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Abstract: Abstract: BackgroundResponse to radiotherapy (RT) in gliomas varies widely between
patients. It is necessary to identify glioma-associated radiosensitivity gene signatures for clinically
stratifying patients who will benefit from adjuvant radiotherapy after glioma surgery. Methods: Chi-
nese Glioma Genome Atlas (CGGA) and the Cancer Genome Atlas (TCGA) glioma patient datasets
were used to validate the predictive potential of two published biomarkers, the radiosensitivity index
(RSI) and 31-gene signature (31-GS). To adjust these markers for the characteristics of glioma, we
integrated four new glioma-associated radiosensitivity predictive indexes based on RSI and 31-GS by
the Cox analysis and Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis.
A receiver operating characteristic (ROC) curve, integrated discrimination improvement (IDI), and
net reclassification improvement (NRI) were used to compare the radiosensitivity predictive ability
of these six gene signatures. Subgroup analysis was used to evaluate the discriminative capacity of
those gene signatures in identifying radiosensitive patients, and a nomogram was built to improve the
histological grading system. Gene Ontology (GO) analysis and Gene Set Enrichment Analysis (GSEA)
were used to explore related biological processes. Results: We validated and compared the predictive
potential of two published predictive indexes. The AUC area of 31-GS was higher than that of RSI.
Based on the RSI and 31-GS, we integrated four new glioma-associated radiosensitivity predictive
indexes—PI10, PI12, PI31 and PI41. Among them, a 12-gene radiosensitivity predictive index (PI12)
showed the most promising predictive performance and discriminative capacity. Examination of a
nomogram created from clinical features and PI12 revealed that its predictive capacity was superior to
the traditional WHO classification system. (C-index: 0.842 vs. 0.787, p ≤ 2.2 × 10−16) The GO analysis
and GSEA showed that tumors with a high PI12 score correlated with various aspects of the malignancy
of glioma. Conclusions: The glioma-associated radiosensitivity gene signature PI12 is a promising
radiosensitivity predictive biomarker for guiding effective personalized radiotherapy for gliomas.

Keywords: glioma; radiosensitivity; gene signatures

1. Introduction

Glioma, one of the most common primary brain malignancies in adults, is character-
ized by high recurrence rates and fatality [1]. Surgical resection and chemoradiotherapy are
the main glioma treatments. However, glioma is heterogeneous and complex, with widely
varied clinical outcomes. Despite the best available treatments, glioma survival ranges from
weeks/months to years [2]. Based on an improved understanding of its molecular features,
glioma was reclassified based on histological and molecular diagnostic criteria [3]. The rapidly
evolving understanding of the molecular subtypes of glioma has numerous clinical implica-
tions. However, most studies have focused on sensitivity to chemotherapy or novel targeted
therapies. Thus, a better understanding of the hallmarks of radiotherapy, which is the most
common and cost-effective adjuvant therapy, is needed for effective personalized radiotherapy.
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Several attempts have been made to identify a robust gene signature to predict the
radiosensitivity. The radiosensitivity index (RSI) and 31-gene signature (31-GS) are bur-
geoning approaches for pan-cancer analysis. The RSI is a 10-gene model based on the
radiation survival at 2Gy (SF2) in 48 human cancer cell lines [4]. The prediction model is a
linear regression algorithm that is validated in esophageal cancer, head and neck cancer,
rectal cancer, breast cancer, and endometrial cancer [5–7]. The 31-GS is developed by
analyzing the NCI-60 cancer cell panel for genes whose expression correlates with SF2 [8].
Its association with radiosensitivity has been validated in various malignancies [9–11].
However, it is still unclear which one is more suitable for glioma. Notably, there are no
overlapping genes between the two radiosensitivity predictive indexes. Exactly which
genes play an important predictive role in glioma also remains unknown.

Here, we compared the ability of the two gene signatures to predict glioma radiosensi-
tivity using Chinese Glioma Genome Atlas (CGGA) and the Cancer Genome Atlas (TCGA)
glioma patient datasets. Four new integrating radiosensitivity gene signatures were es-
tablished based on the two signatures and adapted to glioma. Sensitivity and specificity
were used to assess the reliability and accuracy of these radiosensitivity biomarkers. A
nomogram involving optimal radiosensitivity gene signature was built for glioma progno-
sis. The concordance index (C-index), calibration plots, and decision curve analyses (DCA)
showed that this signature is superior to the conventional WHO staging system alone.

2. Methods
2.1. Public Data Acquisition

Datasets on 748 and 647 glioma cases were obtained from CGGA (http://www.cgga.
org.cn/, accessed on 9 June 2019) and TCGA (http://xenabrowser.net/, accessed on 8
March 2020), respectively. Transcriptome sequencing data were generated on an Illumina
Hiseq platform. Patient demographic and clinicopathological features are shown in Table 1.

Table 1. Characteristics of patients in the CGGA cohort and TCGA cohort.

