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Abstract: Regarding cancer as a genetic multi-factorial disease, a number of aspects need to be
investigated and analyzed in terms of cancer’s predisposition, development and prognosis. One of
these multi-dimensional factors, which has gained increased attention in the oncological field due
to its unelucidated role in risk assessment for cancer, is diet. Moreover, as studies advance, a
clearer connection between diet and the molecular alteration of patients is becoming identifiable
and quantifiable, thereby replacing the old general view associating specific phenotypical changes
with the differential intake of nutrients. Respectively, there are two major fields concentrated on the
interrelation between genome and diet: nutrigenetics and nutrigenomics. Nutrigenetics studies the
effects of nutrition at the gene level, whereas nutrigenomics studies the effect of nutrients on genome
and transcriptome patterns. By precisely evaluating the interaction between the genomic profile
of patients and their nutrient intake, it is possible to envision a concept of personalized medicine
encompassing nutrition and health care. The list of nutrients that could have an inhibitory effect on
cancer development is quite extensive, with evidence in the scientific literature. The administration of
these nutrients showed significant results in vitro and in vivo regarding cancer inhibition, although
more studies regarding administration in effective doses in actual patients need to be done.
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1. Introduction

Cancer should not be considered as a single disease, but as a multitude of different genetic
(irreversible) and epigenetic alterations (reversible in some situations) that act in tandem, mirrored by
changes in patterns exhibited in the transcriptome [1]. Genetics, simply put, investigates genes, genetic
variation and heredity in organisms. The word “epigenetics” literally means “above genetics” and,
thus, refers to all the mechanisms that control or regulate gene expression without actually changing
the DNA sequence. This means that epigenetic changes encompass all molecular modifications to DNA
or chromatin. The most frequent and extensively investigated epigenetic modification that happens
post-translationally is DNA methylation [2]. Examples of genes with some “epigenetic” memory of
early life experiences are those related to energy acquisition, storage and use. One such example
is leptin, involved in the development of obesity. It encodes a hormone that specifically regulates
energy intake and expenditure. It has been proposed that epigenetic variants of leptin could explain
the phenomena of low plasma concentrations. More specifically, the promoter region of leptin can be
methylated in somatic tissues of humans and, thus, demonstrates epigenetic variation [2].

There is great interest in investigating the relationships between the predisposition for different
cancers, their associated prognosis and exposure to different risk factors like diet. This inquiry is based
on the fact that bioactive agents within daily nutrients hold great promise in oncology [3] because
of their capacity to regulate coding or non-coding genes [4,5] and as adjuvant support for cancer
therapy [6].

Nutrigenetics studies nutrition at the gene level, focusing on the way that certain gene variants
can influence and are influenced upon by their interaction with nutrients. Nutrigenomics, on the other
hand, studies the effects of nutrients on genomic and transcriptomic profiles, and their subsequent
consequences on the proteome and metabolome [7]. By predicting the functional interactions between
nutrients and genomes, the emerging and developing field of personalized medicine can incorporate
nutrition, facilitating the step forward toward personalized cancer therapy. This is based on the
capacity of certain nutrients to specifically activate cancer inhibitory mechanisms, thereby targeting
important hallmarks of cancer like apoptosis or the impairment of angiogenesis [8–10].

The aim of this review is to evaluate and present the effects that some key micronutrient components
(vitamin A, vitamin C, vitamin D and Selenium) and some macronutrients (polyunsaturated fatty acids,
prebiotics and probiotics) can have in the prevention and/or therapy of different cancer types. After all,
one function of personalized medicine is the identification of critical interactions in the cancer–diet
relationship specific to the patient and their genome. The nutrients were chosen based on the in vitro
or in vivo experimental data available, specifically ensuring that there was an association between
the nutrient and a molecular pathway or gene. Furthermore, we wanted to discuss nutrients that are
readily accessible and have been well documented.

