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Abstract: Background and Objectives: There is an increasing focus on the effect of the gut microbiome
on developing atherosclerosis, but there is still no unified standpoint. We aimed to find associations
between intestinal microbiome diversity and a marker of subclinical atherosclerosis, the carotid
intima-media thickness (IMT). Materials and Methods: Recruited from the Hungarian Twin Registry,
108 monozygotic (MZ) twins (mean age 52.4 ± 14.1 years, 58% female) underwent a comprehen-
sive carotid ultrasound examination (Samsung RS85). Of the 108 MZ twins, 14 pairs (mean age
65 ± 6.4 years, 71% female) discordant for carotid IMT were selected to undergo a stool sample
collection. A special stool sampling container was mailed and received from each participant. After
DNA extraction, library construction was performed specifically for the V3–V4 hypervariable region
of microbial 16S rRNA. Next, the microbiome composition of the samples was determined using
Kraken software. Two hypotheses were tested with the exact permutation test: (1) in the group with
normal IMT, the Shannon index of the phyla is higher; and (2) the Firmicutes/Bacteroidetes ratio is
greater in the group with high IMT values. Furthermore, the abundance of different bacterial strains
present at higher and normal IMT was also explored. Statistical analysis was carried out using R
software. Results: Increased Firmicutes/Bacteroidetes ratio was associated with increased IMT (mean
Firmicutes/Bacteroidetes ratio of IMT > 0.9 and IMT < 0.9 groups: 2.299 and 1.436, respectively;
p = 0.031). In the group with normal IMT values, a substantially higher fraction of Prevotellaceae
was observed in contrast with subjects having subclinical atherosclerosis. However, there was no
significant difference in the alpha diversity between the two groups. Conclusions: The determining
role of individual genera and their proportions in the development and progression of atherosclerosis
can be assumed. Further studies are needed to clarify if these findings can be used as potential
therapeutic targets.

Keywords: gut microbiome; alpha diversity; intima-media thickness; carotid atherosclerosis; ultrasound

1. Introduction

Carotid artery atherosclerosis (CAS) is known to be associated with increased risk for
cardiovascular diseases (CVDs) [1–3], which are the leading causes of death globally, taking
an estimated nearly 18 million lives each year [4]. As a cardiovascular marker, carotid
intima-media thickness (IMT) has been more widely studied, and underlying genetic vs.
environmental factors have been investigated. Zhao et al. found that genetic factors had
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a significant effect on carotid IMT variation [5]. Age, systolic blood pressure, and high-
density lipoprotein (HDL) have also been shown to be significantly associated with carotid
IMT. Segment-specific genetic influence of carotid IMT was studied in a large Korean
twin population, which reported moderately high heritability of 0.48 for common, 0.38
for carotid bifurcation, and 0.45 for internal carotid artery [6]. Well-known cardiovascular
risk factors associated with carotid IMT, influencing specific segments of the carotid artery,
are, for men, alcohol consumption (bifurcation), physical activity (common carotid artery
(CCA) and internal carotid artery (ICA)), body mass index (BMI) (all segments), diabetes
(bifurcation and ICA), hypertension (ICA), and HDL cholesterol (CCA and bifurcation); on
the other hand, for women, they are smoking (bifurcation), hypertension (CCA), total and
low-density lipoprotein (LDL) cholesterol (bifurcation and ICA), and high-sensitivity C-
reactive protein (hs-CRP) (CCA and ICA) [6]. These findings explain the differences in the
incidence of cardiovascular disease between men and women. Although genetic variation
and environmental risk factors are known to influence carotid atherosclerosis, recent
research has shown that the composition and diversity of the gastrointestinal microbiome
also affect the development of CVDs [7–9].

The microbiome is a vast and complex polymicrobial ecosystem that co-exists with the
human body and plays a significant role in shaping the immunological phenotypes of the
host. In human and animal models, alterations in intestinal microbiome diversity change
in parallel with lifestyle (e.g., smoking, dietary preferences, and physical exercise) [10].

