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Abstract: Background and Objective: Primary lung cancer is a lethal and rapidly-developing cancer type
and is one of the most leading causes of cancer deaths. Materials and Methods: Statistical methods such
as Cox regression are usually used to detect the prognosis factors of a disease. This study investigated
survival prediction using machine learning algorithms. The clinical data of 28,458 patients with
primary lung cancers were collected from the Surveillance, Epidemiology, and End Results (SEER)
database. Results: This study indicated that the survival rate of women with primary lung cancer
was often higher than that of men (p < 0.001). Seven popular machine learning algorithms were
utilized to evaluate one-year, three-year, and five-year survival prediction The two classifiers extreme
gradient boosting (XGB) and logistic regression (LR) achieved the best prediction accuracies. The
importance variable of the trained XGB models suggested that surgical removal (feature “Surgery”)
made the largest contribution to the one-year survival prediction models, while the metastatic status
(feature “N” stage) of the regional lymph nodes was the most important contributor to three-year and
five-year survival prediction. The female patients’ three-year prognosis model achieved a prediction
accuracy of 0.8297 on the independent future samples, while the male model only achieved the
accuracy 0.7329. Conclusions: This data suggested that male patients may have more complicated
factors in lung cancer than females, and it is necessary to develop gender-specific diagnosis and
prognosis models.

Keywords: lung cancer; prognosis; machine learning; gender; survival prediction

1. Introduction

Lung cancer is one of the leading causes of cancer deaths, and it is estimated to have
caused 142,670 deaths in 2019 alone [1]. The incidence rate of lung cancer in females is
higher than in males [2–4]. The worldwide incidence rate of female lung cancers is still
increasing [5]. However, the mortality rate of male lung cancer patients is almost twice that
of females [6,7].

Inherent genetic factors and living environments induce apparent gender-specific
biological mechanisms and prognostic responses [8]. Non-small cell lung cancers (NSCLC)
patients demonstrate large gender-specific survival differences [9]. Zang et al. suggested
that the gender variation cannot be explained by the differences in the factors of baseline
exposure, smoking history, or body size, but may be caused by the higher susceptibility
to tobacco carcinogens in females [10]. That is to say, females are more susceptible to
tobacco-induced carcinogenesis than males [11]. Gasperino’s study showed that after
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taking into account the number of cigarettes smoked, females have a three-times higher
risk of lung cancer than males [12]. Another study suggested that females have a better
survival rate than males after considering confounders like smoking [13]. Many studies
observed the gender differences in urothelial carcinoma of the bladder (UCB), where males
had a higher incidence of UCB, but females tended to have worse outcomes [14]. Gender
was also found to be a risk factor for the prognosis of head and neck cancer (HNC), and
females had a better prognosis than males [15]. So, the gender specificity of lung cancers is
attracting more researchers to work on this interesting topic.

Cancer prognosis is mainly predicted based on the clinician’s professional experience
or the nomogram calculation. The corresponding scores on the upper dots of each variable
graph in the nomogram are added up to obtain the total score, and then a straight line is
drawn at the bottom of the chart to estimate the probability of death [16,17]. The nomogram
becomes very complicated if multiple variables are included [18].A nomogram is a statistical
model for the probability calculation of a single event like death or recurrence and has
been widely used to predict the probabilities of cancer metastasis and prognosis [19–23].
The non-negligible proportions of the available nomograms shared similar end-points and
intrinsic complexity, which may limit their applications [24].Both nomogram and machine
learning techniques can be used to estimate the overall survival rate of cancer patients.
However, studies have shown that machine learning models outperformed the nomograms
in estimating the individual patient’s prognosis [25]. The machine learning model may
provide complementary information for this challenge by fully utilizing the inter-variable
interactions [26].

This study hypothesizes that the gender disparity should be taken into account when
a prognosis model is optimized. Multiple classification algorithms were utilized to build
binary classification models of whether a patient may survive one year, three years, or five
years after the clinical data were collected. In this case, we used the Cox regression model
to analyze the prognosis of lung cancer patients. The classification models were built for
females and males separately.

