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Abstract: Futurists have anticipated that novel autonomous technologies, embedded with machine
learning (ML), will substantially influence healthcare. ML is focused on making predictions as accurate
as possible, while traditional statistical models are aimed at inferring relationships between variables.
The benefits of ML comprise flexibility and scalability compared with conventional statistical
approaches, which makes it deployable for several tasks, such as diagnosis and classification,
and survival predictions. However, much of ML-based analysis remains scattered, lacking a
cohesive structure. There is a need to evaluate and compare the performance of well-developed
conventional statistical methods and ML on patient outcomes, such as survival, response to treatment,
and patient-reported outcomes (PROs). In this article, we compare the usefulness and limitations
of traditional statistical methods and ML, when applied to the medical field. Traditional statistical
methods seem to be more useful when the number of cases largely exceeds the number of variables
under study and a priori knowledge on the topic under study is substantial such as in public
health. ML could be more suited in highly innovative fields with a huge bulk of data, such as omics,
radiodiagnostics, drug development, and personalized treatment. Integration of the two approaches
should be preferred over a unidirectional choice of either approach.

Keywords: machine learning; medicine; healthcare; diagnosis; drug development; personalized
treatment; autonomous technology

1. Introduction

Machine learning (ML) is a type of artificial intelligence (AI) consisting of algorithmic approaches
that enable machines to solve problems deprived of explicit computer programming [1]. ML is
becoming increasingly relevant in medicine as it can optimize the trajectory of clinical care of patients
affected by chronic diseases and might inform precision medicine approaches and facilitate clinical
trials. As shown in Figure 1, the number of articles applying ML to the medical field has been
exponentially increasing, especially with regard to diagnostics and drug discovery. According to
Accenture data, vital medical health AI applications can possibly create USD 150 billion in yearly
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savings for the United States healthcare sector by 2026 [2]. These data show that the healthcare industry
can heavily leverage the possibilities provided by ML. This might also explain why AI companies are
being increasingly involved in the area of medicine, from diagnosis to treatment and drug development.
For instance, convolutional neural networks (used in image recognition and processing) have been
able to effectively improve the diagnostic process of diabetic retinopathy [3,4]. Another example is
rehabilitation, where learning agents can be trained to run by controlling the muscles attached to the
virtual skeleton. Ideally, doctors might predict if a patient is able to walk, jump, or run properly after a
specific treatment. Furthermore, data obtained during phases of rehabilitation might be later used to
project new, AI designed, leg prostheses.
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AI uses multiple layers of non-linear processing units to “teach” itself how to understand data,
classify the records, or make predictions [5]. Thus, AI can produce electronic health records (EHRs) data
and unstructured facts to make predictions about a patient’s health. For instance, AI can rapidly read a
retinal image or flag cases for follow up when several manual reviews would be too cumbersome [6].

When applied to big data, AI offers the promise of unlocking novel insights and accelerating
breakthroughs. Paradoxically, although an unprecedented quantity of data is becoming available,
only a fraction is being properly integrated, understood, and analyzed. The challenge lies in harnessing
high volumes of data, integrating them from hundreds of sources, and understanding their various
formats. AI offers potential for addressing these challenges, since cognitive answers are explicitly
intended to integrate and analyze big datasets. AI can understand diverse types of data such as
lab calculations in a structured database or the script of a scientific publication. These software
solutions are trained to understand technical, industry-specific content and use advanced reasoning,
predictive modelling, and ML techniques to advance research.

Indeed, AI can be applied to big data using different approaches. When it comes to the effectiveness
of ML, the rule of thumb is that the more data, the more accurate the prediction. Although this is an
oversimplification, it is evident that the healthcare sector is sitting on a data goldmine. Estimates are
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that big data and ML in pharma and medicine could generate a value of up to USD 70 billion to
100 billion annually [7], given the downstream effects of these approaches.

One main difference between ML and traditional statistical methods lies in their purpose, as the
former remains focused on making predictions as accurate as possible, while the latter are aimed at
inferring relationships between variables [8].

However, the key difference between traditional statistical approaches and ML is that in the
latter, a model learns from examples rather than being programmed with rules. For a given
assignment, samples are provided in the form of inputs (called features) and outputs (called labels).
For instance, digitized slides read by pathologists are rehabilitated to features (pixels of the slides)
and labels (e.g., data indicating that a slide comprises evidence of deviations indicating cancer) [9].
Using algorithms for learning from observations, computers then govern how to accomplish the
mapping from features to labels in order to create a model that will generalize the data, such that an
assignment can be achieved properly with new, never seen before inputs (e.g., pathology slides that
have not yet been read by a human). This process is called supervised machine learning.

