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Abstract: Background and Objectives: Lipidomics is a pivotal tool for investigating the pathogenesis of
mental disorders. However, studies qualitatively and quantitatively analyzing peripheral lipids in
adult patients with schizophrenia (SCZ) and major depressive disorder (MDD) are limited. Moreover,
there are no studies comparing the lipid profiles in these patient populations. Materials and Method:
Lipidomic data for plasma samples from sex- and age-matched patients with SCZ or MDD and
healthy controls (HC) were obtained and analyzed by liquid chromatography-mass spectrometry
(LC-MS). Results: We observed changes in lipid composition in patients with MDD and SCZ, with
more significant alterations in those with SCZ. In addition, a potential diagnostic panel comprising
103 lipid species and another diagnostic panel comprising 111 lipid species could distinguish SCZ
from HC (AUC = 0.953) or SCZ from MDD (AUC = 0.920) were identified, respectively. Conclusions:
This study provides an increased understanding of dysfunctional lipid composition in the plasma
of adult patients with SCZ or MDD, which may lay the foundation for identifying novel clinical
diagnostic methods for these disorders.

Keywords: lipidomics; plasma lipid; schizophrenia; major depressive disorder

1. Introduction

Schizophrenia (SCZ) and major depressive disorder (MDD) are the leading cause of
morbidity of mental disease worldwide [1,2]. SCZ affects approximately 1% of the world’s
population, whereas the lifetime risk of MDD is 15–18% [3,4]. Despite there being many
studies on the pathogenesis of SCZ and MDD, the diagnosis for these disorders relies mainly
on the subjective interpretation of clinical symptoms presented by patients. Although SCZ
and MDD are two separate diagnostic entities that can be defined by their clinical features,
converging evidence suggests that these disorders have overlapping characteristics in
symptom presentation and neurocognitive impairments [5,6]. For example, motivational
and hedonic impairments are present in individuals with MDD and SCZ [7,8], and their
severity is associated with the development of both psychosis and depression [9,10]. In
contrast, depressive symptoms are common in SCZ, and psychotic symptoms are also
part of the clinical presentation observed in MDD [11]. Previous studies reported that the
prevalence of depressive symptoms was up to 20–60% in patients with SCZ [12,13] and
may occur in all disease courses [14]. Accordingly, the prevalence of psychotic features in
adolescent MDD is 18%, and the lifetime prevalence of psychotic depression varies between
0.35% and 1% [15]. Therefore, investigating the objective biological differences between
these disorders may help to develop new diagnostic methods.

In addition to clinical symptoms, using plasma as a sample source to identify diagnos-
tic for SCZ and MDD has already been reported [16–18]. Lipid plays an important role in
neuronal development and brain function [19–21]. Moreover, plasma lipids were already
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represented as a target for the treatment of depression or psychotic symptoms in SCZ and
MDD [22], and lipidomics has been established as a pivotal tool for diagnosing SCZ and
MDD [23,24]. However, there are only a few indirect understandings of the potential role
of plasma lipids in the pathophysiology and no studies have directly compared the lipid
compositions of adult patients with SCZ and MDD. Such investigations might be valuable
for understanding the shared and objective peripheral biomarkers for these two disorders.

We performed a case-control study that enrolled age-matched adult patients with
SCZ (n = 31), MDD (n = 35), and healthy controls (HC, n = 32), and analyzed the plasma
lipidomics by LC-MS. We aimed to thereby determine the differences in lipid composition
and investigate the correlation between differential lipids and clinical symptoms. Moreover,
we aimed to identify SCZ and MDD- elated lipidomic signatures by using orthogonal
partial least squares discrimination analysis (OPLS-DA). Finally, we aimed to identify
discriminative lipid panels that could distinguish individuals with SCZ, those with MDD,
and HCs using random forest and receiver operating characteristic (ROC) analysis.