2. Materials and Methods
2.1. Data Sources

The clinical data used in this study were retrieved from the Surveillance, Epidemiology,
and End Results (SEER) database (AYA site recode/WHO 2008 8.3 Carcinoma of trachea,
bronchus, and lung) [27,28]. AYA is a site/histology recode used to analyze data on
adolescent and young adults. The recode was applied to all cases no matter the age in
order that age comparisons can be made with these groupings. For more information, see
http://www.seer.cancer.gov/ayarecode/index.html. The SEER database is an authoritative
cancer statistical database in the United States, and global cancer researchers may obtain
data through application. A signed SEER data usage agreement is required to obtain the
fields and variables in the SEER database. Researchers may make scientific investigations
into the SEER data and publish research articles based on the analysis of this data. The
database is available at https://seer.cancer.gov/. This study included patients diagnosed
from 2010 to 2015 and followed up until December 2016 with primary lung cancer. Only
the cases with primary tumors and which were positively followed (excluding “necropsy
only” and “death certificate only”) were used. The cases with a follow-up time of 0 may
indicate in-hospital deaths and were also excluded. All the objective characteristics of the
included patients were collected, including marital status, race, gender, age, histological
type, tumor-specific death status, survival time, primary site surgery, tumor grade, lymph
node examined, lymph node positive, tumor grade, laterality, year of diagnosis, T stage,
M stage, and N stage.

This study collected a cohort of 28,458 patients with primary lung cancers from the
SEER database, and most of the patients were women (15,000, 52.71%). Table 1 summarized
the baseline characteristics of the primary cancer patients. Statistical significances were

http://www.seer.cancer.gov/ayarecode/index.html
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observed for gender-specific features, including histological type, marital status, race,
primary site surgery, grade, T stage, N stage, and M stage.

Table 1. Baseline characteristics of the study population. The variable t refers to the test statistics of the t-test, and the
variable χ2 refers to the chi-square value of the chi-square test.

Female Male t p-Value

Age 66.19 ± 10.52 66.45 ± 9.70 2.16 0.03
LOODS −2.24 ± 1.27 −2.18 ± 1.32 3.77 <0.001

Female Male χ2 p-Value

Race 10.22 0.006
White 12,362 (82.50%) 11,204 (83.20%)
Black 1447 (9.70%) 1157 (8.60%)
Other 1181 (7.90%) 1107 (8.20%)

Histological Type 836.71 <0.001
Adenocarcinoma 10,256 (68.40%) 7330 (54.40%)

Squamous cell carcinoma 2646 (17.70%) 4319 (32.10%)
Large cell carcinoma 239 (1.60%) 265 (2.00%)
Small cell carcinoma 203 (1.40%) 165 (1.20%)

Other 1646 (11.00%) 1389 (10.30%)
Grade 432.92 <0.001

Grade I 3296 (22.00%) 1865 (13.80%)
Grade II 6522 (43.50%) 5701 (42.30%)
Grade III 4843 (32.30%) 5580 (41.40%)
Grade IV 329 (2.20%) 322 (2.40%)
surgery 50.41 <0.001

YES 14,241 (95.00%) 12,521 (93.00%)
NO 749 (5.00%) 947 (7.00%)

Marital status 1017.37 <0.001
Single 7408 (49.40%) 4151 (30.80%)

Married 7582 (50.60%) 9317 (69.20%)
Laterality 1.84 0.175

Right 8826 (58.90%) 77,823 (58.10%)
Left 6164 (41.10%) 5645 (41.90%)

T 249.96 <0.001
T1 6796 (45.30%) 4931 (36.60%)
T2 5526 (36.90%) 5462 (40.60%)
T3 1877 (12.50%) 2244 (16.70%)
T4 791 (5.30%) 831 (6.20%)
N 108.54 <0.001
N0 11,116 (74.20%) 9278 (68.90%)
N1 1740 (11.60%) 1987 (14.80%)
N2 1934 (12.90%) 1944 (14.40%)
N3 200 (1.30%) 259 (1.90%)
M 20.22 <0.001

M0 14,266 (95.20%) 12,655 (94.00%)
M1 724 (4.80%) 813 (6.00%)

Year of diagnosis 3.47 0.682
2010 2367 (15.80%) 2176 (16.20%)
2011 2381 (15.90%) 2164 (16.10%)
2012 2348 (15.70%) 2169 (16.10%)
2013 2541 (17.00%) 2216 (16.50%)
2014 2602 (17.40%) 2332 (17.30%)
2015 2751 (18.40%) 2411 (17.90%)

This dataset consisted mostly of the white population, and the observations of this
study may serve as a good reflection of the gender-disparity in white lung cancer patients.
Table 1 showed that 83.20% of male and 82.50% of female patients were white.
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It is also interesting to observe that female lung cancer patients tended to be diagnosed
at an earlier stage than male patients, since more female patients were diagnosed at the
smallest T (Tumor)/N (Node)/M(Metastasis) stages than male patients. 45.30% of the
female patients were diagnosed at the T1 stage, compared with 36.60% of the male patients.
The female lung cancer patients contained percentages of 74.20% and 95.20% with diagnosis
at the N0 and M0 stages, while the male patients contained 68.90% and 94.00%, respectively.
Moreover, all the T/N/M stages demonstrated statistically significant differences between
females and males.

