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Abstract: Treatment resistance is prevalent in early intervention in psychosis services, and causes a 

significant burden for the individual. A wide range of variables are shown to contribute to treatment 

resistance in first episode psychosis (FEP). Heterogeneity in illness course and the complex, 

multidimensional nature of the concept of recovery calls for an evidence base to better inform 

practice at an individual level. Current gold standard treatments, adopting a ‘one-size fits all’ 

approach, may not be addressing the needs of many individuals. This following review will provide 

an update and critical appraisal of current clinical practices and methodological approaches for 

understanding, identifying, and managing early treatment resistance in early psychosis. Potential 

new treatments along with new avenues for research will be discussed. Finally, we will discuss and 

critique the application and translation of machine learning approaches to aid progression in this 

area. The move towards ‘big data’ and machine learning holds some prospect for stratifying 

intervention-based subgroups of individuals. Moving forward, better recognition of early treatment 

resistance is needed, along with greater sophistication and precision in predicting outcomes, so that 

effective evidence-based treatments can be appropriately tailored to the individual. Understanding 

the antecedents and the early trajectory of one’s illness may also be key to understanding the factors 

that drive illness course. 

Keywords: first episode psychosis; treatment resistance; psychosis; clozapine; CBT; early 
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1. Introduction 

Treatment resistance in psychosis has traditionally been dominated by the Kraepelinian view of 

chronic disorder associated with enduring impairment [1]. In reality, the outlook is positive for many 

individuals with first episode psychosis (FEP; please see Table 1 for a list of abbreviations., but there 

remains a subgroup of individuals who do not achieve a symptomatic and/or functional recovery, 

despite receiving specialised care under an early intervention service (EIS) [2,3]. Two longitudinal 

studies have shown that of individuals who were identified as treatment resistant, over 70% were 

treatment resistant from illness onset [4,5]. Indeed, initial response to treatment is one of the strongest 

predictors of longer-term outcomes in those with early psychosis [6,7]. The prolongation of 

symptoms and continued disruption to an individual’s peer relationships and work and school 

performance at this time is likely to have a profound negative impact on their future [8]. It is therefore 

imperative that these individuals are identified as early as possible in their illness trajectory and given 

appropriate stratified interventions to improve outcomes and prevent further decline.  
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Table 1. Abbreviation Legend. 

Abbreviated Term Full Term 

FEP First Episode Psychosis 

EIS Early Intervention in Psychosis 

DUP Delay in untreated psychosis 

NICE National Institute for Clinical Excellence 

CBT Cognitive Behavioural Therapy 

SRT Social Recovery Therapy 

2. Defining Treatment Resistance 

The lack of consensus over a clear definition of treatment resistance and validated instruments 

to assess the concept remains problematic for research in this area [9,10]. Treatment resistance is often 

conceptualized by the persistence of unremitted positive symptoms, despite the sequential use of at 

least two antipsychotic medications at a therapeutic dose, for a minimum duration of six weeks [4,11]. 

However, this definition disregards other symptoms which are shown to influence outcomes in 

psychosis, such as cognitive impairment and negative symptoms, which tend to be unresponsive to 

standard treatments [12–14]. The lack of broadness in the definition of treatment resistance has also 

meant that other key outcome domains, such as one’s social and role functioning and quality of life, 

are overlooked [15]. Finally, the term itself may be conceived as stigmatizing, as it places onus on the 

individual for ‘not responding adequately’ or ‘failing’ their treatment, which may add to the 

increased shame and stigma that an individual may already experience as a result of receiving their 

diagnosis [16].  

An alternative definition that has been proposed is the concept of ‘incomplete recovery’, which 

considers persisting impairment in psychosocial and functional domains, despite intervention with 

evidence-based psychosocial and pharmacological treatments; the term also reflects the potential for 

improved therapeutic outcomes [10,17]. Within this concept, the lack of recovery following adequate 

treatment is distinguished from non-adherence to treatment; each may contribute to incomplete 

recovery and should be identified and addressed early to promote recovery in FEP [9,10]. 