CGGA Cohort TCGA Cohort

Number Percent Number Percent

Sex
Female 306 40.9% 276 42.7%
Male 442 59.1% 370 57.2%

Missing 0 0.0% 1 0.2%
Age
<40 292 39.0% 243 37.6%
≥40 456 61.0% 403 62.3%

Missing 0 0.0% 1 0.2%
WHO classification

Grade 2 218 29.1% 244 37.7%
Grade 3 240 32.1% 258 39.9%
Grade 4 290 38.8% 145 22.4%

Radio status
Yes 625 83.6% 406 62.8%
No 123 16.4% 241 37.3%

Chemo status
Yes 520 69.5% 372 57.5%
No 228 30.5% 275 42.5%

IDH mutant status
Mutant 409 54.7% 419 64.8%

Wildtype 339 45.3% 228 35.2%
X1p19q_codeletion_status

Codeletion 155 20.7% NA NA
Non-codeletion 593 79.3% NA NA

http://www.cgga.org.cn/
http://www.cgga.org.cn/
http://xenabrowser.net/
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2.2. Validation of the Two Existing Radiosensitivity Signatures

The CGGA and TCGA datasets were divided into two groups based on the expression
profile of the 31-gene signature (31-GS) using the k-means method. Clusters with poor
progress were defined as radioresistant (RR) groups (CGGA-RR and TCGA-RR). The
remaining two groups were designated as radiosensitive (RS) groups (CGGA-RS group
and TCGA-RS group).

RSI was calculated as follows: RSI = −0.0090008 × AR expression + 0.0128283 × JUN
expression + 0.0254552 × STAT1 expression − 0.0017589 × PRKCB expression − 0.0038171
× RELA expression + 0.1070213 × ABL1 expression − 0.0002509 × SUMO1 expression
− 0.0092431 × PAK2 expression − 0.0204469 × HDAC1 expression − 0.0441683 × IRF1
expression. According to Eschrich et al. [4], the lower quartile of RSI was pre-defined as
the cut-off point for dividing patients into the RS and RR groups.

2.3. Generating Improved Radiosensitive Models

Both RSI and 31-GS are based on various cell lines and are not glioma-specific. To
identify precise glioma radiosensitivity signatures, we used the CGGA dataset as a training
cohort and the TCGA cohort as a validation cohort. Cox and LASSO analyses were used to
predict glioma overall survival with radiotherapy (n = 625). The models were reformulated
as follows:

PIn =
n

∑
k=1

(Expk ∗ Coek), (1)

where n is the number of selected genes, Expk is the expression value for each gene,
and Coek is the coefficient of regression models. This analysis identified four improved
radiosensitivity predictive indexes (PIx)—PI10 (involving genes in the RSI model), PI31
(involving genes in the 31-GS model), PI41 (involving genes from the two models), and
PI12 (involving the 12 genes identified via LASSO regression analysis).

2.4. Validation and Comparison of the Prognostic Indexes

For the internal and external validation of our PIs, we used time-dependent receiver
operating characteristic (ROC) curve analysis to determine corresponding cut-off points
and divide patients into high- and low-level groups. The areas under ROC curves (AUCs)
were compared to determine the PIs’ prognostic potential. Net reclassification improve-
ment (NRI) and integrated discrimination improvement (IDI) were used to estimate the
improvement of the model’s predictive power upon risk factors addition. AUC, NRI, and
IDI were then used to evaluate the discriminative ability of the selected PIs when predicting
glioma outcomes. The IDI and NRI values of the selected six predictors were calculated
using the R “SurvivalIDI package”. RSI was used as a reference.

2.5. Comparing the Discrimination Capability of the Selected Radiosensitivity Markers

To determine patients who can benefit from radiotherapy (RT), we performed Cox
analysis to assess the discriminability of each radiosensitivity predictor in the RT and
non-RT groups. Cox analysis was used to determine which group should receive radio-
therapy. Given that glioma is characterized by diverse histological types, Cox analysis was
conducted on patients with various histology types. Both CGGA and TCGA glioma cases
were tested by Cox analysis, and the subgroup analysis results were shown in forest plots.
Discriminability and clinical application potential were examined based on sensitivity and
specificity. Predictors with optimal specificity only exhibited prognostic capacity in the RT
group, while those with optimal sensitivity were capable of distinguishing patients who
may benefit from RT from those who can be spared RT.

2.6. Nomogram Construction and Analysis of Its Performance against the WHO Staging System

After comparing the predictive capacity of the selected radiosensitivity predictors,
the optimal ones were included in a nomogram. Next, Cox regression univariate and
multivariate analyses were performed using the CGGA dataset as a training cohort and the



Medicina 2022, 58, 1327 4 of 23

TCGA dataset as a validation cohort. A nomogram was built based on multivariate analysis
results of the training cohort and validated on the validation cohort using a concordance
index (C-index), calibration plot, and decision curve analysis (DCA).

