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Abstract: Background and objectives: cardiovascular complications (CVC) are the leading cause of
death in patients with chronic kidney disease (CKD). Standard cardiovascular disease risk prediction
models used in the general population are not validated in patients with CKD. We aim to system-
atically review the up-to-date literature on reported outcomes of computational methods such as
artificial intelligence (AI) or regression-based models to predict CVC in CKD patients. Materials
and methods: the electronic databases of MEDLINE/PubMed, EMBASE, and ScienceDirect were
systematically searched. The risk of bias and reporting quality for each study were assessed against
transparent reporting of a multivariable prediction model for individual prognosis or diagnosis
(TRIPOD) and the prediction model risk of bias assessment tool (PROBAST). Results: sixteen papers
were included in the present systematic review: 15 non-randomized studies and 1 ongoing clinical
trial. Twelve studies were found to perform AI or regression-based predictions of CVC in CKD, either
through single or composite endpoints. Four studies have come up with computational solutions for
other CV-related predictions in the CKD population. Conclusions: the identified studies represent
palpable trends in areas of clinical promise with an encouraging present-day performance. However,
there is a clear need for more extensive application of rigorous methodologies. Following the future
prospective, randomized clinical trials, and thorough external validations, computational solutions
will fill the gap in cardiovascular predictive tools for chronic kidney disease.

Keywords: chronic kidney disease; artificial intelligence; cardiovascular complications; prevention;
predictive models

1. Introduction

Cardiovascular complications (CVC) are the leading cause of death in patients with
chronic kidney disease (CKD) [1]. Individuals with CKD are most likely to die from CVC,
regardless of the degree of renal failure [2]. Moreover, CKD appears to be a risk factor for
CVC since kidney disease accelerates CVC development through uremic and non-uremic
mechanisms [3]. In turn, CVC can contribute to renal failure progression, constituting an
authentic vicious cycle [4,5]. Preventing CVC in CKD patients could significantly reduce
mortality and delay disease progression by breaking this vicious circle [6].
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However, common cardiovascular disease (CVD) risk prediction models used in the
general population are not validated in patients with CKD, manifesting a low accuracy [1].
The latest cardiovascular (CV) risk management recommendations in CKD merely tackle
blood pressure and lipid control, and limited data exist on interventions targeting other
cardiovascular risk factors in CKD or explicit preventive strategies [7,8]. Thus, developing
more robust strategies for preventing CVC development in CKD is much needed and
would constitute a significant breakthrough. When “traditional” prevention measures
reach their climax, the door to computational solutions such as artificial intelligence (AI)
and regression-based methods seems to open [9].

Computational models [10] may substantially contribute to screening strategies for the
prevention and early diagnosis of CVC in CKD. A computer-based model that could predict
the imminent risk of myocardial infarction (MI) in a dialysis patient would significantly
change the management strategies. Although numerous studies already researched AI/ML
methods to predict different CVD types in the general population [11–15], fewer studies
focused on developing CVC predictive models in CKD. General models may not suit
the CKD clinical setting due to different CVC mechanisms involving a wide array of
nontraditional risk factors, functional and structural alterations unique to CKD [16,17].
Subsequently, the data used to train prediction models for the general population might
not fit CKD patients’ data.

No systematic review of computational models for CVC prediction in CKD has yet
been carried out to our knowledge.

Therefore, our goals are (a) to conduct the first systematic review of studies that
develop and assess computational models for the prediction of cardiovascular compli-
cations in CKD patients, (b) to evaluate the reporting quality and risk of bias of these
studies for their potential to be integrated into clinical practice and guidelines, and (c) to
stimulate and propose further research directions on computational algorithms for the
early identification of complications. Our approach draws attention to the currently ne-
glected clinical area of CVC in CKD and its burden on global healthcare and highlights how
computational techniques could substantially ease burden through screening, prevention,
and early diagnosis.

2. Materials and Methods

This study was conducted according to the PRISMA (Preferred Reporting Items for
Systematic Review and Meta-Analysis) checklist [18].

