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Abstract: Half of the patients with heart failure (HF) have preserved ejection fraction (HFpEF). To
date, there are no specific markers to distinguish this subgroup. The main objective of this work was
to stratify HF patients using current biochemical markers coupled with clinical data. The cohort
study included HFpEF (n = 24) and heart failure with reduced ejection fraction (HFrEF) (n = 34)
patients as usually considered in clinical practice based on cardiac imaging (EF ≥ 50% for HFpEF;
EF < 50% for HFrEF). Routine blood tests consisted of measuring biomarkers of renal and heart
functions, inflammation, and iron metabolism. A multi-test approach and analysis of peripheral
blood samples aimed to establish a computerized Machine Learning strategy to provide a blood
signature to distinguish HFpEF and HFrEF. Based on logistic regression, demographic characteristics
and clinical biomarkers showed no statistical significance to differentiate the HFpEF and HFrEF
patient subgroups. Hence a multivariate factorial discriminant analysis, performed blindly using
the data set, allowed us to stratify the two HF groups. Consequently, a Machine Learning (ML)
strategy was developed using the same variables in a genetic algorithm approach. ML provided
very encouraging explorative results when considering the small size of the samples applied. The
accuracy and the sensitivity were high for both validation and test groups (69% and 100%, 64% and
75%, respectively). Sensitivity was 100% for the validation and 75% for the test group, whereas
specificity was 44% and 55% for the validation and test groups because of the small number of
samples. Lastly, the precision was acceptable, with 58% in the validation and 60% in the test group.
Combining biochemical and clinical markers is an excellent entry to develop a computer classification
tool to diagnose HFpEF. This translational approach is a springboard for improving new personalized
treatment methods and identifying “high-yield” populations for clinical trials.

Keywords: Machine Learning strategy; HFpEF; blood signature; HF patient stratification; multi-
marker approach

1. Introduction

Heart failure (HF) represents a public health problem with significant medical, so-
cietal, and economic impacts (repeated hospitalizations). Half of the HF patients have a
preserved ejection fraction but an impaired diastolic function (HFpEF). This subtype of HF
is multifactorial and complex, with different comorbidities, gender, and aging issues [1–3].
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Currently, diagnosis is based on cardiac imaging, echocardiography, or catheterization.
Natriuretic peptides (NT-pro-BNP or BNP) are presently considered for diagnosis and
monitoring. Although there is no reliable and specific biomarker to identify HFpEF, soluble
suppression of tumorigenicity 2 (sST2), a biomarker of fibrosis and inflammation, and
circulating cells represent emerging biomarkers for HFpEF [4–9]. Early identification of
HFpEF before its onset is highly desirable. In this work, we designed a multi-biomarkers
strategy associated with a cutting-edge Machine Learning (ML) approach to distinguish
between HFpEF and HFrEF populations.

