a DNN model by compensating for the shortcomings 
of the SUVmax. The last incorrect prediction of group NC (case number 126) with normal-
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ized values of ESR and CRP and a markedly decreased SUVmax was suitable to be deter-
mined as ‘Cured’ in the clinical assessment and with DNN model 4, although residual 
PVO persisted. This was an unpredictable case and this shortcoming should be overcome 
to improve the performance of DNN models in future studies. 

Our study had several limitations. First, decision making for therapeutic responses 
in this study was conducted based on the existing method currently used in the medical 
field. There is still no definite method to confirm the presence of residual PVO in group 
NC, although patients in group C can finally be determined as ‘Cured’ with a sufficient 
follow-up period. This problem remains a major limitation in many studies of PVO. In 
this study, we limited cases to group NC only when there was a definite aggravation of 
the PVO lesion on MRI and/or persistent causative bacteria on the PVO lesion under the 
additional bacterial culture. The decision of ‘Non-cured’, which did not meet these condi-
tions (the possibility of false positives for residual PVO), was excluded to increase the 
reliability of the study. Second, this study was conducted based on a relatively small num-
ber of FDG-PET images compared with recent studies using deep learning. The applica-
tion of FDG-PET for diagnosis and assessing therapeutic responses in PVO has not yet 
been generalized, and it is not easy to conduct a large-scale study considering the cost of 
FDG-PET. However, based on the high accuracy of using FDG-PET to assess therapeutic 
responses in PVO, as demonstrated in previous studies, we think that the AUC observed 
in this small-scale study will be reproduced in large-scale studies. Lastly, this study was 
conducted in a single center and our results were not confirmed under the same condi-
tions as those in other institutions. Multicenter research is an important factor to obtain 
high reliability of research results. Unfortunately, this study was conducted with FDG-
PET/MRI for various reasons, including the measurement of SUVmax based on the exact 
anatomical structure of the PVO lesion under MRI, and the availability of FDG-PET/MRI 
is still poor compared that of FDG-PET/CT. To overcome these limitations and clearly 
confirm the usefulness of FDG-PET in PVO, additional multi-center studies with a larger 
number of participants are required. 

5. Conclusions 
DNN models using SUVmax had a better performance for predicting the remission of 

PVO compared to those using CRP and ESR. However, the best performance was obtained 
in a DNN model using all attributes, including CRP, ESR, and SUVmax, which may be 
achieved by compensating for the limitations of each attribute. We expect that the use of 
a DNN model based on a combination of FDG-PET and blood inflammatory markers may 
help accurately predict remission in PVO. 
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