When predictive accuracy is critically significant, the ability of a model to find statistical patterns
through millions of features and instances is what enables superhuman performance. Nonetheless,
these patterns do not necessarily relate to the identification of underlying biologic pathways or
modifiable risk factors that might facilitate the development of new therapies [9].

A crucial difference between human learning and ML is that humans can learn to make general
and complex associations from small amounts of data. Machines, in general, require several more
samples than humans to acquire the same task, and machines are not capable of common sense.
The flipside, however, is that the machine can learn from massive amounts of data: it is perfectly
feasible for an ML model to be trained with the use of tens of millions of patient charts warehoused in
EHRs, with hundreds of billions of data points, deprived of any lapses of attention, while it is very
challenging for a human physician to understand more than a few tens of thousands of patients in a
complete career. The performance of well-developed conventional statistical approaches needs to be
evaluated and compared with ML in terms of predictivity of clinically relevant outcomes (e.g., survival,
response to treatment, patient-reported outcomes (PROs), etc.).

In this narrative review, we aim to offer an expert perspective on the comparison of traditional
statistical methods with ML, and their corresponding advantages and limitations in medicine, with a
specific focus on the integration between the two approaches and its application to illness detection,
drug development, and treatment. To this end, we have selectively reviewed the literature on this
topic, presenting evidence illustrating the difference between traditional statistical methods and ML
in healthcare.

2. Advantages of Traditional Statistical Methods over ML

Traditional statistical approaches have the advantage of being simple to understand. Indeed,
they usually take into account a small number of clinically important variables and they produce
“clinician-friendly” measures of association, such as odds ratios in the logistic regression model or
the hazard ratios in the Cox regression model. Traditional statistical approaches allow us to easily
understand the underlying biological mechanisms.

On the other hand, the results of ML are often difficult to interpret. Lack of interpretability
is particularly evident in neural networks, but it is less pronounced in least absolute shrinkage
and selection operator (Lasso) regression. Moreover, computation to find the minimum of the
cost function of neural networks is quite complex and time-consuming, depending on the type
of cost function chosen, the number of nodes and layers of the neural network, and the number
of training observations [10]. Furthermore, ML algorithms entail data pre-processing, training on
datasets, require large datasets, and iterative refinement with regard to the real medical problem [1].
ML techniques can also lead to overfitting, i.e., to the production of a model too closely related to the
underlying dataset. This phenomenon can limit the possibility of generalizing the model to different
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datasets, and hence, making predictions [11]. An appropriate balance between the training set and the
validation set is necessary to avoid this problem.

3. Advantages of ML over Traditional Statistical Techniques

ML techniques have large flexibility and are free from a priori assumptions, while traditional
statistical methods rely on strong assumptions, such as the type of error distribution, additivity of
the parameters within the linear predictor, and proportional hazards. These assumptions are often
not met in clinical practice and they are often overlooked in the scientific literature. For instance,
the assumption of proportional hazards has been violated when studying survival in gastric cancer
patients, as the prognostic significance of the depth of tumor invasion and nodal status tends to
decrease with increasing follow-up, while the histology and the loss of TP53 gene acquire prognostic
importance after at least two years of follow-up [12].

ML has the advantage of taking into account all the available information on a particular field.
Traditional statistical approaches, even those at the top of the pyramid of evidence, often fail because
they make a priori selection of the variables to be considered. For instance, a Cochrane review,
dealing with the extension of lymphadenectomy in gastric cancer surgery, was criticized and later
withdrawn mainly because it failed to take into account the quality of surgical procedures under
comparison [13]. ML is particularly suited when there are few observations and many predictors,
such as in genomics, transcriptomics, proteomics, and metabolomics [14]. In such a situation,
traditional regression models show several limitations, especially for the choice of the most important
risk factors. Therefore, in building ML predictive models, it is possible to use numerous approaches to
apply also on small datasets.

ML can also easily address interactions, which are difficult to investigate with traditional statistical
methods that can mostly address interactions between the main determinant and single potential
confounders. For instance, the effect of the surgical approach on survival in gastric cancer patients
is modulated by tumor stage and histology [15]. However, this second-order interaction is difficult
to highlight within a Cox model [16], as the interaction between lymphadenectomy and histology
becomes apparent after the first two years of follow-up.