A large metagenome-based study revealed several microbial pathways associated
with CVD risk that proved to be largely independent of diet and inflammation, further rein-
forcing efforts to introduce microbiome-targeted therapy for prevention and treatment [11].
Infection, immunity, and the association of bacterial products with the development of
atherosclerosis such as immune activators or diet-related metabolites, especially the new
microbiome-dependent dietary metabolite, trimethylamine N-oxide (TMAO), also play a
central role. Understanding the gut microbiome mechanism will help advance the treat-
ment of atherosclerosis [12–14]. The specific components metabolized by nutrition and the
intestinal microbiome can have a variety of effects on atherosclerosis; for example, dietary
fiber is preferred, while the bacterial TMAO metabolite is considered harmful [15,16].

The importance of some species in CVDs has been also demonstrated [17]. Despite
the contradictory results [18], increased Firmicutes/Bacteroidetes ratio—the two dominant
bacterial phyla that represent more than 90% of the total community [19]—is frequently
cited as a hallmark of obesity, hypertension, and microbiome dysbiosis [20–22]. In the
Moscow Study, different metabolic changes were associated with the different abundance
of genera in cases of cardiovascular risk factors: obesity—higher Serratia and Prevotella; ab-
dominal obesity—higher Serratia and Prevotella and lower Oscillospira; glucose metabolism
disturbances—higher Blautia and Serratia; arterial hypertension—high Blautia. IMT was
also higher in the cluster with lower diversity [23]. In a Swedish study, the genus Collinsella
was enriched in patients with symptomatic atherosclerosis, whereas Roseburia and Eu-
bacterium were enriched in healthy controls [24]. A protective property of Akkermansia
muciniphila against atherosclerosis has also been explored [25]. Increased abundance of En-
terobacteriaceae and Streptococcus spp. was found in patients with atherosclerotic CVD [26].

Although the association of specific bacterial taxa with atherosclerosis is already
known, many questions remain unanswered to fully understand how the microbiome
contributes to atherosclerosis and CVD. By studying monozygotic (MZ) twins—since their
genome is nearly the same—the genetic factors can be mostly ruled out; therefore, the role
of common and unique environmental factors can be explored.

Our study aimed to explore the relationship between gut microbiome diversity and
one of the most commonly investigated radiological markers of subclinical atherosclerosis,
the carotid IMT. In MZ twins, we examined the number of different bacterial strains present
at higher and normal IMT. Furthermore, we tested two hypotheses in discordant MZ pairs:
(1) in the group with normal IMT, whether the Shannon index of the phyla is higher; and (2)
whether the Firmicutes/Bacteroidetes ratio is greater in the subjects with high IMT values.
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2. Materials and Methods
2.1. Study Participants

Between October 2018 and April 2020, 108 asymptomatic MZ Hungarian twins
(54 pairs, mean age 52.4 ± 14.1 years, 58% female) recruited from the Hungarian Twin
Registry [27,28] underwent comprehensive carotid ultrasound examination. Exclusion
criteria were pregnancy, previous carotid surgery, acute infection in the past 3 weeks before
the study, and underlying oncologic disease.

Blood pressure values were measured by TensioMed Arteriograph (Medexpert Ltd.,
Budapest, Hungary), and BMI was calculated (OMRON Ltd., Kyoto, Japan). Questionnaires
were completed to assess general health status and medical history.

The mean and maximal IMT on the left and right common carotid artery was measured.
MZ discordance was defined as one individual of a twin pair having a maximal carotid
IMT >0.9 mm, and the other twin having a maximal carotid IMT < 0.9 mm on either the
left or right or both sides. In total, 14 discordant MZ pairs (n = 28, aged 52–73 years, mean
age 65 ± 6.4 years, 71% female) meeting these criteria were found and analyzed.

All subjects gave their informed consent for inclusion before they participated in
the study. The study was conducted in accordance with the Declaration of Helsinki,
and the protocol was approved by the Semmelweis University Regional and Institutional
Committee of Science and Research Ethics (SE TUKEB 189/2014, amendment on 10 October,
2016, and 7 December, 2018).

2.2. Carotid Ultrasound

The ultrasound examination was performed with the Samsung RS85 device [29] and
a high-resolution linear LM4-15B (15 MHz) transducer. The vessels were traced from
the proximal origin of CCA to the bifurcation. Longitudinal recordings were saved for
CCA proximal, middle tertiary and a distal section, and bifurcation. Automated IMT
measurements were performed on the CCA distal section at a distance of 0.5–2 cm from
the bifurcation with the Arterial Analysis program on the distal wall, and an average value
was used in the analysis. According to the 2018 ESC/ESH Guidelines for the management
of arterial hypertension, carotid IMT >0.9 mm was determined as abnormal [30].