2. Materials and Methods
2.1. Subjects and Sampling

This study was registered, and its protocol was approved by Chinese Clinical Trial
Registry (ChiCTR2000032118) and Ethics Committee (ChiECRCT20200090), respectively. It
was performed in accordance with the tenets of the Declaration of Helsinki and all subjects
volunteered to take part and provided written informed consent. The inclusion criteria
for the SCZ were: (1) compliance with the diagnostic and statistical manual of mental
disorders (DSM)-5 diagnostic standards for schizophrenia or schizophreniform disorder;
(2) the positive and negative symptoms scale (PANSS) score was greater than or equal to
60; (3) age of 18 to 65 years; and (4) no history of probiotics, probiotic fermented food, or
any antibiotics within 1 month. The inclusion criteria for MDD were: (1) compliance with
the DSM-5 diagnosis standards for major depressive disorder; (2) the Hamilton Depression
Rating Scale (HAM-D) score was greater than or equal to 18; (3) age of 18 to 65 years; and
(4) no history of probiotics, probiotic fermented food, or any antibiotics within 1 month.
The exclusion criteria were (1) obesity, body mass index (BMI) ≥ 28.0; (2) high-fat diet
partisans and vegetarians; (3) hypertension; (4) alcohol abuse or dependence; (5) illicit drug
use; (6) menstruation, pregnancy or lactation; and (7) presence of other mental disorders.
Moreover, the structured clinical interview for DSM-5, Hamilton Anxiety Scale (HAM-A),
HAM-D, and PANSS was independently administered by two psychiatrists who were
blinded to the clinical trial grouping. The same exclusion criteria were applied to HCs.

Finally, 31 SCZ (12 male and 19 female, age 22–45 years) and 35 MDD (age 12 male
and 23 female, 25–57 years), along with 32 HCs (10 male and 22 female, age 22–53 years),
were recruited from the Department of Psychiatry in Chang’an Hospital. All of whom
underwent a physical examination. The preexisting psychiatric disorders were screened
by Mini-International Neuropsychiatric Interview. Participants were prohibited from
eating and drinking after 10 PM and the blood samples were collected between 8 AM and
10 AM next day. The concentration of cholesterol (CHOL), triglycerides (TG), low-density
lipoprotein (LDL), and high-density lipoprotein (HDL) were detected immediately by
blood lipid routine examination. Moreover, blood was collected in anticoagulant tubes and
centrifuged (1600 rpm, 15 min). The obtained plasma was stored in liquid nitrogen tank
until lipidomics analysis and the temperature at which the plasma was stored was less than
−190 ◦C.

2.2. Lipidomics Analysis

The experiments were performed as described previously [25,26] and the data analysis
was supported by Majorbio Bio-pharm and Shanghai Applied Protein Technology Co., Ltd.
In brief, plasma (100 µL, accurately measured) was spiked with internal lipid standards
(SPLASH® LIPIDOMIX® Mass Spec Standard, methanol solution, AVANTI, 330707-1EA,
Merck, Darmstadt, Germany) and then homogenized with appropriate amounts of water,
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methanol and methyl tert-butyl ether for sample preparation. Then, samples were submit-
ted for ultrasonication and centrifuged (14,000× g, at 10 ◦C for 15 min), and the supernatant
was separated for the LC-MS analysis. Samples were separated by using Nexera LC-30A
system with a C18 column (ACQUITY UPLC CSH C18, 130Å, 1.7 µm, 2.1 mm × 100 mm,
Waters), column temperature 45 ◦C with a flow rate of 300 µL/min. The lipid extracts were
re-dissolved in 200 µL of 90% isopropanol/acetonitrile, centrifuged for 15 min (14,000× g),
and finally, 3 µL of the sample was injected. To avoid the influence of the instrument
detection signal fluctuation, a random sequence was used to continuously analyze the
samples. Q-Exactive Plus (Thermo Fisher Scientific, San Jose, CA, USA) was used to acquire
mass spectra and electrospray ionization (ESI) parameters were optimized and preset for
all measurements. Meanwhile, single-point internal standard calibrations were used to esti-
mate the absolute concentrations of unique lipids identified by accurate mass spectrometry,
MS/MS spectral matching, and retention times [27], and lipid identification was performed
using LipidSearchTM software (Thermo Fisher Scientific, San Jose, CA, USA).