3. Prevalence and Predictors of Treatment Resistance and Incomplete Recovery 

The rates of treatment resistance and incomplete recovery vary widely in FEP. This disparity is 

likely a result of studies adopting different criteria to define treatment resistance. The inclusion of 

participants with affective and non-affective psychosis is also likely to add to this heterogeneity, 

given that outcomes tend to be more favorable in those with prominent affective trajectories [18,19]. 

Recent publications in longitudinal FEP cohorts report rates between 22–34% for individuals who are 

resistant to antipsychotic medication [5,20,21]. Findings from systematic reviews on relapse and 

incomplete symptomatic recovery in FEP again show variation in the rates reported (19-89%), but 

notably, the risk of relapse is significantly reduced by sustained antipsychotic therapy [3,22–24]. 

Finally, incomplete recovery within social and vocational domains are shown to vary between 46% 

and 86% in FEP [3,25]. These findings highlight that current evidenced-based treatments and services 

are not adequately addressing the needs of all its service users. 

There is also complexity in predicting outcomes in FEP; incomplete recovery appears to be 

multidimensionally determined and impacts separable domains of recovery [1,17]. Variables shown 

to contribute to incomplete recovery include: long delay in untreated psychosis (DUP), younger age 

at onset of psychosis, poorer premorbid adjustment, cognitive impairment, negative symptoms, 

affective comorbidity, non-adherence and disengagement with treatment, male gender, and initial 

response to treatment [4,5,14,26–31]. It is likely that each individual will have their own unique 

combination that will determine their outcome, which makes predictions at the individual level 

challenging, particularly in the early stages of psychosis where illness trajectories are forming and 

the clinical picture is still emerging [1].  
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It is also likely that illness trajectories are long-standing, and impairment pre-dates formal illness 

onset [32]. Supporting this view is the dimensional approach to illness whereby the heterogeneity in 

early psychosis is characterized by differing illness subtypes, rooted early in development [33,34]. 

Indeed, early cognitive and neurodevelopmental impairment has been associated with psychosis 

liability and core schizophrenia [15,35], and it is hypothesised that aberrations in the 

neurodevelopmental process, linked to cognitive deficits, lie at the heart of early and enduring 

impairment in psychosis [15]. Such an approach may have utility for subtyping individuals on their 

early course or premorbid features, potentially aiding in the parsing of clinical heterogeneity [33]. 

There are also a number of established social antecedents in the development of psychosis; an 

accumulation of these risk and protective factors over time may not only increase someone’s risk of 

psychosis, but may continue to operate within the process of recovery [1]. It is established that social 

gradients are heavily implicated in the development of psychosis, such as: urbanicity, social 

marginalization and fragmentation, ethnic minority status, and childhood adversity [36,37]. These 

factors are likely to lead to a vicious cycle of disadvantage, which, if not addressed, will continue to 

drive enduring impairment [38]. For example, hostile and critical family environments are associated 

with relapse and depression in psychosis, and changing these environments via family interventions 

are indeed shown to be effective at reducing relapse rates [39]. More recently, the concept of urban 

remediation in psychosis has been proposed as a new recovery-oriented strategy to manage urban 

stress, but at present, this remains a goal for future research [40]. 

From the evidence presented above, there appears to a gap in the knowledge base for 

understanding the evolutionary continuity between alterations in neurodevelopmental process and 

exposure to stressful life events, with later onset of psychosis [34]. Longitudinal prospective studies 

in children and young people are essential to improve our understanding of neurodevelopmental 

markers in children and young people with varying levels of psychosis risk, and how these might be 

linked to long term prognoses. 

4. Current Approaches for Managing Emerging Treatment Resistance in Early Psychosis 

The first 3–5 years following illness onset, including the period of untreated psychosis, 

represents a ‘critical period’ of illness progression [7,41] It is during this time in which interventions 

are likely to have their greatest impact [41]. 

EIS provides specialist assertive outreach-style care during the ‘critical period’, and are effective 

at improving a number of clinical and functional outcomes for young people with FEP [42]. However, 

there appears to be a group of individuals whose psychosis remains ‘unresponsive’ to standard high 

quality EIS care, embodying National Institute for Clinical Excellence (NICE) approved psychosocial 

and pharmacological interventions; strongly suggesting that earlier, targeted interventions are 

urgently needed to allow such individuals to maximise their life chances [3,21]. 

