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Abstract: Background and Objectives: Intramedullary nailing of trochanteric fractures can be challeng-
ing and sometimes the clinical situation does not allow perfect implant positioning. The aim of this
study was (1) to compare in human cadaveric femoral heads the biomechanical competence of two
recently launched cephalic implants inserted in either an ideal (centre–centre) or less-ideal anterior
off-centre position, and (2) to investigate the effect of bone cement augmentation on their fixation
strength in the less-ideal position. Materials and Methods: Fourty-two paired human cadaveric femoral
heads were assigned for pairwise implantation using either a TFNA helical blade or a TFNA screw as
head element, implanted in either centre–centre or 7 mm anterior off-centre position. Next, seven
paired specimens implanted in the off-centre position were augmented with bone cement. As a result,
six study groups were created as follows: group 1 with a centre–centre positioned helical blade,
paired with group 2 featuring a centre–centre screw, group 3 with an off-centre positioned helical
blade, paired with group 4 featuring an off-centre screw, and group 5 with an off-centre positioned
augmented helical blade, paired with group 6 featuring an off-centre augmented screw. All specimens
were tested until failure under progressively increasing cyclic loading. Results: Stiffness was not
significantly different among the study groups (p = 0.388). Varus deformation was significantly
higher in group 4 versus group 6 (p = 0.026). Femoral head rotation was significantly higher in
group 4 versus group 3 (p = 0.034), significantly lower in group 2 versus group 4 (p = 0.005), and
significantly higher in group 4 versus group 6 (p = 0.007). Cycles to clinically relevant failure were
14,919 ± 4763 in group 1, 10,824 ± 5396 in group 2, 10,900 ± 3285 in group 3, 1382 ± 2701 in group
4, 25,811 ± 19,107 in group 5 and 17,817 ± 11,924 in group 6. Significantly higher number of cycles
to failure were indicated for group 1 versus group 2 (p = 0.021), group 3 versus group 4 (p = 0.007),
and in group 6 versus group 4 (p = 0.010). Conclusions: From a biomechanical perspective, proper
centre–centre implant positioning in the femoral head is of utmost importance. In cases when this
is not achievable in a clinical setting, a helical blade is more forgiving in the less ideal (anterior)
malposition when compared to a screw, the latter revealing unacceptable low resistance to femoral
head rotation and early failure. Cement augmentation of both off-centre implanted helical blade and
screw head elements increases their resistance against failure; however, this effect might be redundant
for helical blades and is highly unpredictable for screws.
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1. Introduction

Trochanteric fractures cause significant socioeconomic costs and represent an increas-
ingly common challenge for both patients and orthopaedic trauma surgeons. Individual
surgeons’ skills, as well as technical aspects of the implant placement, play a crucial role
for their successful fixation [1]. Although numerous advances in implant designing and
postoperative treatment methods have been achieved, complication rates between 2% and
16.5% have been reported [2,3] being mostly related to cut-out, varus deformation and
rotation of the femoral head fragment [4–8]. In recent years, novel fixation methods were
developed to overcome the problematic anchoring of the implant head element (HE) in
femoral heads. One of them is implemented with use of the Trochanteric Femoral Nail
Advanced System (TFNA, DePuy Synthes, Zuchwil, Switzerland), allowing the choice
between a helical blade or a screw HE. Other implants allow a combination of both [9].
Furthermore, bone cement may be injected through the HE into the femoral head to reduce
the risk of failure in osteoporotic bone [10–13]. Beside improvements of the implants in
recent years, surgeon-related technical aspects during the operation play a crucial role for
patients’ outcome. The introduction of the tip–apex distance (TAD) and the calcar-related
TAD already proved that off-centre positioning of the HE may predict mechanical failure
of the implant [14–16]. However, in a clinical situation it is not always possible to achieve a
perfect (centre–centre) HE position and surgeons sometimes have to accept an off-centre
position of the implant [17]. Recently, a biomechanical study on artificial femoral heads
demonstrated the superiority of non-augmented blades versus non-augmented screws in
an off-centre position. Furthermore, bone cement augmentation was able to enhance the
anchorage of off-centre-positioned HE to a level of centrally placed cephalic implants [18].
However, the resistance to failure of malpositioned non-augmented helical blades and
screw head elements, as well as the effect of bone cement injection on a malpositioned
implant, have not been investigated in cadaveric bone yet. Therefore, the aims of this study
were to investigate in human cadaveric femoral heads (1) the biomechanical competence of
two recently launched cephalic implants inserted in either ideal (centre–centre) or less-ideal
anterior off-centre positions and (2) to investigate the effect of bone cement augmentation
of the cephalic implants on their fixation strength in a less ideal position.