2.3. Statistical Analyses

Statistical analyses were performed using SPSS 21.0 software (IBM-SPSS Inc, Chicago,
IL, USA) (Kruskal-Wallis test for nonnormal distribution and one-way analysis of variance
for normal distribution). Lipid data were further converted using log10 and standardized
using Pareto scaling. Supervised partial least squares discriminant analysis (PLS-DA) was
first used to demonstrate the overall distribution between samples and the stability of the
entire analytical process. A supervised OPLS-DA was then used to identify differential
lipids between groups. To prevent the model from overfitting, the OPLS-DA models were
validated by permutation analysis (200 times). The identified lipids with variable impor-
tance for the projection (VIP) scores of > 1.5 in the OPLS-DA, and values of FDR (two-tailed
Student’s t-test) < 0.05 and fold change (FC) > 2 or <0.5 were regarded as differentially abun-
dant lipids. To obtain simplified potential biomarker panels, the identified differentially
abundant lipids were used to conduct stepwise logistic regression analysis. The diagnostic
performance of these identified panels was conducted to assess the receiver operating
characteristic (ROC) curve analysis, and R package was used for AUC calculation and
illustration (R-3.5.3). The Pearson correlation analysis was used to assess the correlations
between the clinical parameters and differentially abundant lipids. The online software
MetaboAnalyst 5.0 (https://www.metaboanalyst.ca/ (accessed on 26 January 2022)) was
used to conduct KEGG pathway analysis and pathway enrichment analysis.

3. Results
3.1. Clinical Characteristics of the Recruited Participants

Ninety-eight individuals were included in the study. There were no significant differ-
ences in terms of age (p = 0.066), sex (p = 0.803) and BMI (p = 0.573) among the three groups.
Meanwhile, there were also no significant differences among the three groups in terms
of TG (p = 0.114), HDL (p = 0.079) and CHOL (p = 0.632). PANSS, HAM-D, and HAM-A
scores in the SCZ and MDD groups were higher than those in the HC group, and LDL in
MDD was also higher than that in the HC group (Table 1). The main therapeutic drugs
used in the MDD group were duloxetine and venlafaxine, while that in the SCZ group was
risperidone. There is no significant difference between SCZ and MDD at the duration of
illness, which was defined as the time since the first occurrence of symptoms. Notably,
none of the recruited participants smoked, and there was no significant difference among
the groups in terms of smoking or exposure to secondhand smoke in the past 6 months
(p = 0.130). The detailed clinical and demographic characteristics of the study cohort are
shown in Supplementary Table S1.

https://www.metaboanalyst.ca/
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Table 1. The comparison of clinical characteristics and symptom scale assessment among HC, MDD,
and SCZ.

Parameter HC (n = 32) MDD (n = 35) SCZ (n = 31) H/χ2/F/Z Value p-Value

Sociodemographic
Age [years, M (P25, P75)] a 29 (25, 36.75) 34.5 (28.5, 38) 28 (24, 37) H = 5.435 0.066
Gender (male/female) b 10/22 12 / 23 12 / 19 χ2 = 0.391 0.803

BMI [kg/m2, [M (P25, P75)]] a 20.7 (18.89, 23.55) 21.45 (18.75,
23.23)

20.76 (19.28,
24.46) H = 1.113 0.573

Marital status
(single/married) b 13/19 2/33 22/9 χ2 = 29.953 <0.001

Duration of illness [mouths,
M (P25, P75)] c - 36 (12, 60) 48 (24, 48) Z = −0.466 0.641

Smoking or exposure to
secondhand smoke situation

in the past six months b
24/8 19/16 23/8 χ2 = 4.228 0.13

TG [mmol/L, M (P25, P75)] a 0.91 (0.7, 1.27) 0.82 (0.7, 1.29) 1.21 (0.69, 2.01) H = 4.35 0.114
LDL c 2.21 ± 0.91 2.89 ± 0.90 * 2.50 ± 0.66 F = 5.802 0.004
HDL a 1.25 ± 0.38 1.41 ± 0.28 1.28 ± 0.21 H = 5.071 0.079

CHOL c 4.18 ± 0.84 4.32 ± 0.84 4.12 ± 0.86 F = 0.461 0.632
Scale evaluation

HAM-D [M (P25, P75)] d 3 (2, 5) 25 (21, 26) - Z = −6.926 <0.001
HAM-A [M (P25, P75)] d 4.5 (2.25, 6.75) 25 (20, 29) - Z = −7.045 <0.001