Diagnosed numbers of lung cancer patients were on the rise between 2010 and 2015.
However, the relative percentages of females and males were similar and the differential
analysis did not show a statistical significance (p-value = 0.682).

2.2. Preprocessing of the SEER Database

A preprocessing step was carried out on the lung cancer dataset from the SEER
database. This study excluded the unknown data entries from the patients’ clinical measure-
ments. The T/N/M stages were annotated and extracted from the SEER database [29,30].
The log odds of the positive lymph nodes (LODDS) were defined as the logarithm of the
ratio between the probability of being a positive lymph node and the probability of being a
negative lymph node. The formula is: LODDS is equal to log (P + 0.5)/(T − P + 0.5), where
T is the number of total nodes and P is the number of positive nodes [31]. Marital status
was grouped as married and unmarried, where unmarried persons consisted of single,
separated, divorced, widowed, and other cases. The differentiation grading codes of 1–4
were defined by the International Classification of Diseases-O-2 (ICD-O-2), where grades
I/II/III/IV corresponded to the statuses of well-differentiated, moderately differentiated,
poorly differentiated, and undifferentiated, respectively. The histological groups of lung
cancers were defined using the ICD-O-3, consisting of adenocarcinoma(8050, 8140-1, 8144,
8201, 8250-5, 8260, 8290, 8310, 8323, 8333, 8470, 8480-1, 8490, 8503, 8507, 8550, 8570, 8574,
8576), squamous cell carcinoma (8051-2, 8070-4, 8083-4, 8123), large cell carcinoma (8012-4,
8021, 8034, 8082), small cell carcinoma (8041-5), and other (8000-1, 8003-4, 8010-1, 8020,
8022, 8030-3, 8035, 8046, 8200, 8230, 8240-1, 8243-6, 8249, 8430, 8525, 8560, 8562, 8575) [2].

Before the data were loaded to the machine learning algorithms, the unordered
features were encoded by the one-hot encoding strategy, and the ordered features and
numerical features were normalized. One-hot encoding converts categorical variables into
numeric variables, e.g., encoding the categorical variable {A, B, C} as the binary variable
{100, 010, 001} [32]. Patients were excluded if they had died from causes other than lung
cancer, in order to ensure that the predicted survival focused on lung cancers. A supervised
classification study needs to know the category labels of the samples, so this study chose to
investigate whether the lung cancer patients survived one year, three years, and five years,
respectively. For the one-year survival prediction problem, patients were excluded from
the dataset if their follow-up lengths were shorter than one year and they were still alive,
since we could not know whether such patients died or were still alive one year after the
diagnosis. Similar exclusion rules were carried out for the three-year and five-year survival
prediction problems.

2.3. Binary Classification Algorithms

Seven popular classification algorithms were utilized to build the binary classification
models for the one-year, three-year, and five-year survival prediction problems.

Naïve Bayes (NBayes) assumed inter-feature independence and calculated the class-
specific prediction model using the Bayes’ theorem. Although NBayes makes a strong
assumption of inter-feature independence, it has been widely used to build accurate
prediction models [33,34].

Three tree-based classifiers were evaluated for the survival prediction problems in
this study. The decision tree (DTree) is a fast and popular classifier, and its trained tree
structure is easy to be interpreted [35]. Random forest (RF) is an ensemble algorithm based
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on multiple random trees as the base classifiers, and has demonstrated its efficiency for
biomedical prediction problems [36]. XGBoost is a popular fast classifier to handle various
biomedical data types, including the spectroscopy spectrum and bioelectrical data [37,38].

The simple but effective classifier k-nearest neighbor (KNN) is a supervised learning
algorithm based on the voting results of the training samples most similar to the query
sample [39].

Logistic regression (LR) calculates the probability of a specific event such as the
survival of a lung cancer patient, and is popular for building biomedical prediction
models [40,41].

Support vector machine (SVM) tries to find a hyperplane with the largest distance or
margin to the two classes of samples in the multi-dimensional space [42].

2.4. Evaluation Metrics of Binary Classification Algorithms

The machine learning models were evaluated by four binary classification perfor-
mance metrics, i.e., sensitivity (Sn), specificity (Sp), accuracy (Acc), and F1 score (F1). Sn
and Sp are defined as the percentages of positive and negative samples that were predicted
correctly, respectively. Acc refers to the ratio of the number of correctly predicted samples
to the total number of all the samples. F1 is an index used to measure the accuracy of a
binary classification model in statistics. It takes into account both the accuracy and recall
of the classification model. All the four performance metrics are from 0 to 1, with higher
values indicating better classification performance.