2.7. Exploration of Biological Function

To explore the underlying biological mechanisms related to differences in radiosensi-
tivity, differential expressed genes (DEGs) between the high-risk and low-risk groups were
separately identified using the “edgeR” R package. When there was a false discovery rate
(FDR) q < 0.01 and fold change (FC) > 2.0, significant genes were defined (Figure 1A,B).
Similarities of significant genes in both the CGGA and TCGA cohorts were classified as
significant DEGs (Figure 1C,D). The “clusterProfiler” R package was used to carry out
Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes pathway
enrichment (KEGG) analysis [12]. Gene Set Enrichment Analysis (GSEA) was used to
uncover the mechanism of radioresistance (version 4.0.1).
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Figure 1. Exploration of biological function. (A,B) Volcano plot of gene expression profile data
in high-PI12 samples and low-PI12 ones in CGGA and TCGA cohort; (C,D) Venn diagram of up-
regulated and down-regulated differentially expressed genes (DEGs); (E,G) Bubble plots of the
top ten GO terms of biological processes based on the up-regulated and down-regulated genes;
(F,H) Bubble plots of the top ten KEGG pathways based on the up-regulated and down-regulated
genes; (I–K) Gene set enrichment analysis (GSEA) showed the biological functions and pathways that
were significantly enriched in patients with high-PI12 score in CGGA cohort; (L–N) The biological
functions and pathways that were significantly enriched in TCGA cohort.

To validate the results of these bioinformatics analyses, we tested the correlation
between the PI12 and several published biological-related scores, such hypoxia score,
glycolysis-related score and interferon-γ-related score. Hypoxia scores were calculated
based on the mRNA-abundance-based signature developed previously by Buffa et al. [13].
Patients with the top 50% of mRNA abundance values for each gene in a signature were
given a score of +1, otherwise they were given a score of −1. The glycolysis-related score
was calculated based on the specific formula: Risk score = (0.1730 × SOCS3 expression) +
(0.2370 × ISG20 expression) + (−0.4303 × IFIT5 expression) + (−0.2914 × NLRC5 expres-
sion) + (−0.2829 × IRF9 expression) [14]. The interferon-γ related score was calculated
based on the specific formula: Risk score = (0.19 × FOXD2-AS1 expression) + (−0.27
× AC062021.1 expression) + (−0.16 × AF131216.5 expression) + (−0.05 × LINC00844
expression) + (0.11 × CRNDE expression) + (0.35 × LINC00665 expression) [15].

2.8. Statistical Analyses

Statistical analyses were conducted on R Studio (version 1.1453). Survival curves
were generated using Kaplan–Meier analysis and analyzed using the log-rank test. Cox
regression analysis was used for univariate and multivariate analyses. Heatmap analysis
was performed using the pheatmap package. Correlation heatmap analysis was performed
using the ggcor package. The LASSO model was built using the glmnet package. The
SurvivalROC package was used for ROC curve analysis. The SurvivalIDI package was used
for IDI and NRI analysis. The nomogram was built using the rms package. DCA was
performed using the stdca package.
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3. Results
3.1. Validation of the Predictive Capacity for RSI and 31-Gene Signatures

First, we validated the predictive capacity of the 31-GS in the CGGA cohort and
grouped the patients into the RR (n = 414) and RS (n = 334) groups using k-means clustering
(Figure 2A). The group with improved survival was defined as the RS group. We then
showed that the RS group exhibited better survival relative to the RR group whether or not
they received RT (Figure 2B,C). No survival difference was observed between the RT and
non-RT group irrespective of the group the patients belonged to (Figure 2D,E).
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Figure 2. Validation of the two existing radiosensitivity signatures in CGGA cohort. (A) Heatmap
illustrating the condition of 31-gene signature and radiosensitivity classification in all samples from
the CGGA cohort. Survival comparison between RS group and RR group for patients treated with
(B) and without RT (C) when classifying them based on 31-GS. Survival comparison between patients
with and without RT in the RS group (D) and RR group (E) classified based on 31-GS. A comparison of
overall survival between RS and RR group for patients treated with (F) and without RT (G) based on
RSI. Comparison of overall survival between patients with and without RT in the RS group (H) and
RR group (I) classified based on RSI.
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According to Eschrich et al. [4], patients on the lower RSI quartile are considered to
be in the RS group, and the rest in the RR group. Patients in the RS group exhibited better
survival than those in the RR group with or without RT (Figure 2F,G). Consistent with the
31-GS, no survival difference was observed between RT and non-RT group (Figure 2H,I),
indicating that RSI did not determine which patients may benefit from radiotherapy or
those who could be spared of RT.

3.2. Integrating Radiosensitive Genes Improves Radiosensitivity Prediction

Separately, the 31-GS and RSI could not robustly identify radiosensitive populations.
Considering that both gene signatures were developed from various cell lines and are not
glioma-specific, we rebuilt the PIs based on glioma patients with RT. First, the 41 genes
were analyzed using univariate Cox regression. The results showed that not all genes were
prognostic factors of glioma, shown in Table 1. Moreover, correlation analysis revealed
a high correlation between some of the genes (Figure 3A), highlighting the difficulty
of identifying significant genes using traditional statistical methods. The shrinking of
the numbers of genes is necessary; thus, we used LASSO regression analysis to identify
important predictive genes (Figure 3B). To obtain a more accurate prognostic model, we
defined λ as the lambda.min (Figure 3C). As a result, 12 corresponding gene numbers
were involved. These genes’ coefficients obtained from univariate and LASSO analysis are
shown in Table 2. Based on the coefficients, we built PI12 and investigated the association
between PI12 score and pathological characteristics. In the training cohort, PI12 score rose
with the increase in WHO grades (Figure 3D). The IDH wildtype patients also showed
higher PI12 scores than the IDH mutant ones (Figure 3E).