PANSS total score
[mean ± SD (range)] a

35.78 ± 3.63
(30–42)

59.11 ± 10.84
(37–80) *

72.74 ± 17.99
(38–121) * H = 64.436 <0.001

PANSS positive scale
[M (P25, P75)] a 7 (7, 9) 7 (7, 7) 20 (16, 25) *# H = 68.09 <0.001

PANSS negative scale
[M (P25, P75)] a 8 (7, 9) 11 (7, 14) * 15 (12, 20) *# H = 42.988 <0.001

PANSS general scale
[M (P25, P75)] a 19.5 (17.25, 22) 42 (35, 46) * 37 (34, 43) * H = 61.577 <0.001

Abbreviations: a Kruskal–Wallis; b chi-square tests; c one-way ANOVA; d Mann–Whitney U; * p < 0.05 vs.
HC group; # p < 0.05 vs. MDD group; BMI, body mass index; SD, standard deviation; CHOL, cholesterol;
TG, triglycerides; LDL, low-density lipoprotein; HDL, high-density lipoprotein; values are shown as mean ± SD
or M (P25, P75).

3.2. Alternation of Lipid at Class Level in SCZ and MDD

Thirty lipid classes and 782 lipid species were identified (Supplementary Figure S1A,B).
Lipidomic analysis revealed that there were significant differences in the levels of eight lipid
classes, including acylcarnitine (AcCa, H = 31.696, p < 0.001) (Figure 1A), ceramide (Cer,
H = 12.257, P = 0.002) (Figure 1C), phosphatidylethanolamine (PE, H = 15.268, p < 0.001),
lysophosphatidylethanolamine (LPE, H = 29.497, p < 0.001), lysophosphatidylcholine (LPC,
H = 13.021, p = 0.001), lysophosphatidylinositol (LPI, H = 11.0861, p = 0.002), phosphatidyli-
nositol phosphate (PIP, H = 19.937, p < 0.001), and phosphatidylinositol 4,5-bisphosphate
(PIP2, H = 9.123, p = 0.010) (Figure 1E). Intercomparison between SCZ and HC groups
further showed that the levels of AcCa and PE were low, whereas those of LPC, LPE, LPI,
PIP, and PIP2 were higher in the SCZ when compared with that in HC. Similarly, levels
of AcCa and PE were decreased, whereas those of PIP and PIP2 were increased in the
MDD group when compared with HC. Notably, the levels of Cer, LPC, LPE, and LPI were
increased in the SCZ group when compared with the MDD group.

Furthermore, levels of LPC, LPE, and PIP were positively correlated while the levels
of PE and AcCa were negatively correlated with the PANSS score (Figure 1F). Meanwhile,
the concentrations of PS and monogalactosyldiacylglycerol (MGDG) were negatively cor-
related with positive scores of PANSS, whereas PIP2 levels were positively correlated.
Moreover, the concentrations of PS were negatively correlated, whereas Cer levels were
positively correlated with negative scores of PANSS. In the MDD group, concentrations of
PE and AcCa were negatively correlated with both HAM-A and HAM-D scores, whereas
concentrations of PIP and GM3 were positively correlated. Additionally, the concentrations
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of PIP2 were positively correlated with the HAM-D score (Supplementary Table S2). Taken
together, the levels of eight lipids in the SCZ group and four lipids in the MDD group were
changed compared to the HC group at the class level. Moreover, the concentrations of
seven lipids in the SCZ group were changed compared to those in the MDD group.
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Figure 1. The comparison of lipid class among SCZ, MDD, and HC participants. (A) Fatty acyls,
(B) glycerolipids, (C) sphingolipids, (D) ChE, Co, DGDG, and MGDG, (E) glycerophospholipids,
and (F) correlation between clinical parameters and levels of lipid classes. AcCa, acylcarnitine; Cer,
ceramides; CerG, glucosylceramides; CerP, ceramide phosphate; ChE, cholesterol ester; Co, coenzyme;
CL, cardiolipin; DG, diglyceride; DGDG, digalactosyldiacylglycerol; LPC, lysophosphatidylcholine;
LPE, lysophosphatidylethanolamine; LPI, lysophosphatidylinositol; MG, monoglyceride; MGDG,
monogalactosyldiacylglycerol; OAHFA, (O-acyl)-1-hydroxy fatty acid; PA, phosphatidic acid; PC,
phosphatidylcholine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PI, phosphatidylinos-
itol; PIP, phosphatidylinositol; PIP2, phosphatidylinositol 4,5-bisphosphate; PS, phosphatidylserine;
phSM, phytosphingomyelin; SM, sphingomyelin; ST, sulfatide; TG, triglyceride; WE, wax esters.
HC, healthy control; SCZ, schizophrenia; MDD, major depressive disorder; & p < 0.05 vs. HC,
&& p < 0.01 vs. HC, # p < 0.01 vs. SCZ, ## p < 0.01 vs. SCZ. Blue squares show a negative correlation
and red squares show a positive correlation, * p < 0.05; ** p < 0.01.
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3.3. Characteristic Lipid Species between SCZ and HC