2. Materials and Methods
2.1. Specimens and Study Groups

Forty-two fresh frozen (−20 ◦C) paired human cadaveric femoral heads from
10 females and 11 males, aged 68.3 years on average (range 54–82 years), were used.
All donors gave their informed consent inherent within the donation of the anatomical gift
statement during their lifetime (Science Care, Inc., Phoenix, AZ, USA). All specimens under-
went high-resolution peripheral quantitative computed tomography (HR-pQCT, Xtreme
CT, SCANCO Medical AG, Brüttisellen, Switzerland) to exclude any bone pathologies and
calculate volumetric bone mineral density (BMD) within a cylinder of 20 mm diameter
and 30 mm length, located in the centre of the femoral head, using a phantom (European
Forearm Phantom QRM-BDC/6, QRM GmbH, Möhrendorf, Germany). The specimens
were assigned for pairwise implantation using either a TFNA helical blade or a TFNA screw
HE. The HEs of each type (helical blade or screw) were implanted in either centre–centre or
7 mm anterior off-centre position. Next, 7 paired specimens implanted with helical blades
and screws in the anterior off-centre position were augmented with bone cement (Trau-
macem V+, DePuy Synthes, Zuchwil, Switzerland). Thus, six study groups were created,
consisting of 7 specimens each and combined in 3 clusters, comprising specimens of the
same donors in both paired groups of each cluster: group 1 with a centre–centre-positioned
helical blade, paired with group 2 featuring a centre–centre screw (cluster 1); group 3 with
an off-centre-positioned helical blade, paired with group 4 featuring an off-centre screw
(cluster 2); and group 5 with an off-centre-positioned augmented helical blade, paired with
group 6 featuring an off-centre augmented screw (cluster 3, Figures 1 and 2). The sample
size of 7 specimens per group was considered sufficient for detection of existing significant
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differences among the corresponding groups, based on previous published work with
similar study design, investigating different fixation methods in femoral heads [19–21].
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2.2. Specimens Preparation

All femoral heads were sawed 50 mm distally to the articular surface and orthogonally
to the femoral neck axis after thawing for 24 h at room temperature. Implantation was
performed according to the manufacturer’s guidelines under fluoroscopic control (Siemens
ARCADIS Varic, Siemens Medical Solutions AG, Erlangen, Germany) with a targeted TAD
of 20 mm [14]. According to the group assignment, a guide wire was either placed centrally
or with a 7 mm anterior offset at a depth of 40 mm into the femoral head perpendicular
to the cut surface, and therefore parallel to the femoral neck axis. For this purpose, the
cutting plane of each femoral head was divided into four quadrants defined by distance
measurements (Figure 1). For off-centre implant insertion, the entry point was located
7 mm anteriorly to the centre of the femoral head. The 7 mm anterior off-centre position
was in agreement with previous work on cephalic implant positioning and seems to reflect
well the reality in the surgical theatre [22]. All HEs had a length of 100 mm. The helical
blades were inserted over the guide wire to their final depth using hammer blows without
predrilling. The screws were implanted after predrilling with a 6 mm drill bit to the desired
depth. They were inserted over the guide wire and tightened. Both helical blade and
screw HEs were orientated as in a real patient in order to fit within the locking mechanism
of the nail. Femoral heads assigned for bone cement augmentation were warmed up to
37 ◦C in a water bath (Y6, Grant Instruments Cambridge Ltd., Shepreth, UK) prior to bone
cement injection. A total volume of 3 mL bone cement was injected into the specimens in a
standardized manner under fluoroscopic control. After injection of 1 mL through the HE’s
perforations on the cranial side, the canula was twisted 180◦ and another 1 mL was injected
through the caudal perforations of the HEs. Next, the cannula was withdrawn 10 mm and
the procedure was repeated with injection of 0.5 mL twice [18]. All specimens underwent
CT examination to exclude possible undesired bone damages created during implantation.
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Figure 2. Exemplified samples of each group in superoinferior (A) and anteroposterior (B) views;
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2.3. Test Setup