3.3. Validation and Comparison of the Prognostic Indexes

For internal validation, ROC curves were used to determine the cut-off thresholds. The
AUCs were also compared to determine the prognostic potential of these PIx scores. The
time-dependent ROC curves for 1-, 3-, and 5-year survival in the CGGA cohort are shown
in Figure 4A–C. At all the time points, the PI12 score had the highest AUC, followed by PI31
and PI41. To compare the predictive accuracy of the selected six markers, we performed IDI
and NRI analysis. As RSI’s AUC was the lowest, RSI was chosen as a referent marker. The
other five predictors exhibited significant capacity to predict survival (p ≤ 0.05). Consistent
with the ROC curve results, PI12 had the highest IDI and NRI value at all time points,
followed by PI31 and PI41 (Figure 4D–F). K m curve analyses were performed to display
the prognostic value of these prognostic indexes. The results showed that patients in the
high-level prognostic index group tended to have shorter OS (Figure 4G–J).

Similar results were obtained from external validation (Figure 5). Time-dependent
ROC curves for 1−, 3−, and 5−year survival in the TCGA cohort are shown in Figure 5A–C.
PI12 had the highest AUC for 3− and 5−year survival, followed by PI31 for 1−year survival.
PI12 had the highest NRI at all time points. IDI results had the same trend as AUC values.
PI12’s IDI value was highest at 3- and 5-year time points, followed by those of the PI31
model (Figure 5D–F). K m curve analyses also showed that high−level groups evaluated by
all the prognostic indexes appeared to have a worse prognosis than those with the low-level
counterparts (Figure 5G–J).
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Figure 3. Construction of Lasso−cox model and PI12. (a) The correlation heatmap between radiosen-
sitivity genes; (b) Partial likelihood deviance of different numbers of variables revealed by the LASSO
regression analysis. The two vertical lines represent lambda.min and lambda.1se, respectively; (c) Log
(Lambda) value of the 41 genes in LASSO regression analysis; (d) Distribution of the PI12 in glioma
patients stratified by WHO grade; (e) Distribution of the PI12 in glioma patients stratified by IDH
mutation status in the CGGA cohort.



Medicina 2022, 58, 1327 9 of 23

Table 2. Radiosensitivity index (41-gene signature) for predicting radiosensitivity.

Genes Group Coefficients of
Cox Analysis

HR (95% CI for
HR) Wald. Test p-Value

Coefficients of
Lasso-Cox

Model

CAPNS1 31-GS 0.31 1.4 (1.2–1.5) 33 1.10 × 10−9 0.000
PFN2 31-GS −0.4 0.67 (0.59–0.76) 41 1.30 × 10−10 0.000
PYGB 31-GS −0.56 0.57 (0.48–0.68) 41 1.40 × 10−10 −0.173

SCRN1 31-GS −0.078 0.92 (0.82–1) 1.6 0.21 0.000
CCND1 31-GS 0.051 1.1 (0.97–1.1) 1.4 0.23 0.022
HTRA1 31-GS −0.38 0.69 (0.6–0.79) 28 1.00 × 10−7 −0.170
ITGB5 31-GS 0.33 1.4 (1.2–1.5) 37 1.30 × 10−9 0.000
RALB 31-GS 0.39 1.5 (1.3–1.7) 23 1.50 × 10−6 0.000
TWF1 31-GS 0.27 1.3 (1.1–1.5) 13 0.00027 0.069

ANXA2 31-GS 0.36 1.4 (1.4–1.5) 170 8.80 × 10−39 0.000
PKM 31-GS 0.53 1.7 (1.4–2) 38 8.60 × 10−10 0.000

ACTN1 31-GS 0.41 1.5 (1.4–1.6) 140 2.10 × 10−32 0.105
ANXA5 31-GS 0.69 2 (1.8–2.2) 160 2.00 × 10−36 0.103
PTMS 31-GS 0.27 1.3 (1.2–1.5) 24 8. × 10−7 0.084
CD63 31-GS 0.53 1.7 (1.5–1.9) 120 1.90 × 10−27 0.288

RAB13 31-GS 0.61 1.8 (1.6–2.1) 100 4.80 × 10−24 0.000
CBR1 31-GS 0.28 1.3 (1.2–1.4) 46 1.20 × 10−11 0.071

SQSTM1 31-GS 0.6 1.8 (1.6–2.1) 71 2.90 × 10−17 0.000
HCLS1 31-GS 0.39 1.5 (1.3–1.6) 70 5.80 × 10−17 0.000

PTPRCAP 31-GS 0.0041 1 (0.92–1.1) 0.01 0.92 −0.104
PTPRC 31-GS 0.21 1.2 (1.1–1.3) 24 1.10 × 10−6 0.000

CORO1A 31-GS 0.25 1.3 (1.1–1.4) 20 9.10 × 10−6 0.000
ARHGDIB 31-GS 0.52 1.7 (1.5–1.8) 100 1.60 × 10−24 0.000
LAPTM5 31-GS 0.31 1.4 (1.2–1.5) 48 3.60 × 10−12 0.000

WAS 31-GS 0.29 1.3 (1.2–1.5) 31 2.30 × 10−8 −0.014
CXCR4 31-GS 0.34 1.4 (1.3–1.5) 74 6.20 × 10−18 0.000
LRMP 31-GS 0.07 1.1 (0.92–1.3) 0.8 0.37 0.000
DAG1 31-GS 0.3 1.4 (1.2–1.6) 14 2.2 × 10−4 0.000