2.5. Data Analysis Procedure

The data analysis process is shown in Figure 1. The baseline data analysis formulated
the categorical data as percentages and the continuous data as averaged values and stan-
dard deviations. Two statistical tests, Chi-squared test (Chi2test) and t-test (Ttest), were
used to evaluate the associations between the category or continuous features and gender
information. The log-rank test was used on the two genders with the clinical data from
the KM chart, which is a letter chart based on the Monoyer standard [43]. The Cox regres-
sion was used to perform univariate survival analysis of the individual features. All the
prognostic factors derived from the univariate analysis were collected for the multivariate
analysis. We also used the nomogram analysis method based on the COX risk ratio model
to make predictions. This study defined a survival probability of 1 year, 3 years, and 5 years
score less than 0.5 as death, and more than 0.5 as alive.

The classification model was evaluated by the stratified three-fold cross-validation
strategy (S3FCV). S3FCV means that the positive and negative samples were randomly
split into three equally-sized sub-groups, respectively. One positive subset and one neg-
ative subset were used as the test dataset and the other samples were used to train the
classification model. This process was iteratively conducted until no sample subset was
used as the test dataset. The overall prediction performance metrics were calculated for
this iteration [44]. The parameters of all the utilized machine learning models are shown
in Supplementary Table S3. All the calculations and experiments were performed using
SPSS software version 24.0 and Python version 3.6. The machine learning algorithms were
implemented in the Python module scikit-learn version 0.19.1. The multivariate survival
analysis was conducted using the Cox regression model.
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Figure 1. Flow chart of this study. The male and female samples were grouped as the datasets “Male” and “Female”,
respectively. All the samples constitute the overall dataset “All”. The sample numbers are provided in parenthesis.

3. Results
3.1. Gender Disparities in the Prognosis of Primary Lung Cancers

The experimental data suggested that lung cancer patients’ survival probabilities are
significantly different between the two genders. We used the log-rank test to measure the
difference in survival rates between female and male patients with primary lung cancer
(p < 0.001). The female patients with primary lung cancer tended to have a better survival
rate than male patients (Figure 2). The one-year survival rate of male patients was 85.9%,
while the female patients had a survival rate of 92.4%. The female patients had better
survival rates 79.1% and 70.5% at 3 years and 5 years, compared with 68.0% and 59.0% for
the male lung cancer patients.

1 
 

 

 
 
 

 

Figure 2. KM (Kaplan-Meier) chart illustration of gender disparity in the survival curves for primary lung cancers. The
horizontal axis is the number of months. The vertical axis is the cumulative survival percentage (%). Female is in black, and
male is in gray. The numbers of survived patients are given in the table under the plot.
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The Cox regression was used to evaluate the prognosis of the investigated features,
as shown in Table 2. The univariate analysis suggested that gender, age, and race had
significant effects on prognosis. For clinicopathological factors, LOODS, histological type,
grade, T, N, M, and primary site surgery are all prognostic factors affecting lung cancer
(Table 2). Laterality has no effect on the prognosis of lung cancer patients (HR (Hazard
Ratio) = 1.023, p-value = 0.322). The above-mentioned prognostic-related factors are
included in the multivariate analysis. Gender was identified as an independent prognostic
factor with an adjusted hazard ratio of 0.698 (95%CI 0.666,0.731). The risk of death without
surgery in the primary site was 1.631 times higher than for surgery (p-value < 0.001).
On the contrary, marriage is a protective factor for primary lung cancer (HR = 0.865,
p-value < 0.001). T stage, N stage and M stage were independent risk factors for prognosis,
among which M = 1 was 2.137 times higher than that of M = 0 (p-value < 0.001).

Table 2. prognosis of primary lung cancer of different genders.

Univariate Multivariate

HR(95%CI) p-value HR(95%CI) p-value

Age 1.017(1.014,1.019) <0.001 1.024(1.021,1.026) <0.001
LOODS 1.505(1.483,1.526) <0.001 1.179(1.154,1.205) <0.001

Race <0.001 0.001
White 1 1
Black 0.984(0.912,1.063) 0.685 0.998(0.923,1.079) 0.961
Other 0.828(0.759,0.904) <0.001 0.841(0.77,0.918) <0.001

Sex <0.001 <0.001
Male 1 1

Female 0.628(0.601,0.657) 0.698(0.666,0.731)
Histological Type <0.001 <0.001
Adenocarcinoma 1 1

Squamous cell carcinoma 1.501(1.427,1.578) <0.001 1.171(1.111,1.235) <0.001
Large cell carcinoma 2.049(1.792,2.342) <0.001 1.603(1.389,1.851) <0.001
Small cell carcinoma 3.381(2.95,3.876) <0.001 1.481(1.272,1.724) <0.001