Biomechanical testing was performed on a servo-hydraulic test system (Acumen III,
MTS Systems Corp., Eden Prairie, MN, USA) equipped with a 3 kN load cell in a dry
environment at room temperature (20 ◦C). The test setup was adopted from previous
studies and simulated an unstable trochanteric fracture with lack of medial support and
load sharing at the fracture gap (Figure 3) [18,23,24]. To mimic the locking mechanism of the
TFNA nail that allows sliding without rotation of the HEs, the implant shafts were inserted
in flange sleeves. These were rigidly mounted on a base fixture with a total inclination of
149◦ to the vertical line to simulate a 130◦ caput-collum-diaphyseal angle, a 16◦ resultant
joint load vector orientation to the vertical, and 3◦ lateral inclination of the femoral shaft
axis as previously described [24]. The implants were free to slide along their shaft axis with
blocked rotation around it during testing. The femoral heads were attached to spikes on
a polycarbonate plate mounted on a roller bearing, allowing for rotational movement of
the plate and the femoral head around its axis. Furthermore, the specimens were mounted
on two cylindrical rollers allowing varus and valgus tilting. Axial load was transmitted to
the femoral heads via a polymethylmethacrylate (PMMA) shell mounted on a XY-table to
compensate for shear moments during cyclic testing. Furthermore, reflective markers were
attached to the femoral head and the HE for optical motion tracking.
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2.4. Loading Protocol

Progressively increasing cyclic axial loading at 2 Hz, starting at 1000 N and being
with physiologic profile of each cycle, was applied until failure [25]. The peak load of each
cycle increased monotonically by 0.1 N/cycle until reaching 3000 N, while its valley load
was kept constant at 100 N. If the specimens reached 3000 N without failure, the test was
continued with no further increase of the peak load. Test stop criterium was reaching a
10 mm axial displacement of the machine actuator relative to the test start.

2.5. Data Acquisition and Analysis

Machine data in terms of axial load and axial displacement were recorded from the
machine controllers at 128 Hz. Based on these data, initial axial construct stiffness was
calculated from the ascending slope of the load–displacement curve between 400 N and
600 N during the first loading cycle. Anteroposterior X-rays were taken every 500 cycles
using a triggered C-arm. Furthermore, the coordinates of the optical markers attached to
the femoral head and the HE were continuously acquired throughout the tests at 75 Hz by
means of stereographic optical measurements using contactless full-field deformation
technology (Aramis SRX, GOM GmbH, Braunschweig, Germany) to assess the bone-
implant motions in all six degrees of freedom with regard to the marker sets. Anatomical
axes (vertical, frontal and sagittal) of the femoral head and the HE axis were defined by
proper alignment of the respective marker sets. Varus deformation was defined as the
relative bending of the femoral head to the HE axis in the coronal plane. Furthermore,
rotation of the femoral head around the HE axis was evaluated. Implant cut-out and
implant migration (cut-through) were defined as relative cranial movement of the HE in
the femoral head and relative longitudinal HE movement along its axis, respectively. The
outcome values of these four parameters were analyzed after 2000 and 4000 cycles, and
if applicable after 6000, 8000 and 10,000 cycles in peak loading condition, to evaluate the



Medicina 2022, 58, 1636 6 of 12

degradation of the construct stability over the course of cycles [19]. Margins of 5◦ varus
deformation and 10◦ rotation of the femoral head around the implant axis—considered
with respect to the beginning of the cyclic test—were defined as clinically relevant failure
criteria derived from previous work [10,23,26]. For each separate specimen, the numbers
of cycles until fulfilment of each of these two criteria under peak loading condition were
calculated. Based on these, clinical failure was defined as the event when whichever of the
two criteria was fulfilled first, and the corresponding number of cycles until that event was
considered as cycles to clinical failure. Catastrophic failure modes were evaluated using
X-ray imaging and physical inspection of the implant in end of each test.