PIR 31-GS 0.17 1.2 (1.1–1.3) 12 5.1 × 10−4 0.000
MYB 31-GS 0.36 1.4 (1.3–1.6) 28 1.40 × 10−7 0.000
EMP2 31-GS 0.36 1.4 (1.3–1.6) 49 2.60 × 10−12 0.000

AR RSI 0.36 1.4 (1.3–1.6) 30 3.50 × 10−8 0.000
JUN RSI 0.51 1.7 (1.5–1.8) 120 5.20 × 10−28 0.000

STAT1 RSI 0.32 1.4 (1.2–1.5) 43 6.50 × 10−11 0.000
PRKCB RSI −0.29 0.75 (0.69–0.81) 51 8.10 × 10−13 0.000
RELA RSI 0.35 1.4 (1.1–1.8) 9.9 0.0017 0.000
ABL1 RSI 0.19 1.2 (1–1.4) 6.2 0.013 0.000

SUMO1 RSI 0.8 2.2 (1.7–2.9) 39 4.60 × 10−10 0.000
PAK2 RSI 0.042 1 (0.89–1.2) 0.27 0.6 0.000

HDAC1 RSI 0.86 2.4 (2–2.7) 130 3.90 × 10−31 0.331
IRF1 RSI 0.37 1.4 (1.3–1.6) 68 2.10 × 10−16 0.000



Medicina 2022, 58, 1327 10 of 23

Medicina 2022, 58, x FOR PEER REVIEW 11 of 25 
 

 

shown in Figure 4A–C. At all the time points, the PI12 score had the highest AUC, 
followed by PI31 and PI41. To compare the predictive accuracy of the selected six 
markers, we performed IDI and NRI analysis. As RSI’s AUC was the lowest, RSI was 
chosen as a referent marker. The other five predictors exhibited significant capacity to 
predict survival (p ≤ 0.05). Consistent with the ROC curve results, PI12 had the highest 
IDI and NRI value at all time points, followed by PI31 and PI41 (Figure 4D–F). K m curve 
analyses were performed to display the prognostic value of these prognostic indexes. The 
results showed that patients in the high-level prognostic index group tended to have 
shorter OS (Figure 4G–J). 

 
Figure 4. Internal validation of the selected markers in predicting glioma outcome in CGGA cohort. 
One−year (A), three−year (B), and five−year (C) time−dependent ROC of the selected markers. 
AUC areas were calculated and exhibited below the figures. IDI and NRI were calculated to 
compare the predictive accuracy of the 6 selected markers for 1-year (D), 3−year (E), 5−year (F) 

Figure 4. Internal validation of the selected markers in predicting glioma outcome in CGGA cohort.
One−year (A), three−year (B), and five−year (C) time−dependent ROC of the selected markers.
AUC areas were calculated and exhibited below the figures. IDI and NRI were calculated to compare
the predictive accuracy of the 6 selected markers for 1-year (D), 3−year (E), 5−year (F) ROC. RSI was
applied as the referent marker. * p < 0.05. (G–J) Prognostic significance of PI10, PI12, PI31, and PI41
score in CGGA cohort.
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Figure 5. External validation of the selected markers in predicting glioma outcome in TCGA cohort.
One−year (A), three−year (B), and five−year (C) time-dependent ROC of the selected markers. AUC
areas were calculated and exhibited below the figures. IDI and NRI were calculated to compare the
predictive accuracy of the 6 selected markers for 1−year (D), 3−year (E), 5−year (F) ROC. RSI was
applied as the referent marker. * p < 0.05. (G–J) Prognostic significance of PI10, PI12, PI31, and PI41
score in TCGA cohort.

3.4. Comparing the Discrimination Capability of the Selected Radiosensitivity Predictors

In the CGGA cohort, we tested the specificity of the PI12 using the Cox analysis of
the RT and non-RT groups. Promising radiosensitivity predictive indexes were expected
to distinguish between outcomes in the RT group, without influencing the outcome of
the no-RT group. However, PI12 revealed prognostic potential on outcome in the RT and
non-RT groups (Figure 6A,B). As for the sensitivity of PI12 score, no significant differences
were seen between the RT and non-RT groups for patients in low- and high-PI12 groups
(Figure 6C,D).
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Figure 6. The prognostic value of the risk signature in CGGA cohort and TCGA cohort. (A,E)
Kaplan–Meier survival analysis of the PI12 score for glioma patients treated with radiotherapy in
CGGA cohort and TCGA cohort; (B,F) Kaplan–Meier survival analysis of the PI12 score for glioma
patients without radiotherapy in CGGA cohort and TCGA cohort; (C,G) Kaplan–Meier survival
analysis of radiotherapy for glioma patients in high-PI12 group in CGGA cohort and TCGA cohort;
(D,H) Kaplan–Meier survival analysis of radiotherapy for glioma patients in low-PI12 group in
CGGA cohort and TCGA cohort.
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In the TCGA cohort, PI12 also displayed an obviously prognostic value whether or not
participants received radiotherapy (Figure 6E,F). However, for the high-PI12 group, patients
with RT tended to have better outcomes than those without RT, while for the low-PI12 group,
no significant differences were seen between the patients with and without RT.