Other 1.086(1.007,1.172) 0.032 1.073(0.994,1.16) 0.072
Grade <0.001 <0.001

Grade I 1 1
Grade II 2.455(2.245,2.685) <0.001 1.747(1.593,1.915) <0.001
Grade III 4.273(3.914,4.665) <0.001 2.305(2.102,2.526) <0.001
Grade IV 5.424(4.713,6.242) <0.001 2.306(1.97,2.701) <0.001
surgery <0.001 <0.001

YES 1 1
NO 5.354(5.036,5.692) 1.631(1.502,1.77)

Marital status 0.008 <0.001
Single 1 1

Married 0.941(0.9,0.984) 0.865(0.826,0.907)
Laterality 0.322

Right 1
Left 1.023(0.978,1.069)

T <0.001 <0.001
T1 1 1
T2 2.068(1.954,2.188) <0.001 1.529(1.443,1.62) <0.001
T3 3.5(3.283,3.732) <0.001 2.23(2.086,2.385) <0.001
T4 4.633(4.272,5.023) <0.001 1.992(1.825,2.174) <0.001
N <0.001 <0.001
N0 1 1
N1 2.453(2.312,2.602) <0.001 1.554(1.452,1.664) <0.001
N2 3.75(3.557,3.954) <0.001 1.731(1.606,1.865) <0.001
N3 8.143(7.307,9.075) <0.001 1.661(1.443,1.912) <0.001
M <0.001 <0.001

M0 1 1
M1 4.581(4.294,4.887) 2.137(1.984,2.302)
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3.2. Machine Learning-Based Prediction of Survival Status

Seven popular binary classifiers were utilized to predict whether a lung cancer patient
survived for one, three, and five years, as shown in Figure 3. Figure 3A illustrates the
machine learning models of the survival prediction problems for all the samples. The
classifier XGB achieved the highest Acc for the one-year survival prediction problem
(Acc = 0.9075). Another classifier LR achieved the highest Acc values for the three-year
(Acc = 0.7565) and five-year (Acc = 0.7179) survival prediction problems.

Figure 3. Cont.
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Figure 3. Predictions of the survival status of primary lung cancer patients using machine learning models. The horizontal
axis listed the prediction results of the seven binary classifiers for the one-year, three-year and five-year survival prediction
problems, which were denoted as 1, 3 and 5, respectively. The four classification performance measurements Acc/Sn/Sp/F1
were calculated for (A) all the samples, (B) female samples, and (C) male samples. (D) The detailed data are also provided in
this table. The best values for the one-year, three-year, and five-year prediction problems are highlighted in bold, respectively.

The machine learning models performed slightly differently on the gender-specific
datasets, as shown in Figure 3B,C. The classifier XGB achieved the highest Acc = 0.8786
for the one-year survival prediction problem for the male samples. Similar to the above,
the classifier LR achieved the highest Acc for the three- (Acc = 0.7243) and five-year
(Acc = 0.7352) survival prediction problems, as shown in Figure 3C. The classifier XGB
achieved the highest Acc for the one- (Acc = 0.9300) and three-year (Acc = 0.0.7849) survival
prediction problems. Similarly, the classifier LR achieved the highest Acc for the five-year
(Acc = 0.7212) survival prediction problems, as shown in Figure 3B.

The nomogram in the survival analysis was based on the COX risk ratio model.
Therefore, we used the COX risk ratio model to predict survival at one, three, and five
years. In experimental data for all the samples (denoted as “Total”), compared with the
COX-based nomogram model, XGB achieved better results in one-year and three-year
survival predictions, and LR has a higher accuracy rate in five-years, as shown in Figure 3
and Supplementary Table S1.

3.3. Feature Contributions of the XGB Models

The feature contribution was measured by the importance of each feature returned
by the trained XGB models for the one-year, three-year, and five-year survival prediction
models (Table 3). Except for the feature “Gender” for the dataset of all the samples
(denoted as “All”), all the features were ranked in the descendent order of their XGB model
importance measurements. The results for the datasets of male and female samples were
denoted as “Male” and “Female”.

We further evaluated how importantly each feature contributed to the classification
models, as shown in Figure 4. The above sections demonstrated that the two classifiers
XGB and LR usually performed best on the one-year, three-year and five-year survival
prediction problems. However, the classifier LR did not generate a measurement of feature
importance, so the measurement of feature importance from the trained XGB models was
used to describe each feature’s contribution to the prediction models.
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Table 3. Contributions of the investigated features to the extreme gradient boosting (XGB) models.