2.6. Statistical Analysis

Statistical analysis was performed with SPSS software package (IBM SPSS Statistics,
V27, IBM, Armonk, NY, USA). Shapiro–Wilk test was conducted to prove normality of
data distribution for each separate parameter and group. Explorative data was calculated
in terms of mean value and standard deviation (SD). For the single-measure parameters
BMD, initial stiffness and cycles to clinical failure, significant differences between the
paired groups—belonging to the same cluster—were explored with Paired-Samples t-tests.
Furthermore, One-Way Analysis of Variance (ANOVA) was conducted to screen these
parameters for significant differences with regard to the other pairs of groups associated
with the same implanted HE (blade or screw), but assigned to a different cluster (e.g., all
groups featuring TFNA blade implantation were compared amongst each other with regard
to centre–centre, off-centre, and augmented off-centre positioning). For the longitudinal
multiple-measure parameters cut-out, implant migration, rotation around implant axis
and varus deformation at the pre-defined time points of cyclic testing, outcome measures
among all groups were screened for significant differences with General Linear Model
(GLM) Repeated Measures (RM) tests. Thereby, the number of repeated-measures steps was
determined under consideration of the highest rounded number of predefined cycles when
none of the specimens within the compared groups had failed yet. If any of the ANOVA or
GLM RM tests indicated overall significance, a post hoc test analysis accounting for multiple
comparisons was conducted. Significance level was set to 0.05 for all statistical tests.

3. Results
3.1. Morphometrics

Mean age of the donors was 69.4 ± 4.9 years in groups 1 and 2, 74.2 ± 3.5 years in
groups 3 and 4, and 66.0 ± 8.6 years in groups 5 and 6, with no significant differences
among all groups, p = 0.121. BMD (mgHA/cm3) was 186.5 ± 36.6 in group 1, 180.3 ± 51.8
in group 2, 183.2 ± 37.6 in group 3, 176.6 ± 35.4 in group 4, 180.6 ± 45.3 in group 5 and
179.5 ± 65.9 in group 6, with no significant differences among all groups (p = 0.999).

3.2. Initial Stiffness

Initial axial stiffness (N/mm) was 1211.1 ± 85.6 in group 1, 1168.2 ± 260.6 in group
2, 1471.8 ± 553.8 in group 3, 973.7 ± 331.1 in group 4, 1169.6 ± 433.6 in group 5 and
1214.7 ± 309.8 in group 6. No significant differences were detected within each cluster
(p ≥ 0.104) as well as among all groups (p = 0.388).

3.3. Varus Deformation, Femoral Head Rotation, Implant Migration and Implant Cut-Out at
Predefined Cycles

The outcome measures for these four parameters of interest are summarized in Table 1.
In the centre–centre position and augmented off-centre position, there were no signifi-

cant differences detected between the two HE designs in the paired groups 1–2 (cluster 1)
and 5–6 (cluster 3, p ≥ 0.077), respectively. However, in the non-augmented off-centre posi-
tion, the screw HEs in group 4 were associated with significantly higher values compared
to the helical blade HEs in the paired group 3 for rotation around the implant axis and
cut-out (p ≤ 0.047), with a trend toward significantly higher values for varus deformation
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(p = 0.052), and with non-significantly higher values for implant migration (p = 0.122).
Furthermore, the off-centre screw positioning in group 4 was associated with significantly
higher values compared to the centre–centre screw positioning in group 2 for rotation
around the implant axis and cut-out (p ≤ 0.008). No significant differences between the
corresponding groups with helical blade implantation (groups 3 and 1) were detected
(p ≥ 0.579). On the other hand, whereas the augmentation of off-centre screws in group 6
resulted in significantly lower values compared to group 4 with non-augmented off-centre
screws for varus deformation, rotation around implant axis, and cut-out (p ≤ 0.026), the
differences between the corresponding groups 3 and 5 with helical blade implantation were
not significant (p ≥ 0.227).

Table 1. Outcome measures for the investigated longitudinal multi-measure parameters of interest
varus deformation, femoral head rotation, implant migration and cut-out, presented separately for
each study group at the predefined numbers of cycles in terms of mean and SD. The six groups
were combined in three clusters comprising specimens of the same donors each—group 1 (centre–
centre positioned blade) paired with group 2 (centre–centre positioned screw), group 3 (off-centre
positioned blade) paired with group 4 (off-centre positioned screw), and group 5 (off-centre positioned
augmented blade) paired with group 6 (off-centre positioned augmented screw).