2.1. Data Sources

The electronic databases of MEDLINE/PubMed, EMBASE, and ScienceDirect were
systematically searched for relevant articles from inception until January 2021. The search
query was (“Artificial intelligence” or “Machine learning” or “ML” or “AI”) and (“Chronic
kidney disease” or “CKD” or “Renal insufficiency” or “ESRD” or “End-stage renal disease”
or “Dialysis”) and (“Heart failure” or “Cardiac insufficiency” or “Coronary Artery Disease”
or “CAD” or “Coronary syndrome” or “Coronary” or “Stable angina” or “Angina pec-
toris” or “Ischemic heart disease” or “IHD” or “Ischemic” or “Ischemia” or “Myocardial
infarction” or “Infarction” or “Atrial fibrillation” or “AF” or “Stroke” or “Arrhythmia”
or “Heart rate” or “Pulse” or “Sudden death” or “Sudden cardiac death” or “MACE” or
“Cardiovascular prevention”).

2.2. Study Selection

The study selection process included identifying articles, removing duplicates, screen-
ing titles and abstracts, and assessing the selected full texts’ eligibility. Additionally,
the reference lists of valuable articles were checked for studies of relevance. Original re-
search articles were included if they evaluated computational methods such as AI/ML
(random forests (RF), decision trees (DT), support vector machines (SVM), neural networks,
K-nearest neighbor, and any other ML) or regression-based models to predict cardiovas-
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cular complications in CKD patients. Papers were eligible for inclusion if they provided
predictive models for major adverse cardiovascular events (MACE), sudden cardiac death
(SCD), ischemic heart disease (IHD), heart failure (HF), or arrhythmias in patients with
CKD at any stage. Journal articles published with full text or abstracts in English were
eligible for inclusion.

2.3. Data Extraction

The following data were extracted from the included studies: the population size and
characteristics, the clinical setting, the algorithm, the number of predictors, the algorithms
performance metrics, and the identified CV risks. When available, the study results or
performance metrics were presented as hazard ratio (HR), c-statistic/Area Under the
Receiver Operating Characteristics (AUC), confidence intervals (CIs), accuracy (ACC),
sensitivity (SE), specificity (SP), or F1 score. Two authors extracted the data from study
reports independently and in duplicate for each eligible study, with disagreements resolved
by consensus.

2.4. Outcomes

The primary outcomes of interest were the AI/ML and regression-based predictions
of CVC in CKD either through single or composite endpoints (MACE, SCD, IHD, HF,
and arrhythmias). The secondary outcomes of interest included other CV-related predic-
tions in the CKD population for which computational models have been described.

2.5. Quality Assessment

We assessed the reporting quality of non-randomized studies against the TRIPOD
(transparent reporting of a multivariable prediction model for individual prognosis or
diagnosis) statement [19]. We assessed the risk of bias for non-randomized studies by
applying PROBAST (prediction model risk of bias assessment tool) [20].

3. Results

Our electronic search, which was last updated on 12 February 12, 2021, retrieved 524
records (MEDLINE/Pubmed (265), ScienceDirect (196), Embase (62), and other sources
(1 ongoing clinical trial)). Of the 524 study records, 198 duplicates were removed. Of
the resulting 398 studies, 356 were excluded based on title and abstract screening due
to the subject’s irrelevance. We assessed 42 full-text articles. After removing review
articles or studies that did not meet the inclusion criteria (no CV outcomes or non-CKD
population), 15 non-randomized studies and one ongoing clinical trial were included. The
study selection process and the number of papers identified in each phase are illustrated in
a flowchart (Figure 1).

Table 1 summarizes the characteristics of the 16 included papers. All studies are
retrospective [21]. Eleven studies are single-center. Of the 11 single-center studies, six pa-
pers use datasets with patients from the US [21–26], three papers include individuals from
Spain [27–29], one article includes patients from Korea [30], and one paper includes patients
from Portugal [31]. Three of the eleven single-center studies [25,28,29] proposed ML and
regression models based on the CRIC (Chronic Renal Insufficiency Cohort Study) [32] or
NEFRONA [33] study cohorts. CRIC and NEFRONA studies aimed to examine risk factors
for CKD progression and CVD among patients with established CKD and to evaluate
novel biomarkers influencing cardiovascular events and mortality in all forms of CKD.
The remaining five studies were multicenter. The research by De Gonzalo-Calvo et al. [34]
was based on a dataset gathering patients from 300 centers in Europe, Canada, Australia,
Brazil, Mexico, and South Korea. Matsushita et al. [35] validated the proposed models on
the GCKD (German Chronic Kidney Disease) [36] and Hong Kong CKD cohorts [37]. The
datasets used by Titapiccolo et al. [38] included patients from clinics located in Portugal
and Spain. Goldstein et al. [39] collected patients’ dialysis data from the multicenter DaVita
Inc. datasets (including 11 countries: US, Brazil, China, Colombia, Germany, Malaysia,
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Poland, Portugal, Saudi Arabia, Singapore, and the United Kingdom). Finally, the research
by Mezzatesta et al. [40] was based on US and Italian datasets.