The plasma lipid data could be distinguished between the SCZ and HC groups accord-
ing to the characteristics of the OPLS-DA model (Figure 2A). Moreover, the permutation
test intercept R2 = 0.458 and Q2 = −0.684, which can better reflect the robustness of the
model. A total of 103 differential lipid species were identified between the SCZ and HC
(45 upregulated and 58 downregulated in SCZ, Figure 2B and Supplementary Table S3).
Correlation analysis showed the relevance of those discriminated lipids and clinical scale
scores (Supplementary Figure S2A and Supplementary Table S4). Enrichment analysis of
the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway based on these differential
lipids indicated that glycerophospholipid metabolism, linoleic acid metabolism, alpha-
linolenic acid metabolism, and glycosylphosphatidylinositol (GPI)-anchor biosynthesis
were enriched in the SCZ group (Figure 2C). Meanwhile, the above molecules were selected
to perform ROC curve analysis and showed good sensitivity and specificity (AUC = 0.953)
(Figure 2D), indicating that these 103 plasma lipids might be a combinational biomarker
for SCZ.
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3.4. Characteristic Lipid Species in MDD and HC Groups

Plasma lipid data were also distinguished and reliable for screening lipid biomarkers
between the MDD and HC groups (Figure 3A). Meanwhile, the permutation test intercept
R2 = 0.842 and Q2 = −0.851, which can better reflect the robustness of the model indicating
the OPLS-DA model was also reliable for screening lipid biomarkers in the MDD and HC
groups. Four different lipid species (three upregulated and one downregulated in MDD)
were identified between the MDD and HC groups (Figure 3B and Supplementary Table S3)
and there was no significant enrichment of lipid metabolism between these two groups.
Correlation analysis showed the relevance of the above four lipids and clinical scale scores
(Supplementary Figure S2B and Supplementary Table S4). However, these four lipids
showed limited sensitivity and specificity (AUC = 0.622, 95% CI (0.480, 0.765)) (Figure 3C)
and could not be used as a potential combinational plasma biomarker for MDD.
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3.5. Characteristic Lipids between SCZ and MDD Groups

Plasma lipid data were well distinguished and reliable for screening lipid biomark-
ers in patients with SCZ and MDD (Figure 4A). In total, 111 lipid species were identi-
fied (58 upregulated and 53 downregulated in MDD) between the SCZ and MDD groups
(Figure 4B and Supplementary Table S3). Correlation analysis showed the relevance of those
lipids and clinical scale scores (Supplementary Figure S2B and Supplementary Table S4).
Enrichment analysis of the KEGG pathway based on these differential lipids indicated that
glycosylphosphatidylinositol (GPI)-anchor biosynthesis, alpha-linolenic acid metabolism,
linoleic acid metabolism, and glycerophospholipid metabolism were enriched in the SCZ
group (Figure 4C). Meanwhile, the above-identified lipid species were selected to con-
struct the conduct ROC curve and showed good specificity and sensitivity (AUC = 0.920)
(Figure 4D), indicating that these plasma lipids might be useful parameters to distinguish
MDD and SCZ.
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(A) OPLS-DA model for MDD and SCZ, (B) volcano map showed differential species (red dots indi-
cated the increased lipid species and blue dots indicated the decreased lipid species) between MDD
and SCZ, (C) KEGG pathway enrichment analysis, and (D) ROC analysis for the combinational lipids.