Given glioma’s heterogeneity, we stratified the patients based on WHO classification
and tested discrimination capability in various glioma grades. The forest plot in Figure 7
shows that of the CGGA cohort. For WHO grades 2 and 4, patients with low PI12 levels
exhibited better survival after RT, while no significant differences were seen between the
low PI31 group and high PI31 group in patients who not receive RT. In the WHO grade 3
group, PI12 showed an obviously prognostic value whether or not participants received RT.
In the TCGA cohort, PI12 showed its discrimination capability only for the patients with
WHO grade 2, but it failed for those with WHO grade 3 and 4 (Figure 8).
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Figure 8. Forest plots to test the specificity of the selected markers for different WHO stages in the
TGGA cohort.

In all WHO tumor grades of the CGGA cohort, patients with low PI31 levels exhibited
better survival after RT. No significant differences were seen between the low PI31 group
and high PI31 group in patients who did not receive RT. PI31 also showed its discrimination
capability in those with WHO grades 3 and 4 in the TCGA cohort. Other radiosensitivity
predictive indexes did not exhibit specificity like PI31 and PI12, which are shown in
Figures 7 and 8.

As for the sensitivity of the selected markers, we also used forest plots to display this
for different subtypes. In the CGGA cohort, the high-PI12 group could benefit from RT,
while the low-PI12 group could not for the patients with WHO grade 3 and 4 (Figure 9). In
the TCGA cohort, PI12 detected that high-PI12 group patients could benefit from RT only
for those with WHO grade 4 (Figure 10).
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Figure 9. Forest plots to test the sensitivity of the selected markers for different WHO stages in the
CGGA cohort.

3.5. Construction of a Nomogram for Predicting Glioma OS

As PI12 exhibited significant superiority in survival prediction in both cohorts, we
used it as a variable in nomogram construction. After univariate and multivariate analysis
of the CGGA dataset (training cohort), only PI12, WHO grade, and chemotherapy remained
(Table 3). A nomogram was then constructed based on the selected variables to predict the
1-, 3-, and 5-year survival rates (Figure 11A). We then validated the nomogram externally
through C-index, calibration plots, and decision curve analyses of the validation cohort.
The nomogram exhibited a significantly higher OS C-index relative to the WHO’s staging
system (0.842 vs. 0.787, p ≤ 2.2 × 10−16). Nomogram calibration plots showed that the
predicted 1-, 3- and 5-year survival probabilities in the validated cohort were almost
identical to actual observations (Figure 11B–D). Decision curve analysis showed that the
net benefits indicated by the nomogram were higher than those from the WHO’s staging
system (Figure 11E–G).
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Table 3. Univariate analysis and multivariate analysis of the training cohort.

Univariate Analysis Multivariate Analysis

HR 95%CI p-Value HR 95%CI p-Value

Sex
Female Reference
Male 0.038 0.86–1.3 0.35

Age
<40 Reference Reference
≥40 1.6 1.3–2.0 1.8 × 10−6 1.18 0.96–1.44 0.11

WHO classification
Grade 2 Reference Reference
Grade 3 2.1 2.2–3.9 <3.5 × 10−54 2.56 1.87–3.49 3.45 × 10−14

Grade 4 2.1 6.3–11 <3.5 × 10−54 4.66
Radio status

Yes Reference
No 0.93 0.72–1.2 0.57

Chemo status
Yes Reference
No 1.6 1.3–2.0 5.7 × 10−6 0.70 0.56–0.89 3 × 10−3

IDH mutant status
Mutant Reference Reference

Wildtype 3.2 2.6–3.8 3.8 × 10−32 1.16 0.93–1.46 0.18
X1p19q_codeletion_status

Codeletion Reference Reference
Non-codeletion 4.3 3.2–5.9 2.1 × 10−20 1.29 1.88–1.91 0.18

PI12
High Reference Reference
Low 0.16 0.12–0.2 1.5 × 10−48 0.28 0.20–0.39 3.05 × 10−14

3.6. Exploration of Biological Function

In order to explore the functional characteristics of potential changes associated with
radiosensitivity, GO analysis was conducted to investigate the differences in biological
processes between low- and high-PI12 groups. We identified 276 up-regulated genes and
44 down-regulated genes (Figure 1A–D). Genes up-regulated in the high-PI12 group were
primarily involved in cell division and proliferation, including “Mitotic nuclear division”,
“Nuclear division”, “Mitotic sister chromatid segregation”, “Organelle fission” and “Regu-
lation of mitotic nuclear division” (Figure 1E). The KEGG pathways that were particularly
enriched by up-regulated DEGs were “Cell cycle”, “Cellular senescence”, “PPAR signaling
pathway” and “P53 signaling pathway” (Figure 1F). Genes that were negatively correlated
with high PI12 were enriched in biological processes associated with regulation of mem-
brane potential and transmembrane transporter activity (Figure 1G). Down-regulated genes
were also enriched in KEGG pathways such as “insulin secretion”, “GABAergic synapse”,
“neuroactive ligand receptor interaction” (Figure 1H). GSEA analyses were carried out for
validation. The results suggests that the high-risk groups were related to the regulation
of glycolysis metabolism and hypoxic response. The interferon-γ response also had a
significant effect (Figure 1I–N).