2.3. Sample Collection and Processing

Of the 108 MZ twins, 14 pairs (mean age 65.0 ± 6.4 years, 71% female) discordant for
carotid IMT were selected to undergo a stool sample collection.

Twin pairs were requested to mail their stool sample in the fecal sampling container,
specially developed for this purpose after proper packaging, the same day when the
sample was collected or the next day at the latest. Stool samples received within a few
days of posting were processed and evaluated in cooperation with the Institute of Medical
Microbiology, Semmelweis University.

After DNA extraction, library construction was performed specifically for the hyper-
variable region V3–V4 of microbial 16S rRNA according to the protocol recommended by
Illumina and preferred in microbiome studies [31]. Libraries labeled with individual index
pairs and validated with an Agilent 2100 Bioanalyzer were sequenced after pooling on an
Illumina MiSeq platform by running a 600-cycle MiSeq Reagent Kit v3.

2.4. Bioinformatics and Statistical Analysis

The bioinformatics analysis of the 16S sequencing data was essentially carried out as
described previously [32]. Briefly, the quality of raw reads was assessed with FastQC and
MultiQC [33], the low-quality sequences were filtered and trimmed by Trimmomatic [34],
and only sequences with a minimal length of 50 were kept. The low-quality and the
first 12 base calls were discarded (Phred score < 20, sliding window size = 5). The read
classification was performed with the Kraken2 [35,36], with k-mer size 31 against the SSU
Ref NR 99 database (release 132) of SILVA [37]. Finally, the microbiome composition and
the taxa abundances were estimated by the Bracken [38].
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Statistical analysis was carried out using R version 3.6.3. The significance level was
set at p < 0.05.

3. Results

Basic patient characteristics data (e.g., mean BMI, blood pressure, IMT; atherosclerosis
risk factors) in the two groups are shown in Table 1.

Table 1. Basic patient characteristics data in the two groups.

Characteristic IMT > 0.9 Group
(n = 14)

IMT < 0.9 Group
(n = 14)

BMI (kg/m2; mean ± SD) 28.3 ± 3.3 28.3 ± 3.7

Systolic blood pressure (mmHg; mean ± SD) 135.2 ± 16.6 133.2 ± 17.8

Diastolic blood pressure (mmHg; mean ± SD) 79.2 ± 9.9 78.9 ± 10.7

Carotid IMT max (mm; mean ± SD) 0.94 ± 0.16 0.81 ± 0.13

Smoking (n) 1 3

Regular coffee consumption (n) 8 8

Regular sport activities (n) 6 6

Diabetes (n) 3 2

Hypertension (n) 8 4

Dyslipidemia (n) 5 1
IMT: intima-media thickness; BMI: body mass index; SD: standard deviation.

3.1. Alpha Diversities of Discordant Twin Pairs

We hypothesized that in the group with IMT < 0.9 mm, the Shannon index of the phyla
would be higher than in the group with IMT > 0.9 mm. A one-sided exact permutation test
was conducted to test the sharp null that there were no differences in the two groups. The
null on a 0.05 significance level could not be rejected (p = 0.153) (Table 2), leading to the
conclusion that there may not be a significant relationship between the IMT levels and the
Shannon index of the phyla.

Table 2. Results of exact permutation tests of Firmicutes/Bacteroidetes ratio and Shannon index of
the phyla between the two groups.

Results Mean (IMT > 0.9)
(n = 14)

Mean (IMT < 0.9)
(n = 14)

Mean
Difference p Value *

Firmicutes/
Bacteroidetes ratio 2.299 1.436 0.863 0.031

(0.018, 0.047)

Shannon index of
the phyla 1.35 1.44 −0.09 0.153

(0.124, 0.184)
* p value was estimated using 999 Monte Carlo replications, 99% confidence interval in parenthesis.