2. Materials and Methods

The study population included HFpEF (n = 24) and HFrEF (n = 34) patients. Inclusion
criteria were age (>65 years), established HF, electrocardiogram (ECG), echocardiography,
previous hospitalizations for HF, and follow-up. The local Ethics Committee approved
the study of Montpellier University Hospital (N◦ DC-2016-2882). All enrolled patients
provided their informed, signed consents. Criteria for non-inclusion were hemodynamic
instability (cardiogenic shock) and any condition leading to a prognosis of fewer than
seven days. We classified patients on a clinical basis with cardiac imaging (LVEF > 50% for
HFpEF; LVEF < 50% for HFrEF). Importantly, HFpEF is diagnosed, following the guidelines,
and diagnostic criterai were consistent with the recent criteria presented by the European
guidelines on HF: the diagnosis is based on (1) symptoms and signs of HF, (2) with evidence
of structural and/or functional cardiac abnormalities (such as left ventricular diastolic
dysfunction/raised Left ventricular filling pressures) and/or (3) raised natriuretic peptides
(NPs), and with an LVEF ≥ 50%. We collected clinical and biological data for each group.
Routine blood tests consisted of measuring creatinine, urea, and estimated glomerular
filtration rate (eGFR), N-terminal pro-B-type natriuretic peptide (NT-proBNP) and high-
sensitivity cardiac troponin T (hs-cTnT), inflammatory marker C-reactive protein (CRP),
and iron metabolism (transferrin—saturation coefficient—TSC%—and serum ferritin).
Additionally, we collected an EDTA blood sample to measure sST2 in plasma. First, we
performed a logistic regression analysis between the two groups of patients. Logistic
regression analysis is commonly used to establish the significance of certain parameters in
diagnosis or outcome prediction. Then, we carried out a multivariate factorial discriminant
analysis (FDA) blindly on all recruited patients ignoring the established clinical data-based
groups. These analyses were assisted by a Monte-Carlo permutation test for assessing
statistical significance in the discrimination analysis. Finally, a novel approach based on
ML was applied to optimize the variables selection and then compute a solution to provide
a blood signature to distinguish HFpEF and HFrEF. All predictors previously mentioned
were included in the ML prediction model, notably sex, age, and biochemical parameters
(urea, creatinine, eGFR, NT-proBNP, hsTnT, CRP, sST2, ferritin, and %TSC). We applied a
hold-out strategy for this approach, constituting a training set of 21 samples and validation
of 16 samples, and then finally tested on 17 samples [10]. Each group was sequentially
randomized, and then the algorithm evaluated the key statistical parameters. This process
was performed 10,000 times (see more on methods in Supplementary Data).

3. Results
3.1. Logistic Regression Analysis

Although linear relation for each predictor was investigated to yield the best per-
formance prediction score, demographic characteristics and clinical biomarkers showed
no statistical significance to differentiate HFpEF and HFrEF patient subgroups based on
logistic regression analysis (Type 1 error alpha set at 5%) (Table 1).



Medicina 2021, 57, 996 3 of 7

Table 1. Demographic characteristics, clinical biomarkers values, and results from logistic regression.

Study Population, n = 58 Control Group, n = 34,
HFrEF

Study Group, n = 24,
HFpEF p Value

Median (1◦–3◦ Quartile),

Age, years
All= 68 (59–79)
F = 75 (67–82)
M = 67 (55–78)

69 (59–78) 74 (60–82)

Gender, n (%) F = 18 (32)
M = 40 (68)

7 (21)
27 (79)

11 (50)
13 (50) 0.321

LVEF, % 40 (30–50) 30 (23–37) 60 (50–60) NA

Urea, mmol/L 8.3 (6.55–12) 8.75 (6.75–12) 7.6 (6–10) 0.553

Creatinine, µmol/L 101(87–130) 105 (95–139) 87 (75–104) 0.663

eGFR, mL/min–1,73 m2 61 (45–78) 56 (41–77) 65 (47–81) 0.779

NT-proBNP, pg/mL 1457 (465–3675) 1546 (491–4092) 1090 (460–2803) 0.237

hs-cTnT 33 (16–48) 33 (27–48) 27 (11–45) 0.488

CRP, mg/L 2.6 (1–6) 2.4 (1–4.3) 5 (1–8.6) 0.485

sST2, ng/mL 33.4 (24–56) 32.0 (22–52) 44 (25–64) 0.256

Ferritin, µg/L 146 (87–296) 154 (122–338) 138 (60–183) 0.526

TSC, % 21.0 (16–28) 25.0 (18–29) 17 (13–24) 0.232

HFrEF: heart failure with reduced ejection fraction; HFpEF: heart failure with preserved ejection fraction; F: female, M: male; LVEF: left
ventricular ejection fraction; eGFR: estimated glomerular filtration rate; NT-proBNP: N-terminal pro–B-type natriuretic peptide; hs-cTnT:
high-sensitive cardiac troponin T; CRP: C—reactive protein; sST2: soluble suppression of tumorigenesis-2; TSC: transferrin saturation
coefficient.