To validate the association between PI12 and related biological processes, we inves-
tigated the relationship between the PI12 score and published gene signatures. Overall,
our PI12 score was strongly correlated to the glycolysis-related gene signatures, shown in
Figure 12A,D (r = 0.70, p < 0.05 for the CGGA cohort; r = 0.86, p < 0.05 for the TCGA cohort);
the PI12 score was also strongly correlated to the hypoxia score, shown in Figure 12B,E
(r = 0.74, p < 0.05 for the CGGA cohort; r = 0.70, p < 0.05 for the TCGA cohort). However,
the PI12 score was weakly correlated to interferon signature, as shown in Figure 12C,F
(r = 0.35, p < 0.05 for the CGGA cohort; r = 0.62, p < 0.05 for the TCGA cohort).
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Figure 11. Construction and validation of a nomogram. (A) The nomogram predicting 1−, 3−
and 5−year survival. (B–D) Calibration plots of the nomogram showed that the predicted 1−, 3−
and 5−year survival probabilities of the validated cohort for OS were almost identical to the actual
observations. (E–G) Decision curve analysis from the validation set for 1-, 3- and 5-year survival.
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interferon-related gene signatures.

4. Discussion

Glioma, the most common brain malignancy, is characterized by a high relapse and
mortality rate [16]. Due to its biological heterogeneity, glioma exhibits great variability in
survival, ranging from weeks/months to years [2]. Conventional glioma grading is based
on histological morphology. However, the accuracy of this approach is greatly affected by
interobserver variability and insufficient tissue sampling [17]. Recent studies have uncov-
ered key genetic and molecular aspects of glioma, leading to the identification of novel
prognostic biomarkers that are superior to traditional histological methods of diagnosing,
staging, and treating glioma. The IDH mutation status is a hallmark of glioma prognosis sig-
natures. IDH wild-type LGGs are generally as aggressive as GBM and have poor prognosis.
IDH wild-type GBM also has a poorer prognosis relative to IDH mutant cases. Chromo-
some 1p/19q co-deletion is a well-known prognostic and predictive marker of grade 2 and
3 glioma [18]. MGMT (O6-methylguanine-DNA methyltransferase) promoter methylation
is also an important prognostic, and predictive factor in GBM. MGMT elevation may cause
temozolomide resistance [19]. Other potential GBM biomarkers include PD-1 (programmed
death 1), which is also a therapeutic target of immune checkpoint inhibitors [20]. Although
radiotherapy is the most commonly used and cost-effective adjunct therapy for glioma,
there are no effective predictors to guide radiotherapy.

The radiosensitivity index (RSI) is a 10-gene model for predicting tumor radiosensi-
tivity. This model uses a linear regression algorithm that correlates gene expression and
intrinsic cellular radiosensitivity, represented by the SF2 in 48 human cancer cell lines [4].
The RSI has been shown to predict radiosensitivity in various tumors [4–7]. An advantage
of RSI is the quantifiability of the linear regression algorithm, making it more intuitive than
unsupervised methods. A genomic-adjusted radiation dose (GARD) model based on RSI is
used to tailor radiotherapy doses to meet individual needs [21] in breast cancer and lung
metastases of various primary tumors [22,23]. However, in GBMs, RSI is an independent
prognostic factor for patients, irrespective of RT status [24]. To the best of our knowledge,
RSI has not been tested in LGG. Here, we find that RSI is a significant prognostic factor
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in glioma cases. However, subgroup analysis had inconsistent results in the CGGA and
TCGA cohorts and showed unfavorable sensitivity and specificity when RSI was used to
predict radiosensitivity in WHO grade 2−4 gliomas.

The 31-GS was developed from the SF2 of the NCI-60 cancer cell panel. Four published
NCI-60 cancer cells microarray datasets were used, and meta-analysis was used to integrate
a new radiosensitivity signature with 31 genes [8]. The 31-GS has been validated for GBM
radiosensitivity prediction [25]. However, for LGGs, breast cancers, and head and neck
cancers, PD-1 expression should be combined with the 31-GS to predict radiosensitiv-
ity [9–11]. The 31-GS uses unsupervised learning to stratify patients into RR and RS groups.
However, discriminating gene signatures using unsupervised methods is difficult. Thus,
more effective and accurate classifiers are needed for clinical use with 31-GS. Additionally,
because it is unquantifiable, the 31-GS cannot predict individual doses such as RSI. Here,
we find that the 31-GS is an independent prognostic factor only in the RT group and could
not predict the survival difference between RS and RR groups in patients without RT, thus
failing to identify patients who may benefit from RT.

Both RSI and 31-GS have limitations that curtail their potential to predict radiosensitiv-
ity and inform clinical decisions. Moreover, since they are based on numerous cancer types,
adapting them to glioma may improve their capacity to predict radiosensitivity. Thus, we
built four linear regression algorithms using genes from 31-GS, RSI, or both, based on the
training cohort. Although the 31-GS and RSI are non-overlapping, some genes strongly
correlated with each other. LASSO regression was used to shrink the number of key genes,
producing 12 genes that were included in the development of a new biomarker—PI12.