Figure 1. Study selection process and number of papers included in the systematic review.

Table 1. Summary of the included studies.

Author, Year Population Outcomes Sample
Size/Predictors No. Algorithm Performance

Composite CV outcomes

de Gonzalo-Calvo et al.
2020 [34] Hemodialysis

Time to CV death, nonfatal
MI, or nonfatal stroke (24

months follow-up)
778/8 DT using the CART

algorithm AUC: 0.71

Matsushita et al. 2020 [35]

Moderate CKD (GCKD
cohort): 5-year follow-up

MI or fatal CHD or stroke

5217 (validation set)
CKD Patch (Linear

regression +
Statistical methods)

AUC: 0.698

Stage 3–5 CKD (Hong
Kong CKD): 10-year

follow-up
300 (validation set) AUC: 0.73

Titapiccolo et al. 2013 [38] Incident hemodialysis

CV events (CV mortality,
insurgence of new CV
co-morbidity, or CV

hospitalization) in the next
six months

4246/39 RF
AUC: 0.737 ± 1.2;
ACC: 67.3 ± 2.8%;

SE: 69.2 ± 3.3%;
SP: 67.3 ± 2.8%

Jeong et al. 2021 [30] Postoperative ESRD
patients

MACE (1 month
postoperatively) 3220/40 RF F1 score: 0.797

Fernandez-Lozano et al.
2018 [27] Peritoneal dialysis CVC prediction 114 Generalized Linear

Model AUC: 0.96
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Table 1. Cont.

Author, Year Population Outcomes Sample
Size/Predictors No. Algorithm Performance

Sudden cardiac death (SCD)

Goldstein et al. 2014 [39] Hemodialysis
Sudden cardiac death the day

of or day after a dialysis
session

1796/72 RF AUC: 0.799

Mezzatesta et al., 2019 [40] Hemodialysis CV death (2.5-year follow-up) 861/23 SVM + RBF kernel ACC: 80%

Ischemic heart disease (IHD)

Mezzatesta et al. 2019 [40] Hemodialysis IHD (2.5-year follow-up)
522/29

SVM + RBF kernel
ACC: 95.25%

2677/23 ACC: 92.15%

Heart failure (HF)

Dubin et al. 2018 [21] CKD Prognostic proteins
associated with HF in CKD 364

RSF regression +
Cox survival

analysis

Angiopoietin-2: HR 1.45
[1.33, 1.59]

Spondin-1: HR 1.13
[1.06, 1.20]

Mezzatesta et al. 2019 [40] Hemodialysis HF (2.5-year follow-up)
522/29

SVM + RBF kernel
ACC: 93%

2677/23 ACC: 64%

Akbilgic et al. 2019 [22] ESRD patients with
congestive HF

30-, 90-, 180-, and 365-day
all-cause mortality 14800/49 RF

AUC: 0.683, 0.716, 0.725,
and 0.725 (risk of death
within the 4 different

time windows)

Gowda et al. 2020 [23] CKD HF admissions in patients
with CKD (1-year follow-up) 117 Remote IoT sensors

Significant decrease in
HF admissions after

implantation

Ahmed et al. [24]
CKD patients with HF
and reduced ejection

fraction

Safety and efficiency
prediction of low-dose ACEIs

and ARBs
Not available ML algorithm

(unspecified)
Not available (study

ongoing)

Arrhythmias

Zelnick et al. 2020 [25] CKD patients without
prior AF Incident AF 2690/32 Lasso regression AUC: 0.76

Mezzatesta et al. 2019 [40] Hemodialysis Arrhythmia (2.5-year
follow-up)

522/29
SVM + RBF kernel

ACC: 95%

2677/23 ACC: 67%

Other CV-related predictions

Forné et al. 2020 [28] Stage 3–5 CKD Atheromatous CVC (4-year
follow-up) 1366/38 RSF AUC: 0.744