Nevertheless, it is essential to note that, as expected, the HFpEF group was charac-
terized by older age (74 versus 69 years old) and that the NTproBNP value was lower
for the target group. In addition, the inflammation state proved by the CRP, and sST2
values was more critical for the HFpEF group. We measured ferritin and TSC in both
groups of patients to explore iron status. A ferritin level lower than 100 µg/L or lower than
100–300 µg/L together with a transferrin saturation coefficient (TSC) lower than 20% was
considered as iron deficiency (ID) [11]. Furthermore, ID seemed prevalent in the HFpEF
population compared to the HFrEF population, with more deficient functional capacity
and quality of life in these patients [12,13]. Although the difference was not significant,
our results showed lower ferritin values for the HFpEF group (138 µg/L versus 154 µg/L)
with TSC% less than 20 in this group of patients (17% versus 25%).

3.2. Multivariate Factorial Discriminant Analysis

A discriminant analysis was implemented to determine a potential correlation between
the metrics. We evaluated the multivariate factorial discriminant analysis (FDA) model
using a Monte Carlo permutation test to assess the statistical significance of the discriminant
analysis. We set the Type 1 error threshold at 5%. The Monte Carlo test yielded a p-value of
0.15. Although not statistically significant, the FDA provided a stratification of the two HF
groups considering the parameters of the entire cohort of HF patients apart from the LVEF.
As shown in Figure 1, this blinded approach resulted in a stratification of patients similar
to that established by LVEF analysis.
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Figure 1. Arrow (A) and class (B) plots for clinical and biochemical metrics. (A) Arrow plot for clinical and biochemical
metrics as a projection on two axes of the whole metrics used in the prediction model. (B) Class plot showed the same axis
set-up but with the projection of the two respective HF groups of patients.

The most discriminating anti-correlation vertical arrows corresponded to age and
iron metabolism (ferritin + TSC%). As expected, the horizontal axes showed the perfect
anti-correlation between eGFR on one side and creatinine and urea values on the other side.
To a lesser extent, the age arrow was also anti-correlated to sex and NT-proBNP. While
the hsTnT value did not seem to discriminate between the two subgroups, NT-proBNP
was inversely correlated with sST2, confirming a potential involvement in two different
pathophysiological states. Finally, CRP correlated with sST2, highlighting the link between
sST2 and the inflammation process (Figure 1A). The class plot showed the same axis set-up
and the projection of the two respective HF groups of patients (Figure 1B). The arrow
plots impacted the labeled gravity center for each group. The two groups were slightly
segregated around the vertical axis. Thus, the HFrEF group was dominated by higher
values of ferritin and TSC% than the HFpEF group. Therefore, the verticality of the HFrEF
group gravity center was mainly determined by age, lower than the HFpEF group, and sex
with a predominance of men.

3.3. Machine Learning

We developed a Machine Learning (ML) strategy using the same variables in a genetic
algorithm approach. We present the results from the model in Table 2. A hold-out method
was applied consisting of a training set of 21 samples and the validation of 16 samples,
then finally tested on 17 pieces. With standard clinical and biochemical variables, ML
provided results with an accuracy (ratio of the number of correct predictions to the total
number of input samples) of 69% and 64%, respectively, for the validation and test groups.
Sensitivity, defined as the percentage of actual positives correctly identified, was 100% for
the validation and 75% for the test group. Concerning specificity, notably measuring the
rate of true negatives correctly identified, the percentage values were 44% and 55% for the
validation and test groups, respectively, which we partially expected because of the small
number of samples. Lastly, the precision or the positive predictive value was acceptable,
with 58% in the validation and 60% in the test group.

Table 2. Computing model results for discriminating HFpEF versus HFrEF.