3.2. Firmicutes/Bacteroidetes Ratio

We tested another hypothesis, which was that the ratio of Firmicutes/Bacteroidetes
would be greater in the group with high IMT values than in the group with low IMT values.
The sharp null that there is no difference between the two groups could be rejected using an
exact permutation test (p = 0.031) (Table 2), supporting that higher Firmicutes/Bacteroidetes
ratio is connected to atherosclerotic phenotype.

3.3. Microbial Compositions of Discordant Twin Pairs

The microbial compositions in each group were also examined at 3 taxonomic levels.
In both groups, the median and the interquartile range of the microbe’s fractions were
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counted; the results were sorted and plotted for the 5 most common microbes in each group
for each taxonomy level (Figures 1–3).
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Although similar results were obtained in the 2 groups, greater or lesser differences
were also observed.

In both groups, Firmicutes, Bacteroidetes, and Proteobacteria proved to be the most
common phyla (Figure 1). Firmicutes was represented with a higher fraction in the group
with high IMT values, and Bacteroidetes in second place vice versa.

At the family taxonomic level, in both groups, Lachnospiraceae, Ruminococcaceae,
and Bacteroidaceae were in the top 3 (Figure 2). In the group with normal IMT values, a
substantially higher fraction of Prevotellaceae could be observed compared to the group
with high IMT values.

In both groups, the five most decisive genera were the same: Bacteroides, Roseburia,
Lachnospiraceae, Faecalibacterium, and Blautia (Figure 3).

4. Discussion

This is the first twin study to investigate the impact of the gut microbiome on
carotid IMT in discordant twins. We first report in the literature an increased Firmi-
cutes/Bacteroidetes ratio in subjects with increased carotid IMT. Normal carotid IMT
values were associated with a substantially higher fraction of Prevotellaceae. There was no
significant difference in the alpha diversity between the two groups.

Although carotid IMT is an increasingly used CVD marker in microbiome studies
as well, the methodology by which the data are obtained is crucial. With the advent and
dynamic development of artificial intelligence, more accurate automatic measurement
options are available, such as real-time correction even during the measurement [23]. Often,
the IMT values measured manually by the examiner are averaged, and there is an example
of post-IT analysis when the raw image material is evaluated retrospectively [39]. Using the
Arterial Analysis program on the Samsung RS85 ultrasound machine, artificial intelligence
technology was applied in our microbiome study.

Gut microbiota affects hypertension and atherosclerosis through many pathways [40].
This association was studied in 617 middle-aged women from the TwinsUK cohort [41]
where another atherosclerotic phenotype, the carotid-femoral pulse wave velocity (PWV),
a measure of arterial stiffness, was studied, and its association with the gut microbiome
composition and concurrent serum metabolomics data was assessed. PWV was negatively
correlated with gut microbiome alpha diversity after adjustment for covariates, leading to
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the conclusion that gut microbiome diversity is inversely associated with arterial stiffness
in women. The previous connection is also confirmed by the Moscow Study, in which
enterotyping yielded two clusters differentiated by alpha-diversity, and IMT was higher
in the cluster with lower diversity (adj. p < 0.001) [23]. In our study, we did not find
an association of lower alpha-diversity with higher IMT, which can be argued by (1) the
relatively low number of participants compared to other studies, and (2) the different study
population: although the gender ratio was almost the same, the geographical location
(Hungary vs. Moscow and Moscow Region) and the age of the participants (mean age
65 ± 6.4 vs. 52 ± 13 years, and aged 52–73 vs. 25–76 years) differed significantly [23].

In obese people, the relative proportion of Bacteroidetes was decreased in comparison
with lean people [21]. Furthermore, this proportion increased with weight loss on two
types of a low-calorie diet, and their Firmicutes/Bacteroidetes ratio normalized. These
results were supported by other studies [42–46], suggesting that the alterations in the
bacterial composition are generally associated with changes in the metabolic profile of
the microbiota, and the Firmicutes/Bacteroidetes ratio could be a possible hallmark for
obesity. In opposition, other studies did not observe any change or even reported decreased
Firmicutes/Bacteroidetes ratio in obese animals and humans [47–50]. In our study, no
significant difference was detectable in BMI values between the two groups, but increased
Firmicutes/Bacteroidetes ratio was found in association with increased IMT, independently
of BMI, further strengthening its role as a marker of atherosclerosis phenotype. In addition,
we need to be cautious, because there are several lifestyle-associated factors known to affect
microbiota composition (e.g., smoking, dietary preferences, and physical exercise [10]),
which were not examined in the present study; therefore, the role of these factors also need
to be considered when evaluating the results.