Furthermore, ML algorithms have the ability to analyze various data types (for instance,
imaging data, demographic data, and laboratory findings) and integrate them into predictions
for illness risk, diagnosis, prognosis, and applicable treatments [1].

4. Different Indications for the Two Computational Approaches

Taking into account the strengths and limitations discussed above, different fields of application
can be proposed for traditional statistical techniques and ML. Traditional statistical approaches could
be more suitable than ML when: (1) there is substantial a priori knowledge on the topic under study;
(2) the set of input variables is limited and rather defined in the current literature; (3) the number of
observations largely exceeds the number of input variables. This situation is typically encountered in
public health research, especially when performed on large healthcare utilization databases [17,18].

On the other hand, ML techniques have proven to be more appropriate in “omics” [19],
where numerous variables are involved (genes, RNA molecules, proteins, metabolites). Indeed,
with a large number of interactions (such as polygenicity and epistatic effects in genomics), ML might
help disentangle the complex relationships between these components in determining their effect on
the main outcome (i.e., the illness risk).

Traditional statistical approaches are appropriate when the set of predictors tends to be defined
a priori on the basis of available reliable evidence on the specific topic. For instance, most articles
dealing with gastric cancer surgery include a fixed set of covariates in survival models, comprising
sex, age, tumor site, histology, and stage [12]. The selection of variables is important to avoid the
introduction of strongly collinear variables, such as tumor stage and surgical efficacy (completeness of
tumor removal), and this is usually done on the basis of a priori knowledge, as techniques to compare
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non-nested models, such as Akaike Information Criterion, are rather limited. This approach makes the
studies more comparable: for instance, the use of the same prognostic factors allows the comparison of
datasets collected in different countries and makes easy to develop internationally accepted prognostic
scores [20]. On the other hand, this approach could slow down the progress of clinical research, as few
novel prognostic factors are addressed by each research project.

ML allows us to take into account a huge bulk of potential predictors, avoiding an a priori choice
among them. Hence, ML is more suited for big steps in diagnostics and therapeutics. ML has given
an important contribution to the rapidly progressing therapeutic revolution fostered by “omics”.
However, whatever boundaries we can establish today between traditional statistics and ML, these will
be surely overcome in the next future.

5. Integration between the Two Approaches

A traditional statistical approach requires us to choose a model that incorporates our knowledge
of the system, and ML requires us to choose a predictive algorithm by relying on its empirical
capabilities [19]. Justification for an inference model generally rests on whether it sufficiently captures
the characteristics of the system. The choice of algorithm in pattern learning frequently hangs on
measures of previous performance in similar scenarios. Inference and ML are complementary in
pointing us to biologically meaningful conclusions.

Of note, traditional statistical approaches and ML are often used in sequence. When trying to
differentiate groups of patients based on their proteomic or metabolomics profile, classical statistical
techniques are first used for preliminary screening, while ML is used to finalize the analysis.

For instance, Fabris et al. have recently identified a set of urinary proteins that allow the
discrimination between two different renal diseases, nephrolithiasis and Medullary Sponge Kidney [14].
Remarkably, this result was achieved on a very small series (22 patients with MSK and 22 patients with
idiopathic calcium nephrolithiasis), analyzing a huge bulk of urinary proteins (n = 1529). Traditional
statistical techniques (multidimensional scaling, volcano plot, and ROC curves) allowed them to reduce
the set of urinary proteins considered from 1529 to 16, while Support Vector Machine (SVM) permitted
a further reduction to 5 proteins. In a subsequent study on the same topic, Bruschi et al. first used
partial least squares discriminant analysis and then SVM [21].

6. Applications of ML in Medicine

6.1. Diagnostic Process

The ability of ML to detect diagnostic models reaching the level of clinical accuracy remains an
objective not yet achieved, but seemingly feasible. This objective faces the challenge of finding ways to
work with all the available data. This highlights the relevance of interdisciplinary collaborative work.
In the area of brain diseases like depression, the Predicting Response to Depression Treatment (PReDicT)
project has applied predictive analytics to help diagnose depression and identify the most effective
treatment, with the overall goal of producing a commercially available emotional test battery for use in
clinical settings [22]. In general, the use of ML to aggregate large datasets could significantly accelerate
the diagnostic processes [23]. In Table 1, we have summarized information on ML in medicine.