Bermudez-Lopez et al.
2019 [29]

Stage 3–5 CKD +
Controls

Discriminate between
proatherogenic lipid profile in

CKD vs. controls
395/10 RF AUC: 0.789

Rodrigues et al. 2017 [31] CAPD Stroke risk 850/7 K-nearest neighbor ACC: 99.65%; SE:
95.35%; SP: 99.88%

Galloway et al. 2019 [26] Stage 3–5 CKD Hyperkalemia detection from
the ECG

61,965 ECG-potassium
pairs (validation set) DCNN AUC: 0.853–0.883

Cardiovascular (CV); Myocardial infarction (MI); Decision tree (DT); Classification and Regression Tree (CART); Area under the receiver
operating characteristic curve (AUC); Chronic kidney disease (CKD); German Chronic Kidney Disease (GCKD); Coronary heart disease
(CHD); Random forest (RF); Accuracy (ACC); Sensitivity (SE); Specificity (SP); End-stage renal disease (ESRD); Major adverse cardiovas-
cular events (MACE); Cardiovascular complications (CVC); Support vector machine (SVM); Radial basis function (RBF); Systolic blood
pressure (SBP); Ischemic heart disease (IHD); Heart failure (HF); Random survival forest (RSF); Hazard ratio (HR); Internet of Things
(IoT); Angiotensin-converting-enzyme inhibitors (ACEIs); Angiotensin II receptor blockers (ARBs); Atrial fibrillation (AF); Continuous
Ambulatory Peritoneal Dialysis (CAPD); Electrocardiogram (ECG); Deep convolutional neural network (DCNN).

Regarding our systematic review’s primary outcomes of interest, 12 studies were
found to perform AI/ML and regression-based CVC predictions in CKD either through
single or composite endpoints.

Five studies proposed AI/ML models to predict CVC in CKD through composite
endpoints. Various compounded endpoints such as MACE (major adverse cardiovas-
cular events) in postoperative end-stage renal disease (ESRD) patients [30], or combina-
tions of CV events (CV death, nonfatal MI, nonfatal stroke, and CV hospitalizations) in
hemodialysis [34,38] or stage 3–5 CKD [35] patients have been predicted using AI/ML
tools. Fernandez-Lozano et al. [27] proposed a model to predict overall CVC as the leading
cause of morbidity and mortality in CKD patients.

Of the included studies, seven papers developed AI/ML models to predict single
CV endpoints concerning the most frequent and vital CVC in CKD (SCD, IHD, HF, and
arrhythmias). The proposed models predict SCD in hemodialysis patients [39,40], IHD,
HF, or arrhythmias in hemodialysis patients [40]; prognostic proteins associated with
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HF in CKD [21]; death risk in ESRD patients with congestive HF [22]; HF admissions in
individuals with CKD [23]; the safety and efficiency of low-dose angiotensin-converting-
enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs) in CKD patients
with HF and reduced ejection fraction [24]; and incident atrial fibrillation (AF) in CKD
patients without prior AF [25].

Four studies were found to put forward AI/ML solutions for other CV-related pre-
dictions in the CKD population regarding our secondary outcomes of interest. As such,
models have been proposed for the prediction of atheromatous CVC in stage 3–5 CKD pa-
tients [28], the discrimination between proatherogenic lipid profile in CKD vs. controls [29],
the stroke risk in continuous ambulatory peritoneal dialysis (CAPD) patients [31], and
hyperkalemia detection from the ECG in stage 3–5 CKD patients [26].

Overall, the included studies reported the models’ performances using the area under
the receiver operator characteristic curve (AUC). All reported AUCs are more generous
than 0.71. Few studies reported ACC, SE, SP, or F1 scores as the performance metrics. The
reported ACCs ranged from 64% to 99.88%.

The most used algorithm by the included studies was the RF. DT, SVM, classification
and regression trees (CART), and deep convolutional neural network (DCNN) are other
methods used to implement the AI/ML solutions in the included studies.

Precise data on population, outcomes, algorithms, and model performance are illus-
trated in Table 1.

The adherence to reporting standards was moderate (<50% adherence in half of the
studies) for 20 of 29 TRIPOD items (see Table S1). Overall, the publications adhered to
between 15% and 85% of the TRIPOD items, with a mean of 51%.

The overall risk of bias assessed using PROBAST led to 68% of studies classified as
high risk or unclear risk of bias (Table S2).