Here, we have presented the first comparison of the ability of 31-GS and RSI to predict
glioma prognosis. AUC, NRI, and IDI values of the 31-GS were higher than those of RSI
at all time points. Comparison of all newly established predictors showed that PI12 had
the highest AUC, NRI, and IDI in the training and validation cohorts at most time points,
indicating good prognostic potential.

Forest plot analysis of these biomarkers’ power to predict radiosensitivity showed that
all have prognostic potential in the training and validation cohorts, irrespective of RT status.
In the training cohort, none of the biomarkers could identify the subgroup whose patients
could benefit from RT. However, in the validated cohort, PI31, 31-GS, and RSI identified the
high-risk group that could benefit from RT and the low-risk group that could benefit from
being exempted from RT. The PI12, PI10, and PI41 could only identify the subgroup that may
benefit from RT. The divergences observed in the two cohorts failed to support the clinical
use of these biomarkers. However, due to glioma’s heterogeneity, therapeutic strategies vary
by disease grade. Subgroup analysis of the radiosensitivity discriminating power of these
biomarkers in WHO grade 2–4 gliomas showed that, relative to other biomarkers, PI12 and
PI31 had superior sensitivity and specificity in WHO grades. Our data show that PI12 is
more suited for WHO glioma grade 2, while PI31 is better for grades 3 and 4. While 31-GS
and RSI are established biomarkers, they are pan-cancer-based. Our data indicate that the
adapted gene signatures improve our capacity to predict glioma radiosensitivity.

Further, the aim of a radiosensitivity predictor is to identify patients with unmatched
ideal and actual treatment strategies, including the following types: (1) patients with high
radiosensitivity that can be considered to reduce the therapeutic dose; (2) patients that
have the least aggressive tumors and remain recurrence-free even without RT; (3) patients
with radio-resistance that require seeking other adjuvant therapies or increasing local dose;
(4) patients with radio-resistance that do not benefit from radiotherapy. The goal of this
study was to construct a predictive model to distinguish between the above scenarios.
Subgroup analysis revealed that WHO grade 2 patients did not benefit from radiotherapy
regardless of whether they were in the high- or low-PI12 group, possibly due to a failure to
adequately consider patient age, extent of tumor resection, IDH, and 1p/19q status, but
the limited sample size did not support a more detailed subgroup analysis. PI12 failed to
identify patients who could be exempted from radiotherapy or reduced dose but targeting
the high PI12 group may mean a worse prognosis and require more attention, such as
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more frequent follow-up observations. WHO grade 3 and 4 patients should be treated
with radiation regardless of complete tumor resection, and patients in these grades who
have a high level of PI12 may benefit from radiation therapy, while low-PI12 patients do
not. However, due to the high recurrence rate and poor prognosis of aggressive gliomas, it
cannot be confidently assumed that low-PI12 patients can be exempted from radiotherapy,
and it may be more clinically relevant to find other adjuvant therapies, such as checkpoint
blockade immunotherapy and electric field therapy, or to find therapeutic targets that
enhance radiosensitivity.

Our findings show that WHO glioma grade, chemotherapy status, and PI12 are inde-
pendent glioma prognostic factors. To complement traditional classification, we established
a nomogram based on these factors and evaluated its predictive accuracy and discrimina-
tive capacity using C-index (concordance index) analysis. The nomogram’s higher C-index
relative to the WHO grading system suggested that it had superior prognostic potential.
Furthermore, decision curve analysis plots revealed the benefits of the nomogram.

In the present study, bioinformatics analysis suggested that risk score was positively
related to several biological processes such as glycolysis, hypoxia response and interferon
gamma response. Glycolysis rate is obviously higher in tumor cells compared to normal cells.

Hypoxia is present to some extent in most solid malignant human cancers [26], and
there is sufficient evidence that tumor cells adapted to hypoxic conditions are a major
factor in tumor radioresistance [27,28]. Buffa et al. established a hypoxic score to predict
outcome and benefit from particular interventions [13]. We proved that our radiosensitivity
predictive index-PI12 was obviously correlated to the Buffa hypoxic score. Meanwhile,
hypoxia is considered to be an important factor leading to tumor metabolic reprogram-
ming [29]. Increased glycolysis plays an essential role in the occurrence and development
of glioma [30]. Wang et al. established a glycolysis-related signature that was a robust
predictor of prognosis. This study also explored the correlation of PI12 and anaerobic frac-
tion and glycolysis-related signature. The results showed that radiosensitivity predictive
index was positively correlated with glycolysis-related signature, which was consistent
with the results of GSEA analysis [14]. Moreover, the interferon-γ pathway was also
up-regulated in high-risk patients and PI12 was moderately positively correlated with
interferon-related scores and was considered to be associated with changes in the immune
microenvironment [15].

The present study has a few limitations. First, samples were downloaded from the
TCGA and CGGA databases, and information on the extent of tumor resection and IDH-1
status were unavailable. As the extent of the tumor resection is a critical survival factor,
further analysis with more detailed clinical information is needed. Additionally, our study
did not examine the prediction of relapse-free survival (RFS) rate, as RFS details were
incomplete. Other limitations include those inherent in retrospective database analyses and
differences in survival expectations between people of different races. Further prospective
research and multicenter clinical trials are needed to validate and refine the model.
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