Parameter Cycles

Study Groups

Cluster 1 Cluster 2 Cluster 3

1
Blade

Centre–
Centre

2
Screw

Centre–
Centre

3
Blade

Off-Centre

4
Screw

Off-Centre

5
Blade

Off-Centre
Augmented

6
Screw

Off-Centre
Augmented

Varus
deformation

[deg]

2000 1.75 ± 0.67 2.17 ± 0.90 1.20 ± 1.02 3.33 ± 2.07 1.06 ± 0.40 1.47 ± 0.51

4000 2.16 ± 0.82 2.91 ± 1.49 1.61 ± 1.45 5.15 ± 2.58 1.20 ± 0.50 1.74 ± 0.69

6000 2.53 ± 0.90 3.77 ± 2.07 2.25 ± 1.88 – 1.37 ± 0.65 2.09 ± 1.00

8000 3.01 ± 1.05 4.89 ± 2.62 3.12 ± 2.37 – 1.51 ± 0.85 –

10,000 3.44 ± 1.55 6.08 ± 3.07 5.24 ± 6.29 – 1.69 ± 1.05 –

Femoral head
rotation

[deg]

2000 1.03 ± 1.90 0.84 ± 1.74 0.68 ± 0.42 25.60 ± 17.02 0.54 ± 0.31 1.60 ± 1.67

4000 1.32 ± 1.93 2.24 ± 5.23 1.35 ± 0.76 30.97 ± 25.50 0.66 ± 0.39 2.92 ± 3.50

6000 1.65 ± 2.09 3.73 ± 7.71 2.73 ± 1.45 – 0.84 ± 0.51 5.82 ± 7.81

8000 2.55 ± 3.68 6.20 ± 9.79 5.88 ± 3.42 – 1.22 ± 0.76 –

10,000 5.03 ± 7.78 8.32 ± 11.44 10.74 ± 10.77 – 2.02 ± 1.55 –

Implant
migration

[mm]

2000 0.09 ± 0.11 0.16 ± 0.15 0.60 ± 0.02 0.40 ± 0.30 0.06 ± 0.06 0.07 ± 0.02

4000 0.20 ± 0.31 0.24 ± 0.20 0.10 ± 0.03 0.37 ± 0.39 0.08 ± 0.06 0.09 ± 0.04

6000 0.31 ± 0.42 0.31 ± 0.25 0.30 ± 0.27 – 0.11 ± 0.07 0.14 ± 0.08

8000 0.64 ± 0.89 0.48 ± 0.31 0.59 ± 0.42 – 0.19 ± 0.11 –

10,000 1.42 ± 2.20 0.96 ± 0.67 0.93 ± 0.49 – 0.37 ± 0.29 –

Implant
cut-out
[mm]