4. Discussion

This is the first study that adds a systematic review of computational solutions to
predict CVC outcomes in the CKD population to the literature. Our attempt aims to
fill the gap in specific systematized predictive tools for CVC in CKD. After surveying
the directions and assessing the quality of the included studies, we provide a balanced
perspective on the present-day status and the future of computational predictive methods
in the CKD clinical setting.

Type-4 cardiorenal syndrome refers to CV involvement in CKD. After a thorough litera-
ture survey, we identified four main manifestations of type-4 cardiorenal syndrome: sudden
cardiac death, arrhythmias, ischemic heart disease, and heart failure [41,42] (Figure 2).

Figure 2. The four main manifestations of type-4 cardiorenal syndrome.
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First, AI/ML and regression-based solutions dealing with SCD prediction in CKD
follow two directions: short-term predictions of SCD one day after a hemodialysis ses-
sion [39] and long-term predictions in hemodialysis patients (2.5-year follow-up) [40].
Goldstein et al. [39] and Mezzatesta et al. [40] adhered to 70% and 40% of the TRIPOD
criteria, respectively. Unlike Goldstein et al. [39], Mezzatesta et al. [40] did not clearly
describe the eligibility criteria for participants or the transparent handling of predictors
in the analysis. However, Goldstein et al. [39] did not use external data sets to validate
their models, while Mezzatesta et al. [40] tested their models on two different datasets
(Italian and American). CKD patients presented higher mortality rates due to SCD [43],
with major cardiac events representing 50% of death causes in CKD patients [44]. After
further improvement and rigorous validations, these predictive tools will make it possible
to ameliorate mortality rates due to CV events in CKD patients by helping to deal with
serious adverse events, such as SCD, before they occur.

Second, automated learning models for arrhythmia predictions in CKD are oriented
toward predicting incident AF (7.3-year follow-up) in CKD patients without prior AF [25]
and unspecified arrhythmias (2.5-year follow-up) in hemodialysis patients [40]. Similar
to Mezzatesta et al. [40], Zelnick et al. [25] did not specify how predictors are handled
in their analysis. Unlike Mezzatesta et al. [40], Zelnick et al. [25] did not describe how
missing data and the validation sets were managed. However, Zelnick et al. [25] was a
conference abstract, and in all likelihood, some of the information about the models may
not be included in this type of communication. Both studies have similar adherences to
TRIPOD items (40–45%). Arrhythmia was reported to be as prevalent as 78% in CKD
patients [45]. While a percentage of arrhythmias are at the root of sudden death, benign
arrhythmias such as AF have gained more and more attention due to their high prevalence
in CKD patients and the complex interrelation between stroke and hemorrhagic risks and
due to opposing therapeutic strategies. One study reported that the 1-year mortality in
dialysis patients with AF is twice as high as those without AF [46]. Thus, such models
oriented toward predicting the risks of arrhythmia (and particularly AF) in CKD patients
may consistently reduce these unwanted consequences.

Third, one AI/ML model to assess the risk of IHD in CKD is directed towards pre-
dicting long-term IHD (2.5-year follow-up) in hemodialysis patients [40]. IHD is one of
the most frequent CVCs in hemodialysis, as shown by the HEMO study [47]. The HEMO
study demonstrated that most of the hospitalizations of hemodialysis patients were for
acute coronary syndrome. Such predictions may lead to optimized preventive strategies
against coronary events, better distribution of resources, and intensified monitoring of the
patients identified as high risk.