4. Discussion

In the present study, we investigated the plasma lipid composition of adult patients
with SCZ and MDD compared to each other and compared with HCs using quantitative
validation and comprehensive lipid profiling based on LC-MS. Moreover, we identified
potential diagnostic plasma lipids, which can distinguish SCZ patients from MDD patients
and SCZ patients from HCs with high reliability. However, only four lipids have been
identified and it could not distinguish MDD patients from HC, suggesting that lipidomic
analysis may be one of the useful methods to identify SCZ. The results are worth further
exploration with a large sample size in clinical research as that may help to further identify
potential diagnostic molecular targets for SCZ and MDD.

With the continuous development of COVID-19, the prevalence of mental diseases
continues to increase, and it has become an important problem that seriously affects social
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stability and economic development. However, the differentiation and diagnosis of mental
diseases still mainly depend on clinical manifestations and doctors’ clinical diagnosis and
treatment level. Therefore, the investigation of objective molecular markers will provide
assistance for the differential diagnosis of mental diseases. Recently, alternations in lipid
composition in patients with mental diseases, such as bipolar disorder, SCZ, and MDD
have been reported [28–30]. A direct comparison of the lipid compositions in patients with
SCZ and MDD is particularly valuable for understanding the common and unique lipid
characteristics of these two diseases and identifying lipid markers that might differentiate
SCZ, MDD, and HC subjects. In the present study, we firstly found that levels of AcCa and
PE were decreased in the SCZ and MDD groups compared with the HC group and were
negatively correlated with PANSS, HAM-D, and HAM-A scores. Supporting these findings,
previous studies found that levels of PE were decreased in the serum and postmortem
prefrontal white matter in SCZ patients [31,32], and serum PE was also negatively correlated
with depressive symptoms [33]. Meanwhile, previous studies have shown reduced AcCa
in the serum or plasma of patients with MDD than in HCs [34,35], and changes in AcCa are
involved in the action of antidepressants in MDD patients [36]. Likewise, AcCa also plays
a key role in the pathophysiology of SCZ [37], and AcCa supplementation therapies have
been used in individuals with SCZ [38]. PE is the second most abundant phospholipid
in mammalian membranes and represents the backbone of most biological membranes.
For example, mitochondria have a higher PE content than other organelles [39]. Previous
studies found that AcCa plays an essential role in transporting long-chain fatty acids
across the mitochondrial inner membrane during β-oxidation [40] whereas mitochondrial
PE induces changes in mitochondrial morphology in mammalian cells [41]. Therefore,
decreases in AcCa and PE may be involved in mitochondrial dysfunction in patients
with SCZ and MDD [42]. Furthermore, we also found that the levels of PIP and PIP2
were increased in both SCZ and MDD patients compared to HCs. Although there is no
direct evidence indicating the involvement of PIP and PIP2 in the pathogenesis of SCZ
and MDD, previous studies have found that PIP and PIP2 play fundamental roles in
cell biology, including membrane-delineated signal transduction, as well as regulation of
membrane trafficking and cytoskeletal dynamics [43,44]. These results indicate that there
are several similar changes in lipid classes in SCZ and MDD, and these lipids primarily
belong to membrane lipids and are related to oxidative stress, energy metabolism, and
neurodegenerative diseases.