One-year

All Male Female

Characteristic Relative
Importance Characteristic Relative

Importance Characteristic Relative
Importance

Surgery 0.3279 Surgery 0.4734 Surgery 0.2771
T 0.1334 T 0.1284 N 0.1652

M 0.1261 M 0.0972 M 0.1560
N 0.1208 N 0.0801 T 0.1123

Grade 0.0917 Grade 0.0662 Grade 0.0926
Histologic

Type 0.0450 Histologic
Type 0.0406 LOODS 0.0495

Gender 0.0446 LOODS 0.0375 Histologic
Type 0.0471

LOODS 0.0396 Age 0.0289 Age 0.0385
Age 0.0303 Race 0.0217 Marital 0.0294

Marital 0.0174 Marital 0.0155 Race 0.0208
Race 0.0122 Laterality 0.0107 Laterality 0.0115

Laterality 0.0112

Three-year

All Male Female

Characteristic Relative
Importance Characteristic Relative

Importance Characteristic Relative
Importance

N 0.4364 N 0.3591 N 0.4251
Surgery 0.1538 Surgery 0.2031 Surgery 0.1588

T 0.1059 T 0.1508 Grade 0.1152
Grade 0.0883 M 0.0902 T 0.0935

M 0.0695 Grade 0.0633 M 0.0815
Gender 0.0491 LOODS 0.0373 LOODS 0.0308

LOODS 0.0240 Age 0.0290 Histologic
Type 0.0278

Histologic
Type 0.0235 Histologic

Type 0.0256 Age 0.0259

Age 0.0209 Marital 0.0235 Race 0.0169
Race 0.0120 Race 0.0103 Marital 0.0166

Marital 0.0107 Laterality 0.0077 Laterality 0.0080
Laterality 0.0058

Five-year

All Male Female

Characteristic Relative
Importance Characteristic Relative

Importance Characteristic Relative
Importance

N 0.4279 N 0.4389 N 0.4728
Surgery 0.1357 T 0.1282 Grade 0.1299

T 0.1321 Surgery 0.1275 Surgery 0.1144
Grade 0.0858 M 0.0959 T 0.0949

M 0.0523 Grade 0.0611 M 0.0570
Gender 0.0471 LOODS 0.0391 LOODS 0.0316
LOODS 0.0325 Age 0.0341 Age 0.0288

Age 0.0283 Marital 0.0267 Histologic
Type 0.0206

Histologic
Type 0.0248 Histologic

Type 0.0231 Marital 0.0205

Marital 0.0185 Race 0.0150 Laterality 0.0159
Race 0.0079 Laterality 0.0105 Race 0.0135

Laterality 0.0070
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Figure 4. Accuracies (Acc) of the best-performing logistic regression (LR) classifier for the survival prediction problems. The
vertical axis listed the feature ranks, which varied for different datasets. Each number k gave the prediction accuracies of the
top-k ranked features. The vertical axis gave the prediction accuracies for (A) the one-year, (B) three-year and (C) five-year
survival prediction problems.
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Figure 4A suggests that the feature “Surgery” is the most important factor for one-year
survival, while the spreading of the lung cancers to the regional lymph nodes (the N stage)
played an essential role in determining whether a lung cancer patient may survive for
three and five years, as shown in Figure 4B,C. The T/N/M stages (features “T”, “N” and
“M”) and the grade (feature “Grade”) were consistently ranked after the feature “Surgery”
for all the three datasets “All”, “Male” and “Female” for the one-year survival prediction
problem. The top-five ranked features were the same for the three-year and five-year
survival prediction problems, as shown in Figure 4B,C. The XGB models were constructed
to predict the survival status of patients with primary lung cancers and visualized for easy
inspection by the reader (Supplementary Figure S1).

The LR classifier was used to calculate the accuracies of the one-year, three-year,
and five-year survival prediction problems, as shown in Figure 5. The features were
incrementally added to the feature subsets by their ranks calculated in the previous section.
Since the datasets did not have consistent ranks for the features, Figure 5 only gives the
feature ranks in the horizontal axis.

We may observe the overall trend that more features may achieve better prediction
accuracies, as shown in Figure 5. However, the inclusions of some features may decrease
the model performance in some cases. For example, the best LR-Female model achieved
Acc = 0.9309 using only six features, and the model accuracy was decreased to Acc = 0.9296
by using five more features. The survival prediction model usually achieved a very good
prediction accuracy using about six features, and the inclusions of more features only
achieve minor accuracy improvements.

3.4. Feature Contributions to the RF Models

The machine learning algorithm RF also calculated the importance measurement
of each feature in the one-year, three-year, and five-year survival prediction models to
measure feature contribution, as shown in Table 4. At the same time, we use the RF model
to describe each feature’s contribution to the prediction model for feature importance. The
results showed that LOODS and Age were always the most important factors for survival
status in one, three, and five years. This observation was slightly different to those features
with large contributions in the XGB models. We added the features incrementally to the
feature subsets. We also found that the best LR-Female model can reach Acc = 0.9315
using only nine features and adding two features reduces the accuracy of the model to
Acc = 0.9296 (Figure 5). Studies have shown that there are multiple optimal solutions for
the same problem [45]. In the future, when we are looking for cancer markers, we can
consider different combinations of features.