2000 1.09 ± 0.35 1.23 ± 0.23 1.11 ± 0.53 3.53 ± 1.75 1.02 ± 0.19 1.28 ± 0.38

4000 1.38 ± 0.44 1.55 ± 0.42 1.38 ± 0.75 4.28 ± 2.44 1.18 ± 0.25 1.51 ± 0.49

6000 1.63 ± 0.53 1.98 ± 0.67 1.70 ± 1.02 – 1.35 ± 0.35 1.76 ± 0.64

8000 1.90 ± 0.67 2.61 ± 1.07 2.16 ± 1.32 – 1.54 ± 0.43 –

10,000 2.30 ± 1.12 3.53 ± 2.08 4.33 ± 5.45 – 1.74 ± 0.53 –

3.4. Cycles to Clinical Failure

Cycles to clinical failure (5◦ varus or 10◦ rotation of the femoral head, whichever
occurred first) were 14,919 ± 4763 in group 1, 10,824 ± 5396 in group 2, 10,900 ± 3285 in
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group 3, 1382 ± 2701 in group 4, 25,811 ± 19,107 in group 5 and 17,817 ± 11,924 in group 6
(Figure 4). Centre–centre positioning in cluster 1 resulted in significantly higher resistance
to failure in group 1 versus group 2 (p = 0.021). Moreover, augmented off-centre positioning
in cluster 3 resulted in no significant difference between the paired groups with blade and
screw implantation (p = 0.193). However, non-augmented off-centre HE positioning in
cluster 2 was associated with a significantly higher number of cycles to failure in group 3
using helical blades versus group 4 using screws (p = 0.007). Finally, augmented off-centre
screw positioning in group 6 resulted in significantly higher number of cycles to failure
compared to non-augmented screw positioning in group 4 (p = 0.010). No further significant
differences were detected among all other non-paired groups (p ≥ 0.112).
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Figure 4. Cycles to clinical failure presented for each separate group in terms of mean and SD.
Clusters: 1 (green); 2 (orange); 3 (blue); helical blades: checkerboard pattern; screws: solidly filled.
BC: group 1 (helical blade centre–centre); SC: group 2 (screw centre–centre); BO: group 3 (helical
blade off-centre); SO: group 4 (screw off-centre); BOA: group 5 (helical blade off-centre augmented);
SOA: group 6 (screw off-centre augmented). Stars indicate significant differences.

3.5. Catastrophic Failure Modes

Whereas centre–centre screw positioning resulted in two failure cases by rotation
around the implant axis and five failure cases by varus collapse, non-augmented and
augmented off-centre screw positioning was associated with exclusive rotational failure
around the HE axis. On the other hand, rotational failure in the groups with blade implan-
tation was detected in three specimens with centre–centre positioning, four specimens with
non-augmented and four specimens with augmented HE off-centre positioning.

4. Discussion

Trochanteric fractures are a significant burden for health systems as most patients
need to be hospitalized and operated [1]. When TFNA is used to treat those fractures,
surgeons have the choice to select intraoperatively either a helical blade or a screw as a HE
for fixation of the femoral head and neck. Furthermore, it offers the option for bone cement
augmentation. The current study investigated the biomechanical characteristics of these
two different HEs in the ideal centre–centre and less-ideal anterior off-centre positions.
Moreover, the effect of bone cement augmentation on the fixation strength within the
femoral head was explored.

Comparable initial construct stiffness independent from the implant positioning or
augmentation with bone cement was reported in the current study. Furthermore, similar
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results were observed in optimally positioned implants, although helical blades demon-
strated a slightly better resistance to varus deformation when compared to screws. These
findings are in line with other reports in the literature, demonstrating a trend of higher cut-
out rates when using screws versus helical blades [10,27]. Furthermore, the current study
revealed a significantly higher resistance of uncemented helical blades to rotational forces
and moments in the centre–centre position compared to centrally positioned uncemented
screws. A possible explanation for this might be the design of the helical blade, which
compacts the cancellous bone in the femoral head during insertion [28]. This theoretically
provides better fixation strength in low bone quality by preventing bone loss, because pre-
drilling along the entire HE length—as required for use of cephalic screws in adequate bone
quality—is not always necessary [29]. On the other hand, an increased resistance to the
rare complication related to medial cut-through of the HE along its axis, as well as higher
pull-out forces, were reported for cephalic screws [30,31]. However, in contrast to other
reports in the literature, the current study revealed no significant differences regarding
HE migration along its axis among all investigated groups. Furthermore, there are several
existing reports in favor of centrally-placed screw HEs compared to helical blades [30,32].
In the current study, the bone compaction around the helical blade might also be an expla-
nation for the higher resistance to rotational moments following anterior malpositioning
when compared to screws. Further, the helical blades in the anterior off-centre position
were significantly less susceptible for failure and compensated the offset significantly more
effective than the screws. This is in line with previous results reported by Sermon et al.,
who investigated anterior malpositioned implants in osteoporotic foam models [18]. In
addition, they investigated malpositioned helical blades and screws with anterior and
posterior offset and reported no differences between them. It is therefore hypothesized that
although only anteriorly malpositioned implants were investigated in the current study,
the results are transferable to the posterior malposition, too. However, despite the higher
resistance to failure of the malpositioned helical blades compared to screws, this study fully
supports the well-established mantra that correct implant placement in the centre–centre
position is of utmost importance.