Importantly, the change in lipid class between SCZ and HC groups was more evident
than that between MDD and HC groups. Interestingly, the levels of LPC, LPE, and LPI were
decreased in both the HC and MDD groups compared with the SCZ group, which were
positively correlated with the PANSS score. LPC, LPE, and LPI are prominent components
of lysophospholipids that are involved in membrane function, apoptosis, oxidative stress,
and inflammatory responses. Previous studies have found that LPC and LPE may protect
neurons against ischemic-induced oxidative stress [45]. However, recent studies have
also found that LPC polarizes macrophage activation toward the M1 phenotype, and
induces inflammatory cytokine expression [46,47], which may lead to atherosclerosis and
cardiovascular diseases [48]. Moreover, LPC mediates vascular barrier disruption and
demyelination [49,50], which may lead to SCZ. Meanwhile, high serum levels of LPE also
significantly enhance the rate of mild cognitive impairment in Alzheimer’s disease [51].
Likewise, LPI is an endogenous ligand for the G protein-coupled receptor 55, which has
anti-inflammatory effects in cultured microglia but induces inflammatory cytokines in
macrophages [52,53]. Therefore, the functions of lysophospholipids are inconsistent or
even contradictory in different diseases or locations. Contrary to the results of the present
study, a previous study found that plasma LPC and LPE levels increased after olanzapine
treatment in female antipsychotic-naïve first-episode patients with SCZ [54]. Previous
studies have indicated increased plasma Cer levels in MDD [55] and Cer might be one of
the potential antidepressant targets both in the peripheral and brain [56,57]. Unfortunately,
the present study did not observe an increase in Cer levels in MDD when compared with
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HC groups, and the levels of Cer were even lower in the MDD group than in the SCZ group.
Nevertheless, the results of lipidomics in SCZ have been inconsistent. Previous studies
found that fatty acid catabolism was upregulated in the serum of schizophrenia patients
and plasma TG and LPC were increased in young adults with psychotic experiences [58,59].
However, another lipidomic study showed no significant difference between twin pairs
discordant for SCZ and healthy twins in the abundance of PE, SM, LPC, and TG in serum
samples [60]. Yet another study found that there was no significant difference in the
concentrations of PC, PE, TG, and FA between drug-naïve patients with the first episode of
SCZ and HCs and between patients with chronic SCZ who did not adhere to prescribed
medications and HCs [61]. These discrepancies may be related to differences in the methods
used for lipidomic analysis and the age, sex, or dietary structure of the subjects enrolled.
Of course, discrepancies owing to whether the patients were first-episode patients and/or
the interference of drugs cannot be ruled out.

In terms of lipid species, the plasma lipid data can be divided into three groups
(Supplementary Figure S1C,D). In accordance with the trend of changes in lipid classes,
only four differential lipid species were identified between the MDD and HC groups,
whereas 103 species were identified between the SCZ and HC groups. In addition, 111 dif-
ferential lipid species were also identified in patients with MDD and SCZ. The comparison
of lipids in all three groups showed four unique lipids in MDD patients versus HCs, ten
unique lipids in SCZ patients versus HCs, and eighteen unique lipids in MDD versus SCZ
patients (Supplementary Figure S1E). A previous study identified 37 differentially regulated
lipids for drug-free MDD patients in serum lipidomic analysis, and another study identi-
fied 18 differential lipids for drug-free SCZ patients in plasma lipidomic analysis [23,62].
Therefore, here, we report some previously unreported lipid signatures associated with
patients with SCZ or MDD. This study lays a possibility for further characterization of the
shared and distinct plasma lipid underpinnings of SCZ and MDD. In addition, we wanted
to know what lipid biomarkers could discriminate between SCZ and MDD patients (from
each other and HCs) in order to develop a potential diagnostic tool. Toward this end, we
identified a signature of 103 lipids that could distinguish SCZ from HC (AUC = 0.953) as
well as a signature of 111 lipids that could distinguish SCZ from MDD (AUC = 0.920). We
believe that these signatures have the potential for distinguishing SCZ from MDD patients
(and SCZ from HCs), which would be helpful to fill the clinical need to quickly distinguish
SCZ from MDD to optimize the initial treatment approach. However, these identified lipid
panels were inconsistent with a previous study [63], which may be related to the sex, region,
and symptom characteristics of enrolled individuals as well as the analysis method, which
need to be further verified by clinical studies with larger samples in the future.