As an effect, there are future practical applications regarding personalized nutrition. This promising
approach characterizes the genetic variants of each individual, monitoring how they react to a diet
in light of the specific personalized nutrient intake. Based on these individual investigations, each
person could receive a diet validated to give the optimal results in concordance with their genomic
background. The current technologies/techniques used for the study of nutrigenetics and nutrigenomics
are shown in Table 1. The demand for determining genome, transcriptome, proteome, metabolome and
mutation-specific profile characteristics has led to the implementation of several technologies, some
of which are simple and inexpensive technologies, such as polymerase chain reaction (PCR)-based
methods [7,11–13]. The more complex and costly technologies consist of microarray, Sanger sequencing
and next generation sequencing (NGS), mass spectrometry (MS), and liquid chromatography coupled
with mass spectrometry (LC–MS). They offer more comprehensive information, but are not available
on a wide scale. At the same time, the high amount of raw data generated requires specialized
bioinformatic analyses executed by specific software and performed in an informed manner by a highly
trained bioinformatician [7,14].
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Table 1. List of techniques presently utilized at each “omics” level (DNA, RNA, protein, metabolite) that
could determine the impact of nutrients on human health, with emphasis on the practical application.

Nutrigenetics Nutrigenomics Practical Application Ref.

DNA

Next generation sequencing (NGS),
pyrosequencing, nanostring,
polymerase chain reaction

(PCR)-based methods

Microarray, NGS,
nanostring

Methods assessing DNA are more prone to be
applied in nutrigenetics, with emphasis on
particular mutations or single nucleotide

polymorphisms (SNPs) that affect the response to
a particular diet. This entails prediction of
genotype/mutation patterns caused by the

indirect interaction of genes with
certain nutrients.

[14–22]

Coding and
non-coding RNA

Next generation sequencing,
pyrosequencing, PCR-based methods

Microarray, NGS,
nanostring

Methods assessing RNA are more prone to be
applied in nutrigenomics, to evaluate the effect

on the alteration of coding and non-coding genes
of a particular nutrient. This means determining
RNA levels from different tissues to observe the
effects of nutrients on transcriptomic profile in

terms of impact on physiological or
pathological status.

[23–28]

Proteins

Mass spectrometry (MS), high
performance liquid chromatography

(HPLC), high performance liquid
chromatography–tandem mass

spectrometry (HPLC/MS), ultra-high
performance liquid

chromatography–tandem mass
spectrometry (UHPLC/MS)

HPLC/MS, UHPLC/MS

Proteomics is also more prone to be found in
nutrigenomic studies. Being an extension of

transcriptomics, it allows for validating mRNA
expression protein levels.

[28–31]

Metabolites Nuclear magnetic resonance,
HPLC/MS, UHPLC/MS

Nuclear magnetic
resonance, HPLC/MS,

ultra-high performance
liquid chromatography

(UHPLC)

Giving a complete picture, metabolites are able to
be more accurate in predicting the effect of

nutrients. Furthermore, they could be used for
validation of the other “omics.”

[22,32–36]

2. Cancer Risk Represents a Sum of Complex Interactions of Environmental Exposures

Cancer risk represents the synergy of complex interactions encompassing the exposure to different
environmental factors, hereditary genetic alterations and epigenetic modifications. These events are
accumulated during genotoxic alterations, as a response to environmental damage [37]. Hereditary
cancers account for 5–10% of all cancers; the remaining malignancies can be caused by somatic
mutations with consequences of environmental exposure exhibited at the expression level for coding
and non-coding genes [38,39]. Therefore, a chemopreventive and therapeutic effect can be achieved
by specifically increasing the concentration of a compound, retrieved naturally from a normal diet in
functional foods or in an enriched form as nutraceuticals [40].