Samples Accuracy, % Sensitivity, % Specificity, % Precision, %

Validation 16 69 100 44 58

Test 17 64 75 55 60



Medicina 2021, 57, 996 5 of 7

4. Discussion

There are pathogenetic differences among HF subtypes associated with different risk
factors supporting the need for better discrimination among patient subgroups [14]. The
diagnosis of HFpEF remains a significant challenge, especially at an early stage of the
disease. There are no precise biomarkers for it, and therapies are not specifically suitable.
In addition, HFpEF is highly heterogeneous, making it difficult to reach a consensus
on which predictors to use reliably [15]. The critical need for better stratification was
underlined after the uncertain results of the PARAGON trial [2,3]. The angiotensin receptor-
neprilysin inhibitor sacubitril–valsartan, currently approved to treat patients with HFrEF,
missed statistical significance for the primary outcome (hospitalization or death from a
cardiovascular origin time-to-event analysis) in HFpEF patients. Nevertheless, this trial
suggested a potential benefit for patients with ‘mid-range LVEF and women, pointing out
the potential specific relevance of sacubitril–valsartan in HFpEF patients [1,3]. This trend
was consistent with network analysis showing that the biomarkers profiles for HFpEF and
HFrEF are different [16,17].

A novel typology of markers based on ML strategy combining other parameters for
discrimination of patient subgroups seemed achievable for HF. In this work, biochemical
markers coupled to demographic data of an HF cohort (11 predictors) were introduced
randomly into a computer analysis without knowledge of the patients’ LVEF. We attempted
to generate an algorithm capable of disentangling confidential information based on a
clustering model between specific sub-populations despite the small sample size. While a
standard multivariate analysis showed non-statistical significance (p = 0.15), our approach
enabled the identification of the two groups of patients. In the ML approach, although
the small cohort investigated did not allow to conclude definitively, the results doubtless
showed a promising way to discriminate between two populations of HF patients, and
the association of biochemical and demographic variables was proved to be an excellent
entry to build a classification tool to diagnose HFpEF. Nevertheless, one limitation of this
work is the availability of relevant substrates to derive ML algorithms. Modern Machine
Learning algorithms are robust and highly predictive when they rely on large data sets. On
the other hand, the type of approach on small populations used in this work is emerging
as reliable and safe, although more challenging. The methodology we used performed
transfer learning, an up-and-coming technique consisting in transferring the knowledge
learned in one dataset and apply it to another dataset. Flexibility is much more important
than classic machine-learning methodology, using this kind of adaption of deep neural
networks. By their very nature, ML tools will only be as robust as the data they see [18].
The specificity of this type of approach must be improved since we achieved only 44% and
55% for the validation and test groups, respectively. Thus, this prediction model does not
yet allow the net discrimination between the two HF subpopulations. One axis of progress
rates is developing the present research to a larger cohort and integrating a set of genomic
variables to help measure the robustness of predictions made and set a realistic benchmark
for predictive early diagnostic [15,19]. Therefore, the reasonable idea is to generalize
this methodology to validate our pilot study using a larger cohort or selecting different
parameters. This approach followed previous studies in various fields, including the
cardiovascular domain, to prospectively evaluate predictive ML algorithms in a real-world
setting [18–20]. In a study focusing on a cohort of 149 patients from the Framingham Heart
Study, the comparison of five ML models with one conventional logistic regression model
to predict HFpEF risk and to identify subgroups based on gene expression data showed
that the kernel partial least squares with the genetic algorithm model exhibited the best
performance in predicting patient risk of death [15]. This discriminatory capacity approach
can potentially be applied to more complex problems, particularly recognition within the
same HFpEF population for better stratification and more precise patient management [21].
The challenge of developing ML methods for small data sets combining different biological
markers applied to small cohorts warrants further investigation. New data from cellular
and omic biomarkers can be easily incremented to enrich the profile and identify the same
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pathology subtypes. Efforts to understand HF could also push the boundaries of clinical
practice beyond the simple dichotomy between HFrEF and HFpEF.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/medicina57100996/s1, Supplementary Data.
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