Of the numerous opportunities for the use of ML in clinical practice, medical imaging workflows
are those that will be likely be most impacted in the near term. ML-driven algorithms that automatically
process two- or three-dimensional image scans to recognize clinical signs (e.g., tumors or lesions) or
articulate diagnoses are now available and some are progressing through regulatory steps toward
the market [24]. Many of these use deep learning, a form of ML based on layered representations of
variables, referred to as artificial neural networks. The latter can learn extremely complex relationships
between features and labels and have been shown to exceed human abilities in performing tasks such
as classification of images.
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Table 1. Applications of machine learning (ML) in medicine.

Application Areas

Diagnostic
testing

Personalized diagnostics
Parkinson’s disease progression prediction from mobile phone accelerometer data

Predict viral failure in AIDS patients
Medical
imaging

Clinical research: MRI and PET scans and deep learning
Cellular image analysis: genotype, phenotype, classification, identification, cellular tracking

Oncology Clinical research: Identify which genes are associated with breast cancer relapse.
Prognosis: Predict probability of survival in 5 years

Remote patient
monitoring

Real-time predictions using data from wearables
Medication adherence monitoring

ML can improve diagnostic accuracy by analyzing not only medical images but also textual
records. Indeed, ML allowed the identification of varicella cases in a pediatric Electronic Medical
Record Database with a positive predictive value of 63.1% and a negative predictive value of 98.8% [25].

6.2. Predicting Prognosis

ML has been shown to achieve the same or better prognostic definition in several clinical
conditions, as compared to conventional statistical methods. In particular, ML can better predict
clinical deterioration in the ward [26], mortality in acute coronary syndrome [27], survival in patients
with epithelial ovarian cancer [28], complications of bariatric surgery [29], and risk of metabolic
syndrome [30]. On the other hand, other studies reported that ML and conventional statistical methods
have similar prognostic usefulness in predicting mortality in intensive care units [31], readmission in
patients hospitalized for heart failure [32], and all-cause mortality and cardiovascular events [33].

6.3. Drug Discovery

ML can facilitate various phases of the early stages of drug discovery, from initial screening of drug
compounds to predicted success rates based on biological factors. This includes R&D technologies like
next-generation sequencing. Precision medicine, which relies on the recognition of pathophysiological
mechanisms and might serve the development of alternative therapeutic pathways, appears as the
most innovative area. Much of this study encompasses unsupervised learning, which is in large
part still limited to identifying patterns in data without predictions (the latter is still in the realm of
supervised learning). Data from experimentation or manufacturing processes have the potential to aid
pharmaceutical manufacturers to diminish the time required to produce drugs, leading to lowered
costs and better replication. Adopting ML approaches could play a significant role in discovering
new molecules or repurposing existing drugs for rare conditions or epidemics where urgency is key.
With the increase in antibiotic resistance, exploiting ML techniques is already proving quite powerful
in identifying new antibacterial agents in a faster and potentially inexpensive way [23]. For example,
AI recently allowed the discovery of halicin, a compound structurally divergent from conventional
antibiotics, acting against Clostridium difficile and pandrug-resistant Acinetobacter baumannii infections
in murine models [34].

6.4. Personalized Treatment

Personalized medicine, which should lead to the identification of more effective treatment
based on individual health data paired with predictive analytics, is closely related to better disease
assessment. To meet the complexity of personalized medicine, new types of trials have been developed,
such as basket, umbrella, or platform trials. The area is presently governed by supervised learning,
which permits physicians, for instance, to select from further limited sets of diagnoses or estimate
patient risk based on symptoms and genetic information.

Over the next decade, the increased use of micro biosensors and devices, as well as mobile apps
with more sophisticated health measurement and remote monitoring capabilities, will provide an
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additional surge of data that can be used to help facilitate research and development, and treatment
efficacy. This type of personalized treatment has significant consequences for the individual in terms
of health optimization, but also for plummeting overall healthcare costs. If more patients adhere to
following prescribed drug or treatment tactics, for instance, the reduction in health care charges will
trickle up and back down.

Using ML in these settings depends on the collection and analysis of huge amounts of data,
but with the emergence of big data comes the challenge of statistical inference from complex datasets
to identify genuine patterns, while also restraining false classifications and making decisive judgments
on diagnosis and treatment possibilities. Statistical bioinformatics has proven very useful in proteomic
and genomic data analysis, and the adoption of ML to build predictors and classifiers has shown
significant potential [23].