3.5. Independent Validation of the Models Using Future Samples

This study validated only the three-year survival prediction models due to the limited
numbers of diagnosis years in the SEER database. The samples from the diagnosis years
2010–2011 were used as the training samples. Moreover, the samples from 2012–2013 were
the independent validation samples. The survival statuses of the samples diagnosed in 2013
were determined by the follow-up data in the years 2014–2016, where the 2016 data were
also retrieved from the SEER database. It is interesting to observe that the LR model was
trained on the 2010–2011 samples and achieved Acc = 0.7841 on the “All” dataset from the
diagnosis years 2012–2013. The female samples demonstrated an even better consistency
in the three-year survival prediction by the independent validation with Acc = 0.8297. The
male samples received a slightly worse model with Acc = 0.7329. We found that most
pairs of investigated baseline characteristics did not have statistically significant and strong
correlations (correlation coefficient > 0.300 and p < 0.05), except for a few cases. The vari-
ables N and LOODS were observed to have a correlation coefficient of 0.630 and p < 0.001.
The variable Surgery was correlated with N (correlation coefficient = 0.323, p < 0.001) and
M (correlation coefficient = 0.348, p < 0.001). The variable Stage was correlated with T
(correlation coefficient = 0.653, p < 0.001), LOODS (correlation coefficient = 0.371, p < 0.001),
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N (correlation coefficient = 0.579, p < 0.001), and M (correlation coefficient = 0.415, p < 0.001).
The other pairs of these baseline characteristics were either not or were weakly correlated
(Supplementary Table S2). The machine learning models developed in the above sections
suggested that some features’ removal may improve the prognosis prediction models.

Figure 5. Accuracies (Acc) of the best-performing classifier LR for the survival prediction problems. The vertical axis lists
the element level of the random forest (RF) model arrangement, which varied for different datasets. Each number k gave
the prediction accuracies of the top-k ranked features. The vertical axis gave the prediction accuracies of (A) the one-year,
(B) three-year and (C) five-year survival prediction problems.
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Table 4. Contributions of the investigated features to the RF models.

One-Year

All Male Female

Characteristic Relative
Importance Characteristic Relative

Importance Characteristic Relative
Importance

LOODS 0.2869 LOODS 0.3040 LOODS 0.2898
Age 0.2820 Age 0.2880 Age 0.2813

T 0.0751 T 0.0814 Grade 0.0802
Grade 0.0664 Grade 0.0738 N 0.0789

N 0.0650 Histologic
Type 0.0568 T 0.0768

Histologic
Type 0.0537 N 0.0554 Histologic

Type 0.0542

Laterality 0.0343 Laterality 0.0357 Laterality 0.0343
Race 0.0326 Race 0.0336 Race 0.0314

Marital 0.0308 Marital 0.0319 Marital 0.0291
Surgery 0.0290 M 0.0210 Surgery 0.0261
Gender 0.0285 Surgery 0.0184 M 0.0179

M 0.0155

Three-year

All Male Female

Characteristic Relative
Importance Characteristic Relative

Importance Characteristic Relative
Importance

LOODS 0.2867 LOODS 0.2993 LOODS 0.2920
Age 0.2594 Age 0.2810 Age 0.2857

T 0.0667 T 0.0732 T 0.0606
Histologic

Type 0.0610 Histologic
Type 0.0617 Histologic

Type 0.0603

N 0.0517 Grade 0.0560 Grade 0.0576
Surgery 0.0515 N 0.0472 N 0.0520
Grade 0.0503 M 0.0409 M 0.0468

Laterality 0.0393 Laterality 0.0384 Laterality 0.0415
Marital 0.0376 Surgery 0.0356 Marital 0.0390

M 0.0341 Race 0.0334 Race 0.0325
Race 0.0318 Marital 0.0332 Surgery 0.0321

Gender 0.0297

Five-year

All Male Female

Characteristic Relative
Importance Characteristic Relative

Importance Characteristic Relative
Importance

LOODS 0.2869 LOODS 0.3040 LOODS 0.2898
Age 0.2820 Age 0.2880 Age 0.2813

T 0.0751 T 0.0814 Grade 0.0802
Grade 0.0664 Grade 0.0738 N 0.0789

N 0.0650 Histologic
Type 0.0568 T 0.0768

Histologic
Type 0.0537 N 0.0554 Histologic

Type 0.0542

Laterality 0.0343 Laterality 0.0357 Laterality 0.0343
Race 0.0326 Race 0.0336 Race 0.0314