A recent publication by Drake and colleagues [27] demonstrated the importance of having such 

timely interventions. In their longitudinal modelling study, they demonstrated a curvilinear 

relationship between DUP with symptom severity and treatment response, meaning that symptoms 

become more refractory with a longer DUP, but this response was more rapid at first and then 

plateaued [27]. These recent findings place even greater emphasis on providing individuals with 

prompt access to a range of interventions ideally within the first few weeks of illness onset [27].  

However, despite the implementation of EIS leading to a significant reduction DUP, a 

proportion of individuals continue to have DUPs exceeding 6 months [43,44]. Furthermore, whilst 

earlier studies provide evidence that intervention programmes can be successful at reducing DUP, 

for example, the Treatment and Intervention in Psychosis Study (TIPS), where DUP was reduced 

from 16 to five weeks, a recent systematic and meta-analytic review of 16 studies did not find any 

conclusive summary evidence for controlled interventions in reducing DUP [45,46]. 

Reducing DUP, particularly in areas where DUPs are consideringly long, should remain a 

priority to improve outcomes. Large scale collaborative studies with rigorous study designs and 

robust assessments of DUP are needed to inform more effective interventions [46]. 
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Another important finding by Drake and colleagues was that DUP was not linked to any 

symptoms at presentation, except depression [27]. It is established that depression in psychosis is 

associated with a range of poor outcomes, but yet there is a lack of large-scale controlled trials 

investigating the effectiveness of adjunctive antidepressants, or cognitive behavioural therapy (CBT), 

to target depression within psychosis [26,47,48]. This calls for more effective recognition and 

management of depression to maximise recovery within EIS.  

NICE guidelines in the UK advocate for antipsychotic medication and CBT as first line 

treatments for all individuals with psychosis [11]. Clozapine is the only evidence-based treatment for 

refractory psychosis, and current guidelines recommend commencement after two unsuccessful 

trials of standard antipsychotics [11,49]. A recently published study investigating the pathways to 

prescribing clozapine for treatment resistance within UK EIS centres, showed a marked delay in 

clozapine prescription for those who were eligible [21]. A clear stasis in treatment was evident for 

these individuals, where the majority either remained on the same medication despite persisting 

symptoms, or they continued to be placed on other antipsychotics which were also unsuccessful [21]. 

Given the evidence of the superior efficacy of clozapine in reducing suicide risk, improving 

symptomatic and functional recovery, and reducing mortality rates, this may reflect a missed 

opportunity to influence recovery during the significant ‘critical period’ [21,50,51].Ongoing 

education of the benefits of clozapine and emphasis on the national standards for commencement of 

clozapine in the community is perhaps needed to improve uptake on clozapine for those who are 

eligible [22]. But despite its superiority in treating refractory symptoms, it must be acknowledged 

that 30–40% of individuals will still show an insufficient response to clozapine, and others are unable 

to tolerate the medication; the move toward community commencement of clozapine would also 

require national standards on clozapine discontinuation for those who are unable to tolerate [52,53]. 

Conventional CBT for psychosis is also less likely to be effective for subgroups of individuals 

with particularly complex illness presentations [52,54,55], and there is considerable heterogeneity in 

response to psychosocial interventions in psychosis [56]. Baseline factors are shown to contribute a 

large amount of this variance. For example, cognitive impairments are shown to have a rate-limiting 

impact on treatment progress [57,58]. 

Encouragingly, a recent randomised controlled trial provides an example of a tailored approach 

to those who are treatment resistant within early psychosis. A specialised social CBT, namely social 

recovery therapy (SRT), is shown to be effective at increasing structured activity in a sizeable group 

of young people whose severe social disability had proved unresponsive to standard EIS [54]. 

Potentially, individuals who are likely on a pathway to treatment resistance may receive SRT earlier 

in their illness trajectory to prevent their disability from becoming entrenched. 