The human gut microbiota is mostly composed of two dominant bacterial phyla,
Firmicutes and Bacteroidetes, which represent more than 90% of the total community, and
of other subdominant phyla including Proteobacteria, Actinobacteria, and Verrucomicro-
bia [18,19]. This composition remains relatively unaffected by acute perturbations, as its
plasticity allows it to rapidly return to its initial composition [51]. We could confirm this
finding, as the most common phyla were the same in the group with normal IMT and very
similar in the other group: Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and
Verrucomicrobia vs. Chloroflexi. However, in their individual proportions, differences
could be found: in line with the previous hypothesis of Firmicutes/Bacteroidetes ratio,
Firmicutes was represented with a higher fraction in the group with high IMT values, and
Bacteroidetes vice versa.

In scientific literature, conflicting results can be found about the association between
Prevotella and cardiometabolic and cardiovascular disorders. In the Moscow Study, a higher
abundance of Prevotella was significantly associated with obesity [23]; and in middle-aged,
eastern Polish men with improper levels of total and LDL cholesterol values, Prevotella
were enriched or showed an upward trend [52]. Stroke and transient ischemic attack—
as consequences of atherosclerosis—patients had fewer commensal or beneficial genera
including Bacteroides, Prevotella and Faecalibacterium, and more opportunistic pathogens,
such as Enterobacter, Megasphaera, Oscillibacter, and Desulfovibrio [53]. In parallel with this,
in our study, a substantially greater fraction of the Prevotellaceae family in the group with
normal IMT values compared to the group with high IMT values was found.

In microbial studies, one major issue is the accurate identification of microbes consti-
tuting the microbiota, which requires compromises depending on the method. Microbiome
studies have frequently utilized sequencing of the conserved 16S rRNA gene, but whole-
genome shotgun sequencing (WGS) is also popular. A comparative study demonstrates
that WGS has multiple advantages compared with the 16S amplicon method, including
enhanced detection of bacterial species, increased detection of diversity, and increased
prediction of genes [54]. In addition, increased length, either due to longer reads or the
assembly of contigs, improved the accuracy of species detection. However, WGS is not
widespread due to its disadvantages, such as its price and the massive volume of the
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dataset. Thus, 16S rRNA sequencing is still more commonly used with its drawbacks
(e.g., high sequence similarity between related species and as a consequence, inaccuracy
in the identification of individual species). We used the 16S amplicon method which is a
limitation of our study compared to those where WGS could be used.

Another limitation is the relatively low number of participants (e.g., discordant MZ
pairs who met the selection criteria). The sample size was influenced by the difficulty
of the postal system, where, despite the shield which preserved the composition of the
stool sample, shipping complications occurred. With the detailed sampling guide and the
recommended postage deadline after sampling, we also tried to encourage participants to
increase the quality of the incoming sample. However, in some cases, sampling had to be
repeated due to inadequate quality, which limited the sample size augmentation. A further
limitation of the study was the lack of blood sampling, which failed the investigation of
the effect of classical atherosclerotic risk factors (e.g., cholesterol, glucose levels) on the
investigated associations.

5. Conclusions

This is the first Hungarian twin study to assess the gut microbiome in twins. We
confirmed findings of other studies in which increased Firmicutes/Bacteroidetes ratio
was reported in subjects with subclinical atherosclerosis represented by increased carotid
IMT. Normal carotid IMT values were associated with a substantially higher fraction of
Prevotellaceae. The determining role of individual genera and their proportions needs
further intensive examinations.
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Abbreviations

BMI body mass index
CAS carotid artery atherosclerosis
CCA common carotid artery
CVDs cardiovascular diseases
HDL high-density lipoprotein
hs-CRP high-sensitivity C-reactive protein
ICA internal carotid artery
IMT intima-media thickness
LDL low-density lipoprotein
MZ monozygotic
PWV pulse wave velocity
TMAO trimethylamine N-oxide
WGS whole-genome shotgun sequencing
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