Treatments aimed at modulating the composition and function of lipids might be
useful to prevent or improve individuals from developing SCZ and MDD [64,65]. However,
the crosstalk between the peripheral and central lipid homeostasis remains unclear and
lipidomic analysis of the cerebrospinal fluid might provide further insight. Furthermore,
age and sex are key factors that influence lipid metabolism [66,67]. Although there was
no significant difference in age and sex among individuals with MDD, individuals with
SCZ and HCs included in this study, the characteristics of lipid composition under other
age conditions and sex composition are not clear. Furthermore, other signatures that can
discriminate individuals with MDD and SCZ from HCs and each other, such as gut micro-
biota and tryptophan metabolism, have been recently reported [68–70], and the interaction
between plasma lipid metabolism and these signatures needs to be further explored.

Nevertheless, accumulated evidence reported the influence of antidepressants and
antipsychotics on lipid metabolism [71–73], and antidepressants appear to have fewer
unfavorable effects than second-generation antipsychotics on lipid metabolism [74]. In
the present study, risperidone was the main therapeutic drug used in the SCZ group
and its effects on lipid metabolism have been reported [75]. Venlafaxine and duloxetine
were the main therapeutic drugs used in the MDD group. Although their effects on lipid
metabolism were poorly investigated, their potential impact on lipidomics in MDD cannot
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be excluded. Thus, it is necessary to exclude the influence of drugs on lipidomics by
including the patients with the first untreated MDD or SCZ and the time effect and dose
effect of the above drugs on lipid metabolism also need to be investigated as well. On the
other hand, there is no significant difference in terms of TG, HDL, and CHOL among HC,
MDD, and SCZ. However, levels of LDL in MDD were higher than that in the HC group
and the influence of LDL on lipidomics between these two groups needs to be explored in
the future.

In addition, several limitations of this study should be mentioned. Firstly, the number
of recruited participants is relatively small, and the difference in plasma lipidome between
subtypes of MDD and SCZ could not be analyzed. Meanwhile, our findings did not
reveal the causal relationship between the difference in lipid compositions in SCZ or MDD
patients and disease development, a limitation that is inherent to any cross-sectional study
of this nature. Furthermore, we did not evaluate the symptoms of depression and anxiety
in SCZ by HAM-D and HAM-A. Although PANSS general psychopathology contains
the items of “anxiety” and “depression”, it is difficult to compare the symptom severity
accessed by HAM-D scores and PANSS. Therefore, analysis of the correlation between
levels of changed lipids and anxiety and depression is limited. Nevertheless, non-targeted
lipidomics and lipid identification by LipidSearch will bring some speculative results,
a well-known current technical problem, which leads to discrepancies in the molecules
identified in different studies. For example, SM (d14:0/22:0) was elevated in the blood
of the nonalcoholic steatohepatitis group compared to those in the nonalcoholic fatty
liver group [76]. Meanwhile, CerG2GNAc1 (d32:1) was increased while CerG2GNAc1
(d41:4) was decreased in the plasma of patients with Fabry disease compared with the
control [77]. These molecules rarely appeared in other studies, suggesting that the results
of lipidomics only have reference significance, and its clinical application will only be
possible with future progress in quantitative technology. Finally, lipidomics examination
based on plasma LC-MS requires expensive equipment and professional operators, and the
analysis of the results takes nearly 3 days. Therefore, although plasma lipidomics might be
a potential tool in differentiating depression and schizophrenia, its clinical application is
still difficult at this stage.

5. Conclusions

We identified the different plasma lipid compositions in adult patients with SCZ versus
MDD and in patients with SCZ versus HCs. Moreover, we developed lipid classifiers that
can effectively discriminate patients with SCZ from MDD and HCs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/medicina58111509/s1, Figure S1: (A) Number of identified lipid
subgroups and lipid molecules in this experiment and (B) percentage composition of lipid content
in each lipid class. (C) Scatter plot of OPLS-DA model for three groups, (D) heatmap analysis for
lipid composition in three groups, and (E) coverage of lipids in all three comparisons. Figure S2:
Correlation between clinical parameters and levels of discriminated lipids between SCZ and HC (A),
MDD and HC (B), and SCZ and MDD (C). Table S1: Clinical information of enrolled individuals.
Table S2: Correlation between clinical symptoms and levels of lipid classes in the plasma. Table S3:
Differential lipid between each group. Table S4: Correlation between clinical symptoms and levels of
differential lipids in the plasma (r value).
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