As previously mentioned, there are two strategies that could offer important missing information,
thereby linking environmental exposure to intrinsic cancer risk: nutrigenetics and nutrigenomics.
Nutrigenetics makes the connection between the human genome, nutrition and exposure, with the
gene as the focal point. It has the potential to be exploited for personalized diets, preserving the health
state of an individual, preventing the onset of diseases and lastly for adjuvant treatment. The field
of nutrigenomics gives a more integrated view of how nutrients effect various gene expressions and,
implicitly, the transcript profiles relating to those genes, with direct effect exhibited in proteomic and
metabolomic activities [41,42]. This field of study was conceived on the assumption that nutrients can
influence gene expression by acting directly on the genome [43], or indirectly by means of epigenetic
mechanisms. Also, nutrients appear to be able to influence different cellular processes [9], some of
which are related to tumorigenesis [43]; therefore, one consideration is how certain nutrients have
an influence on cancer development or progression [44,45]. Natural nutrients are able to disrupt
tumorigenesis at multiple ‘omic’ levels and, concurrently, increase the chemotherapeutic efficacy and
reduce the side effects related to these treatments [46]. One of the relevant examples is related to oral
cancer, which can be arguably prevented by maintaining good oral hygiene, eliminating the use of
tobacco and alcohol products, and by having a balanced healthy diet. All these have protective effects
and can decrease the risk of oral cancer, in which environmental exposure has the most important
role [47]. The protective effects of a diet rich in vegetables and fruits were demonstrated to reduce the
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risk of oral cavity and oropharynx malignancies in a Spanish patient cohort, especially among smokers
and alcohol drinkers (patients with an already increased risk for oral cancer) [48].

It is now well established that one of the risks for cancer development consists in improper diet,
which contains an increasing amount of processed foods and high sugar levels, all potentially acting
as malignant drivers. Apart from this, it has been assumed by some studies that several nutrients
or specific dietary components are able to decrease the possibility of malignant cell transformation;
or, moreover, to inhibit the growth and spread of pre-existing malignant masses [49,50]. Even if
many in vitro studies have shown that specific components from the everyday diet can act as cancer
inhibitors, there is still no clear evidence regarding the pro- or anti-carcinogenic characteristics of
nutrients. In spite of the large amount of preclinical studies and clinical trials, most of them present
only a borderline-significant effect [51].

To determine the influence of nutrients on cancer, they can be cross-linked with the hallmarks of
cancer through their molecular intermediaries. The most affected cancer hallmark is tumor-promoted
inflammation through oxidative stress caused by reactive oxygen species [52]. The most relevant data
are summarized in Table 2 and Figure 1.

Table 2. List of experimentally investigated nutrients with a potential impact on cancer therapy,
determined by cancer type, expected outcomes and genes effected.

Nutrient Cancer type Expected Outcomes Genes effected Comment Ref.

Vitamin A Glioma, lung, colorectal
cancer

Pro/anti-oxidant action,
cell differentiation and

immune response

Expression level and
polymorphism of RARs,
RXRs, and PPARβ/δ, Akt,

Erk, JNK, p38

Epidemiological data are
not consistent [51,53–56]

Vitamin C
Solid tumors and

hematological
malignancies

Selective activation of
apoptosis and autophagy.

Interferes with
redox-sensitive

transcription factors and
associated target

molecules. Selective
metabolic and genotoxic

stress on tumor cells.

Expression level and
polymorphism of GLUT,
GST, MnSOD, SVCT, Hp

Low toxicity to normal
tissues, but with

controversial data due to
its dual effect as a

pro/antioxidant. The
molecular mechanism(s)
of selective toxicity on

tumor cells remains to be
deciphered

[40,49,57–62]

Vitamin D Colorectal, breast, prostate
or pancreatic cancer

Correlated with lower
risks of specific cancers.

Expression level and
polymorphism of VDR

target genes like
p21WAF1/CIP

TP53, p27, Cyclin C,
CYP24 gene

The results of these studies
have been inconsistent,
possibly because of the

challenges in carrying out
such studies.