7. Discussion

ML has the potential to transform the way medicine works [35]. However, increased enthusiasm
has previously not been met by a corresponding interest from healthcare providers and operators.

Examples where ML has done well: Gulshan et al. have applied deep learning to build an
algorithm-automated detection of diabetic retinopathy and diabetic macular edema in retinal fundus
photographs [36]. Bejnordi et al. have recently evaluated the performance of automated deep learning
algorithms at identifying metastases in hematoxylin and eosin-stained tissue sections of lymph nodes
of women with breast cancer and related it with pathologists’ diagnoses in a diagnostic setting [37].
There are several similar ML studies on images and challenges in radiology, pathology, dermatology,
ophthalmology, gastroenterology, cardiology, etc. ML is beginning to have an impact in medicine
at three levels: for clinicians, predominantly via rapid, accurate image interpretation; for patients,
by enabling them to process their own data to promote health; and for health systems, by improving
workflow and the potential for reducing medical errors [38]. Steele et al. observed that data-driven
models used on a prolonged dataset can outperform conventional models for prognosis, deprived of
data pre-processing or imputing missing values for predicting patient mortality in coronary artery
disease [39].

Examples where ML has done poorly: Esteva et al. recently demonstrated the effectiveness of deep
learning in dermatology, as regards both general skin conditions and specific cancers [40]. However,
they also observed that in the set of biopsy images, if an image had a ruler in it, the algorithm was more
likely to call it tumor malignant because the presence of a ruler was associated with an augmented
likelihood that a lesion was cancerous.

There is no clear line between ML models and traditional statistical models, and a recent
article summarizes the relationship between the two [41]. However, sophisticated new ML models
(e.g., those used in “deep learning” [42,43]) are well suited to learn from the complex and heterogeneous
kinds of data that are generated from current clinical care, such as medical notes entered by doctors,
medical images, continuous monitoring data from sensors, and genomic data to aid make therapeutically
significant predictions. Most ML classifiers perform uncertainly with risk prediction. Possibly much
bigger sample sizes are required to gain reliable (calibrated) risk predictions [44] than reliable
(diagnostic) classifications.

ML is creating a paradigm shift in medicine, from basic research to clinical applications, but it
should be carefully implemented. Vulnerabilities such as security of data and adversarial attacks,
where malicious manipulation in the input can affect a complete misdiagnosis, which could be employed
for fraudulent interests, present a real threat to the technology [23]. However, these vulnerabilities can
be met with adequate efforts.

In the 1970s and 1980s, computerized tomography, based on the automatic elaboration of a huge
bulk of X-rays images, revolutionized radio diagnostics, enabling radiologists to overcome the so-called
“grey barrier”. The use of CT allowed radiologists to improve their role in the healthcare system.
However, the ML revolution seems to threaten one of physicians’ most exclusive tasks, i.e., diagnostic
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activity. The new generation of practitioners should accept the challenge of ML, by learning how to
comprehend, develop, and eventually, control it so as to improve patient care [24].

ML can analyze large amounts of data and turn that information into functional tools that can
assist both doctors and patients. The increased integration of ML into everyday medical applications
might improve the efficiency of treatments and lower costs in various ways. The challenge is to
combine big data provided by genomics, transcriptomics, proteomics, and metabolomics with complex
systems science, systems biology, and systems medicine of the body [45]. ML tools can be built for
system-level interventions, comprising improving patient selection and enrolment for clinical trials,
decreasing patient readmission, and automated follow-up of patients for scrutiny of complications.

8. Conclusions

As technology is widening and innovations and ideas are pouring, there is an enormous volume
of data that is being generated in modern healthcare. Proper analytical methods are key to obtain the
maximum insight from collected data.

The periphery between traditional statistics and ML is a topic to debate [46]. Some approaches
fall squarely into one or the other domain, but numerous are used in both. Both statistics and ML can
be of value, traditional statistics being more useful in public health and ML in omics science.

Conventional statistical approaches and ML are complementary in directing us to biologically
significant conclusions: the ideal approach would be to integrate the two technologies in a way that can
determine an added value. Our review has provided compelling insights into the difference between
conventional statistical approaches and ML in healthcare, which in turn may help us to better integrate
technology and medical care.
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