The benefits of such an intervention may also potentially extend to individuals who are 

disengaged with their treatment; the basis of SRT is to motivate individuals who are perhaps 

ambivalent about change, whilst also addressing any underlying blocks to change, or in this instance, 

interventions such as SRT may be helpful to address any underlying reasons for non-adherence to 

treatment [54]. 

Finally, there is further scope for the refinement of the SRT to ensure that the therapy is being 

delivered appropriately, such as greater precision in the identification of individuals who are less 

likely to benefit from such interventions, and a greater understanding of the mechanistic markers of 

change to inform the process of early treatment stratification [59]. 

5. A Move towards Precision Intervention and Stratified Treatment Approaches in Early 

Psychosis 

The move towards ‘big data’ has meant that novel statistical approaches may allow for the 

delineation of the complexity and multiplicity within mental illnesses [1]. Mathematical modelling 

techniques, such as machine learning, apply computer algorithms to test complex models, and have 

the potential to inform personalized diagnostic tools to help clinicians guide treatment at an 

individual level [60].  
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To-date, classical inferential approaches have dominated the field, but are becoming 

increasingly scrutinized for their lack of reproducibility [61]. Whilst the arbitrary p-value cut-off of 

0.05 may produce significant findings, it does not accurately account for replicability and 

generalizability [61]. For example, a replication rate of around 11% has been estimated for preclinical 

studies [62], and for high dimensional data, there is a greater probability of having false-positive 

findings; neuroimaging analyses have a 70% false-positive rate even after correction for multi-

comparisons [61,63]. This suggests that a great deal of significant findings are perhaps reflecting the 

noise or idiosyncrasy of the data, and less likely to generalize [61]. 

With machine learning, one can test the accuracy and generalizability of models through a 

process of cross-validation, which may include the models being independently validated across 

different study sites [61]. The performance of the model can then be externally validated on a sample 

from a different study, giving an indication of the model’s overall generalizability. The final stage in 

the generalizability assessment is prospective validation, which involves the application of an 

existing model to a new individual to make a generalizable prediction [61]. 

Data from a range of modalities (e.g., biological, neuroimaging, genetic, and clinical data), can 

also be fused together to capture different illness phenotypes and mechanistic markers, potentially 

leading to a more objective nosology and improved prognostic certainty [60,64]. 

There is emerging evidence demonstrating the prognostic capabilities of machine learning within 

mental health, with accuracies of above 70% being achieved so far across a growing number of studies 

[65]. This has been extended to symptomatic and functional remission in early psychosis [3,60]. 

However, so far, multimodal approaches have not yet incorporated environmental and societal factors, 

which are associated in poor outcomes and strongly implicated in the pathway to psychosis [66]. 

Using multimodal data, transdiagnostic features can be decomposed further; for example, 

neuroimaging data can be trained using unbiased or unsupervised machine learning methods to divide 

data into subgroups [67]. This could reveal which transdiagnostic features are intrinsic to early 

psychosis, and has the potential to inform adjunctive treatments that may lead to better outcomes [67]. 

Finally, the way in which treatments are currently evaluated are focused on finding the most 

efficacious treatment for the average patient [68]. However, given the heterogeneity in response 

profiles, machine learning may have utility within clinical trial designs to identify individuals who 

are more likely to respond to intervention, and this could ensure that costly interventions (for both 

health service and service user), are delivered to those who are more likely to benefit. 

Using neuroimaging data, machine learning has so far been able to predict treatment response 

to intervention within anxiety disorders with up to 80% accuracy [68,69], and similarly with high 

accuracy for depression following treatment with CBT and antidepressant medication [64,70]. As well 

as holding promise for stratifying treatments, the identification of markers of non-response may lead 

to the development of more suitable interventions. 

6. The Application of Machine Learning and Model Translation 

The growing body of evidence is beginning to demonstrate the clinical application of machine 

learning to everyday practice, with the potential to inform more objective diagnoses, illness 

prognoses, and stratification of interventions [64]. Implementation into everyday practice may take 

several forms, for example, the release of publicly available algorithms, and the integration of clinical 

information from within health systems and personal monitoring devices such as smart phones 

[71,72]. However, as the field moves towards translation, it is important to acknowledge the 

limitations and ethical implications. 