[63–66]

Vitamin E Prostate, breast colorectal
cancer

Reduces unwanted side
effect of cytotoxicity by

targeting oxidative stress
and inflammatory markers

Polymorphism of APOA5,
CYP4F2

This might also have a
pro-oxidant effect. [51,57,67–70]

Folic acid Gastric colorectal, breast,
pancreatic cancer

Carcinogenesis and
embryonic development.
At low doses, it decreases
cancer risk but overdoses
might increase cancer risk

Methylation of DIRAS3,
ARMC8, NODAL, MTHFR

and HOX genes

Dual role: protection early
in carcinogenesis and at

high doses in late stages of
cancer

[71–73]

Selenium

Prostate, breast, lung,
oropharyngeal, colorectal,
bladder, skin, leukemias,
uterine, ovarian cancers

Antioxidant, reduces
cancer risk; restores

epigenetic altered events;
genomic stability

Expression and
polymorphism of
GPxsang, TrxRs

Still highly controversial,
being tumor specific and

dose specific
(pro/antioxidant effect)

[63,67,74–77]

Polyunsaturated
fatty acids
(PUFAs)

Breast, colorectal cancer

Regulate cytokine
production; stimulate the

immune response and
enhances apoptosis in

cancer cells; regulate cell
proliferation and

angiogenesis

Transcription factors:
PPARs or NFκβ; immune

response: TNFα, IL-1β,
IL-6; angiogenesis

mechanisms: VEGF, PDGF,
MMP-2; cell proliferation:

cyclins, p53, PTEN

Involved in tumor biology
and cancer patients’

prognosis; epidemiologic
data furnish inconsistent

picture

[63,78–80]

Dietary fibers
Colorectal, breast,

pancreatic, ovarian or
stomach cancer

Increased intestinal transit
blocking the absorption of
external or internal toxic

factors

Expression level and
polymorphism of
CAZymes family

Highly controversial
epidemiological data, due

to the different types of
soluble or insoluble fibers

used in studies

[81–90]

Probiotics Colorectal cancer

Cell-mediated immune
responses; increase the
activity of antioxidant

enzymes

Expression level and
polymorphism of
CAZymes family

Presently there is no direct
evidence in

epidemiological data
[87,91–95]



Medicina 2019, 55, 283 5 of 22

Medicina 2019, 55, x 5 of 22 

 

Folic acid 

Gastric 
colorectal, 

breast, 
pancreatic 

cancer  

Carcinogenesis and 
embryonic 

development. At low 
doses, it decreases 

cancer risk but 
overdoses might 

increase cancer risk 

Methylation of 
DIRAS3, ARMC8, 
NODAL, MTHFR 
and HOX genes 

Dual role: protection 
early in carcinogenesis 

and at high doses in late 
stages of cancer 

[71–73] 

Selenium 

Prostate, breast, 
lung, 

oropharyngeal, 
colorectal, 

bladder, skin, 
leukemias, 

uterine, ovarian 
cancers 

Antioxidant, reduces 
cancer risk; restores 
epigenetic altered 
events; genomic 

stability 

Expression and 
polymorphism of 
GPxsang, TrxRs 

Still highly 
controversial, being 

tumor specific and dose 
specific (pro/antioxidant 

effect) 

[63,67,74–77] 

Polyunsatura
ted fatty 

acids 
(PUFAs) 

Breast, 
colorectal 

cancer 

Regulate cytokine 
production; stimulate 
the immune response 

and enhances apoptosis 
in cancer cells; regulate 
cell proliferation and 

angiogenesis 

Transcription factors: 
PPARs or NFκβ; 

immune response: 
TNFα, IL-1β, IL-6; 

angiogenesis 
mechanisms: VEGF, 
PDGF, MMP-2; cell 

proliferation: cyclins, 
p53, PTEN 

Involved in tumor 
biology and cancer 
patients’ prognosis; 
epidemiologic data 
furnish inconsistent 

picture 

[63,78–80] 

Dietary 
fibers 

Colorectal, 
breast, 

pancreatic, 
ovarian or 

stomach cancer 

Increased intestinal 
transit blocking the 

absorption of external 
or internal toxic factors 

Expression level and 
polymorphism of 
CAZymes family  

Highly controversial 
epidemiological data, 
due to the different 
types of soluble or 

insoluble fibers used in 
studies 

[81–90] 