Fourth, automated learning methods dealing with HF predictions in CKD explore the
potential of AI solutions to predict not only the risk of incident HF [21,23,40] but also the
outcomes of HF [22] and the effectiveness of standard therapies in the particular CKD set-
ting [24]. Models to predict long-term risk of HF in hemodialysis patients using SVM [40] or
HF admissions in patients with CKD based on remote IoT (Internet of Things) sensors [23]
have been described. Additionally, to assess the risk of occurrence, a model identifies
prognostic proteins associated with HF in CKD by random survival forest regression [21].
Regarding the prediction of outcomes in CKD patients diagnosed with HF, a model to
predict all-cause mortality in ESRD patients with congestive HF has been proposed by
Akbilgic et al. [22]. An ongoing clinical trial uses AI/ML-based methods to predict the
safety and efficiency of low-dose ACEIs and ARBs in CKD patients with HF and reduced
ejection fraction [24]. Akbilgic et al. [22] had a high adherence to TRIPOD criteria (75%),
while Gowda et al. [23], Dubin et al. [21], and Ahmed et al. [24] had poor adherences,
with less than 30% of the criteria met. Akbilgic et al. [22] used an impressive dataset of
14,800 patients, whereas Gowda et al. [23] included data from only 117 patients. The CRIC
study [48] proved that ejection fractions significantly decline during more advanced stages
of CKD. Moreover, the atherosclerosis risk in communities (ARIC) population study [49]
showed that cardiac insufficiency starts earlier in the process as lower CKD stages are also
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associated with varying degrees of HF. Although AI/ML-based studies tackling HF predic-
tions in CKD are of heterogeneous quality and bias, they pinpoint the various directions in
which automated learning could impact the management of CKD patients with high HF
risk starting from lower CKD stages.

Fifth, composite endpoint studies are the starting point for designing CV risk stratifica-
tion models. Computational solutions [27,30,34,35,38] have also been described to predict
composite CV endpoints, such as MACE, in CKD patients. Composite endpoint studies are
also heterogeneous regarding reporting transparency and bias, with a TRIPOD adherence
ranging from 20% to 70%. Jeong et al. [30] and Titapiccolo et al. [38] are the only studies
out of the 16 included papers that report the issue of imbalanced data and describe how
to handle it. Studies assessing composite models will shape global CV risk stratification
policies, ultimately leading to treatment personalization and improved cardiovascular
system preservation.

Finally, we found four studies that put forward computational solutions for other CV-
related predictions in the CKD population. Hyperkalemia is common in CKD patients and
is associated with fatal arrhythmias [26]. Therefore, Galloway et al. [26] proposed a deep
convolutional neural network (DCNN) to detect hyperkalemia from the electrocardiogram
(ECG) in stage 3–5 CKD patients. Additionally, Bermudez-Lopez et al. [29] described an
RF model to discriminate between proatherogenic lipid profiles in CKD vs. controls. The
model of Bermudez-Lopez et al. [29] outlines the particular proatherogenic lipid profile in
CKD that constitutes the basis for identifying the most appropriate lipid-lowering therapy
for the prevention of CVC in CKD (knowing that statins are not very useful in this setting).

The main limitations of the computational techniques used for the prediction of CVC
in CKD are represented by moderate adherence to standard quality criteria and moderate
transparency regarding essential steps of building automated learning models: lack of
clarity on the issues of imbalanced data for 87.5% of the included studies, unclear definition
and handling of predictors for 50% of the studies, vague eligibility criteria for 37.5%, and
non-random or insufficient external validation). Moreover, different ascertainments and
definitions of CVC, and non-rigorous clinical classifications of CV diseases in the included
studies (lack of differentiation between acute versus chronic disease, specific types of
arrhythmia, and myocardial infarction versus angina) could be a source of significant bias.
Additionally, all papers considered in this systematic review were retrospective.

5. Conclusions

In this systematic review, we explored the potential of computer-based models in
predicting CV risk and outcomes in CKD, and we identified palpable trends in areas
of clinical promise. In particular, type-4 cardiorenal syndrome manifestations may be
managed more efficiently using computational predictive tools to prevent sudden cardiac
death, arrhythmias, ischemic heart disease, and heart failure in CKD. We pointed out the
possible benefits of these modern methods on public health. We also identified a clear
need for more extensive application of rigorous methodologies. The call for more thorough
methodologies and the need for prospective, randomized clinical trials and thorough
external validations clearly outline the future research directions in this area. Considering
the present-day performances, the interest shown so far, and the future perspectives,
we firmly believe that computational solutions will fill the gap in cardiovascular predictive
tools for chronic kidney disease patients in the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/medicina57060538/s1, Table S1: Quality assessment data for each study according to TRIPOD
criteria. Table S2: The risk of bias assessment for each included study based on PROBAST criteria.
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A.B. and A.I.; supervision, A.B., A.I. and A.C. All authors have read and agreed to the published
version of the manuscript.
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45. Kaya, B.; Paydaş, S.; Aikimbaev, K.; Altun, E.; Balal, M.; Deniz, A.; Kaypakli, O.; Demirtaş, M.; Kaypaklı, O. Prevalence of cardiac
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