Various reports in the literature demonstrate an increase in resistance to failure of
helical blades and screws augmented with bone cement [10,19,23,33–36]. Furthermore,
a recently published review reported fewer reoperations, less complications and shorter
hospital stay at the cost of a slightly increased operation time when bone cement was used
for augmentation in elderly patients [37]. In contrast, no advantages in resistance to both
failure load and axial displacement after cement augmentation of intramedullary nailed
trochanteric fractures was reported by Fensky et al. [38]. Moreover, cement augmentation of
cannulated screws in a femoral neck fracture model did not demonstrate any improvement
in construct stability [39].

However, most of these studies focused on an optimally positioned HE, with only
one of them focusing on cement augmentation of a malpositioned implant [18]. The
findings of the current study also demonstrate an increased resistance to failure after cement
augmentation of both investigated HEs in off-centre position, although this effect was only
significant for screws, demonstrating unacceptably low resistance to failure following
off-centre screw positioning without cement augmentation in the currently used pool of
specimens. In consequence, the findings of the present study suggest that the anterior
off-centre position must be avoided for screws in a real patient under all circumstances. If
the guide wire of the TFNA system is not revisable in an anterior or posterior malposition,
a screw should be avoided, and a blade should be inserted instead. If a screw is already
inserted in an off-centre position and is not revisable, the results of the current study suggest
its augmentation with bone cement. However, the data scattering in the current study
might be an indicator of an unpredictable outcome of this approach in real patients, which
should be taken into account by a very careful aftercare of patients with a malpositioned
augmented screw. In addition, bone cement augmentation of a non-revisable helical blade
in an anterior off-centre position might not always be beneficial. Although in the current
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investigation their resistance to failure was higher when compared to non-augmented
off-centre helical blades, the scattering of the data prohibited significance, and therefore the
downsides of bone cement augmentation should be carefully balanced against its possible
advantages in a clinical situation.

Another point worth mentioning is that during the biomechanical analysis this study
focused on clinically relevant findings. For this reason, no comparisons were made be-
tween non-augmented off-centre-positioned screws (group 4) and augmented off-centre-
positioned helical blades (group 5), despite the expected significant difference between
them (see Figure 4). In a clinical setting, a misplaced screw would be unlikely to be removed
and replaced with an augmented off-centre helical blade—due to the necessary predrilling
for screw HEs, bone impaction during insertion of the helical blades cannot occur.

This study has some limitations inherent to all biomechanical investigations. First,
only a limited number of femoral heads were used per group, restricting the generalization
of the study findings; however, an appropriate paired study design was set to compare the
biomechanical competence of the two different implants. Moreover, a bone model is not
capable to completely simulate in vivo situations with swelling and biological reactions
of the surrounding soft tissues following a bone fracture in a real human. Furthermore,
the applied biomechanical model did not consider all in vivo forces and moments acting
on the femoral head; however, the test setup and loading protocol were defined in such
a way to ensure a close simulation of dynamic physiologic loading conditions. Due to
the paired study design, only screws and helical blades inserted in the same position
could be investigated in the same donor; however, prior to testing, a BMD evaluation
demonstrated equally distributed values, thus ensuring comparability among the different
groups. Other limitations are artificially created fractures via osteotomies, which do not
necessarily obey the physical laws of real fracture mechanisms; however, they were used
for standardization purposes and better implant comparability. Despite these limitations,
the main failure modes in the current study reflected well clinical failure types in real
patients—rotation and varus tilting of the femoral head [40]. However, large scattering of
the data was observed in both bone-cement-augmented groups; therefore, further studies
are needed to investigate the biomechanical behavior of malpositioned cephalic implants
and the influence of different cement distribution models, especially in osteoporotic bone.
Moreover, several factors determine the clinical outcome besides the implant design, such
as duration of surgery, consequences following cement augmentation, quality of reduction,
soft tissue damage, infections, and other postoperative complications. Further prospective
randomized clinical trials are needed to relate the findings of the current study to the
clinical practice.

5. Conclusions
From a biomechanical perspective, proper centre–centre implant positioning in the

femoral head is of utmost importance. In cases when this is not achievable in a clinical
setting, a helical blade is more forgiving in the less ideal (anterior) malposition when
compared to a screw, the latter revealing unacceptably low resistance to femoral head
rotation and early failure. Cement augmentation of both off-centre implanted helical blades
and screw head elements increases their resistance against failure; however, this effect
might be redundant for helical blades and is highly unpredictable for screws. Author
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