Probiotics 
Colorectal 

cancer 

Cell-mediated immune 
responses; increase the 
activity of antioxidant 

enzymes 

Expression level and 
polymorphism of 
CAZymes family 

Presently there is no 
direct evidence in 

epidemiological data 
[87,91–95] 

 
Figure 1. Nutrients’ molecular targets and their intermediaries associated with the hallmarks of 
cancer. The major impact of nutrients is through their action on reactive oxygen species (ROS) 
production, which has a critical role in tumor-promoting inflammation. Aside from this effect, 
nutrients have been shown to effect multiple hallmarks of cancer: for example, fatty acids act on 
tumor-promoting inflammation, the induction of angiogenesis, the activation of invasion and 
metastasis and the sustenance of proliferative signaling. Other effects can be observed, significantly 
impacting on a person’s cancer susceptibility and prognosis, aspects of which can be modulated by 
patient diet in a directed manner, leading to the development of personalized nutrition. 

Figure 1. Nutrients’ molecular targets and their intermediaries associated with the hallmarks of cancer.
The major impact of nutrients is through their action on reactive oxygen species (ROS) production, which
has a critical role in tumor-promoting inflammation. Aside from this effect, nutrients have been shown to
effect multiple hallmarks of cancer: for example, fatty acids act on tumor-promoting inflammation, the
induction of angiogenesis, the activation of invasion and metastasis and the sustenance of proliferative
signaling. Other effects can be observed, significantly impacting on a person’s cancer susceptibility
and prognosis, aspects of which can be modulated by patient diet in a directed manner, leading to the
development of personalized nutrition.

Nutrition can be beneficial or detrimental, depending on the person’s genetic profile and variation.
An example would be the case of coffee consumption, where certain single nucleotide polymorphisms
(SNPs) for alleles identified for GCKR, MLXIPL, BDNF and CYP1A2 could be connected with an
excessive intake of coffee; interestingly, these same alleles were initially linked to smoking, adiposity
and fasting levels of insulin or glucose [96].

3. Vitamins

3.1. Vitamin C

Among the popular vitamins that are widely available in natural fruit or supplement form,
vitamin C or ascorbic acid is the most commonly known and taken. Vitamin C concentrations from
the plasma of cancer patients were significantly reduced when compared to healthy controls, raising
several questions related to cancer and vitamin C involvement [49]. To counteract the growth of
a malignant tumor mass, Vitamin C can be administered for its dose-dependent anti-carcinogenic
properties [40]. The reported dose-dependent effects of Vitamin C are also specific to cancer type; for
example in melanoma, high doses of vitamin C induced apoptosis, whereas low doses promoted cell
proliferation [55,97]. However, it should be noted that even high doses of Vitamin C are not effective
against malignant disease. Additionally, there are some unwanted side effects caused by high dose
accumulation in normal cells, which can be harmful due to pro-oxidant action, whose effects are
observed at millimolar concentrations [40]. One of the aforementioned anti-carcinogenic properties
attributed to Vitamin C is sensitivity to chemotherapy [98]. Another anti-carcinogenic property comes
from its function as an anti-oxidant; ascorbic acid produces small amounts of hydrogen peroxide.
The hydrogen peroxide quantities generated from high doses of Vitamin C can be lethal to cancer cells
due to their low amounts of hydrogen peroxide-processing enzymatic and non-enzymatic mechanisms.
The accumulation of hydrogen peroxide, through the induction of apoptosis, can eventually lead to
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tumor cell lysis [40,49]. A case in point is found in human tongue carcinoma cells, where high doses of
vitamin C induced anti-tumor effects via the generation of hydrogen peroxide and superoxide anion
radicals [62]. In another study carried out on laryngeal squamous cell carcinoma, vitamin C was
revealed to activate necrotic cell death mechanisms via ROS (reactive oxygen species) production and
the stimulation of protein kinase C (PKC) signaling, causing increased cytosolic calcium [99]. It has
been established that mice receiving intravenous administration can reach cytotoxic concentrations of
vitamin C, similar to the results obtained in vitro [100,101].