Marital 0.0308 Marital 0.0319 Marital 0.0291
Surgery 0.0290 M 0.0210 Surgery 0.0261
Gender 0.0285 Surgery 0.0184 M 0.0179

M 0.0155
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4. Discussion

Gender disparity was observed in lung cancer incidence, mortality, prognosis and
treatment responses, etc. The prognosis analysis in this study suggested that female lung
cancer patients had a better prognosis than male patients. Radkiewicz et al. found that
the prognosis of male patients with non-small cell lung cancers (NSCLC) was poor, even
after careful adjustments for various prognostic factors [46]. This study confirmed this
observation and observed the gender-specific developmental T/N/M stages on diagnosis.
Biological differences may justify female’s better treatment responses and improved sur-
vival rates [47]. Kinoshita et al. also pointed out that gender differences in the histological
types and developmental stages on diagnosis may partially explain the better prognosis
of female lung cancer patients [48]. Studies of both surgery and systemic therapeutic
treatments suggested that, besides the never smokers, female lung cancer patients overall
experienced a better prognosis than males [49].

Both inherent genetic factors and gene-environment interactions play important roles
in regulating the prognosis of lung cancers [7,50,51]. Various factors may induce the poor
prognosis of male lung cancer patients. Firstly, female lung cancer patients benefited more
from the anti-programmed cell death-1programmed death ligand-1 (anti-PD-1/PD-L1)
chemotherapy than male patients [52]. Immune checkpoint inhibitors were more effective
in male patients than female patients, while immune checkpoint inhibitors combined with
chemotherapy were often more effective in female patients [53]. Secondly, male lung
cancer patients tended to have more aggressive tumor developmental behaviors, e.g., faster
growth and higher metastatic potentials [46].

Machine learning algorithms are becoming a popular technique to predict survival
status. Compared with nomograms, machine learning models are not easy to be interpreted,
but clinical doctors do not have to manually calculate the risk scores as with nomograms.
A machine learning model may deliver prediction results rapidly and conveniently to the
users once the input variables are loaded. The survival prediction results in this study
showed better prediction performances for female patients with primary lung cancers than
male patients. The two classifiers XGB and LR performed similarly well on the binary
classifications of the one-year, three-year, and five-year survival prediction problems.

The feature contributions to the prediction models were evaluated by the importance
variables of the trained XGB models. One-year survival status heavily relied on the variable
“Surgery” for both genders and their mixture, while the most important contributions came
from the variable “N” stage for the three-year and five-year survival prediction problems.
So, a surgical removal is important for the one-year survival of primary lung cancer
patients. Then, a long-term goal for primary lung cancer patient is to pay special attention
to monitoring the regional lymph nodes for possible metastatic tumor development.

This study has the following limitations, which may be overcome by more compre-
hensive data sources. The SEER database provides a limited set of clinical variables for
the patient and it is anticipated that more clinical data, e.g., on smoking and drinking,
will improve the model performances. The imaging and molecular data of the patient’s
mental health, genetic information, and living environment will definitely increase the
models’ prediction performance. This study selected seven commonly-used machine learn-
ing algorithms to investigate the gender-specific prognosis of lung cancers. This gender
disparity may be further evaluated by more machine learning algorithms. Novel machine
learning algorithms may also be developed in future studies to deliver gender-independent
prognosis models with similar prediction performances to the gender-specific models. For
example, a combination of nomogram and machine learning prediction models can be
considered for analysis. Recently, multiple instance learning has demonstrated its superior-
ity in various applications including tumor imaging analysis [54–57]. The deployment of
the multiple instances learning method may significantly improve prognosis prediction
for cancer patients. Spherical separation surface-based approaches were observed to per-
form better than classifiers based on linear separation surfaces on the binary classification
problems of two similar class labels, and may be utilized in future investigations [58,59].
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Gender-specific prognosis may be investigated using biomedical imaging data and other
data types in future studies.

5. Conclusions

In conclusion, this study provided an exploratory investigation of gender disparity in
the prognosis of primary lung cancers using regular statistical methods and machine learn-
ing prediction models. Both techniques consistently supported the prognosis observations
derived from each other. Due to the limited availability of the primary lung cancer dataset
with long-term follow-ups, the observations were not validated by an independent dataset.

Supplementary Materials: The following are available online at https://www.mdpi.com/1010-6
60X/57/2/99/s1, Figure S1: Visualization of using XGB model to predict the survival status of
patients with primary lung cancer, Table S1: The nomogram predicts the prediction results of 1 year,
3 years, and 5 years of survival, Table S2: Correlation coefficient analysis on the pairs of baseline
characteristics, Table S3: Parameters of the 7 machine learning methods.
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