6.1. Practical Considerations 

Firstly, it is important to consider the real-world practicalities of implementing machine learning 

into everyday practice. Machine learning often draws on data from a range of modalities (e.g., task-

based imaging), and such technologies may not be available on a large scale [64]. Additionally, 

machine learning techniques are often complex to implement and interpret, and would require prior 

knowledge and skills of the already time-pressured clinician. 



Medicina 2020, 56, 638 6 of 11 

 

6.2. Sample Representativeness and Diversity 

It is imperative that samples in which the models are tested, accurately represent the individuals 

whose treatments will be informed by the prediction models in clinical practice. This requires large 

and diverse samples that represent real-world heterogeneity [65]. However, studies investigating 

neuroimaging biomarkers demonstrate a decrease in accuracy with larger samples (N => 150), which 

might actually result from sample heterogeneity [71]. Smaller, more homogenous samples might be 

able to achieve higher prediction accuracies, but this might compromise the model’s generalizability, 

and thus its translation to clinical practice [71].  

Epidemiological studies demonstrate the importance of sample diversity. There is higher 

incidence of psychosis in black minority ethnic groups, and these individuals are also much more 

likely to have poor outcomes across a range of domains [72–74]. Yet, minority ethnic groups are often 

underrepresented in clinical research studies, and subsequently, machine learning prediction models 

may not generalize to those who are at risk of the poorest outcomes [61,64]. The AESOP-10 cohort 

study investigated the disparity in illness outcomes between black minority ethnic and white British 

patients, and showed no difference in baseline factors such as demographic, clinical, 

neurodevelopmental, and substance misuse. Social outcomes were also largely independent of 

clinical course [73]. Though it’s a tentative finding, baseline social disadvantage and isolation 

contributed to persistence of symptoms and social outcomes for the black African and black 

Caribbean individuals [73]. 

These findings are important for the translation of prediction models. It demonstrates that the 

complexity of illness outcomes extends beyond the clinical features, and may mirror the inequity in 

our health systems and social structures for these marginalized groups [73]. Environmental factors 

such as urbanicity, pervasive disadvantage, marginalization, and adversity, which lead to increased 

rates of psychosis, are also likely to continue to operate within the process of recovery [36,37]. To 

improve outcomes, there is an apparent need to understand how these predisposing factors are 

continuing to drive illness course. 

Recent attempts have been made to provide an aggregate measure of environmental risk to 

psychosis [66]. The Maudsley Environmental Risk Score – which is a cumulative load of 

environmental risk factors – might be an important addition when developing prediction models 

within psychosis, and may yield more generalizable findings [66]. 

6.3. Ethical Considerations 

There are a number of ethical implications associated with the integration of machine learning 

into routine health care. For example, the prognostic potential of machine learning means that the 

individual might be told of future relapses, which may cause unnecessary distress [64]. 

Furthermore, data gathered from personal devices introduces further concerns around 

compulsion in relation to data surveillance, and overlooks the autonomy of the individual, 

potentially creating further power inequalities in the mental health system [75]. 

Finally, there are ethical concerns regarding the transparency of the machine learning algorithms 

[64]. The model’s operations and decisions should be scrutinized, and clinical decisions not left to the 

machine alone [75]. Rather, it should be used as a system to help guide the clinician’s decisions, 

without needing to remove the human aspect of care, nor needing to replace the individual’s 

narrative. 

7. Conclusions 

The complexity and heterogeneity in early illness course makes predictions at an individual level 

challenging, and many continue to show non-response to conventional, NICE-embodied 

interventions. The application of machine modelling shows some promise in being able to delineate 

this complexity and potentially improve prognostic certainty. It may also allow for a targeted 

treatment approach to guide interventions for whom they will most benefit. 
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However, just as the factors that contribute to psychosis and illness outcomes are dynamic and 

multidimensional, it is likely that the same will be true for new treatments to promote recovery for 

those with complex presentations. Understanding the predisposing factors leading to one’s illness 

may also be key to promoting and sustaining one’s recovery in the long term. 
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