Dietary vitamin C is generally transferred by two transporter proteins that carry this molecule
across cell membranes and modulate oxidative stress: sodium-dependent vitamin C transporter (SVCT)
and glucose transporter (GLUT). Moreover, oxidative stress is influenced by the antioxidant enzymes
manganese super oxide dismutase (MnSOD), glutathione S-transferase (GS), and haptoglobin (Hp)—a
protein linked to hemoglobin. The Hp gene encodes two structurally different alleles: Hp1 and Hp2.
It is this Hp2-2 genotype, observed in 48% of Caucasians and 52% of Asians, that is associated with
vitamin C deficiency [58]. Oxidative stress, in which vitamin C has long been known to be involved,
has an effect on apoptosis through regulating Bcl-2, a known anti-apoptotic protein [102]. Aside from
the participation of vitamin C in oxidative stress, it has been shown that this active substance inhibits
the formation of N-nitrosamine carcinogenic compounds [103] and modulates immune response [104].
These modulatory mechanisms may explain the inverse relationship between the variation in the
quantity of ascorbic acid ingested and its effects, as described, on different cancer types: lung, stomach,
larynx, breast, colon, head and neck carcinoma [61,62,99,105]. Vitamin C intake does not only have an
effect on cancer prevention. It also has an impact on cancer-related mortality in breast cancer [106], and
lowers the necessary doses of chemotherapeutic agent to achieve comparative treatment effects [107].
All things considered, the therapeutic role of vitamin C has begun to be more thoroughly investigated.

A beneficial effect was observed in the case of short-term diet supplementation of vitamin E and C
complexes against radiotherapy-induced xerostomia in head and neck cancer [61]. In addition, another
protective-like effect from dietary vitamin C intake was observed in a patient cohort of forty-one
men with squamous cell oral or pharyngeal cancer, when compared to 398 male healthy control
subjects [108]. In conclusion, epidemiological studies revealed that vitamin C can reduce the risk of
malignancies [109,110]. However, one must not forget that the beneficial effects of vitamin C cannot be
separated from the beneficial effects of a healthy diet rich in fruits or vegetables [108,110].

3.2. Vitamin A

Dietary vitamin A is a product derived from a variety of carotenoids found in plants, with a
broad range of beneficial effects on human health. It not only acts as an antioxidant, protecting
against oxidative stress and DNA damage, but also at the cellular level, it modulates cell growth while
regulating methylation. Vitamin A is considered to have a more complex mechanism of action that
is currently being investigated [53], consisting in a wide range of biochemical and immunological
roles against cancer [111]. For example, a study revealed that vitamin A reduced oral mucositis, a
consequence of chemotherapy [112]. Vitamin A or its related analogs, the retinoids, were demonstrated
to have the capacity to reduce head, neck and lung carcinogenesis in animal models [113]. The inhibition
of premalignant lesion was demonstrated to be achieved via the regulation of genes involved in
cell growth and differentiation. Retinoids and lycopene can have beneficial effects in treating oral
leukopathia, with important roles in oral cancer prevention [114]. A combination of bexarotene and
retinoids was able to reduce the chemical induction of oral carcinogenesis by 4-nitroquinoline 1-oxide,
via a mechanism of ROS prevention [115].

Retinoic acid amide has been shown to inhibit the JAK-STAT pathway in lung cancer, leading to
apoptosis [116]. Vitamin A-associated effects are completed mainly via all trans retinoic acid (ATRA),
which targets a wide range of nuclear receptors. These nuclear receptors include retinoic acid receptor
(RAR), retinoid X receptor (RXR), and peroxisome proliferator-activated receptor (PPARβ/δ), where
polymorphic retinoic acid (RA) response elements are able to activate the kinase cascades (assimilated
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in the nucleus via the phosphorylation of RA signaling effectors) [54]. The nuclear receptors targeted
by ATRA have been shown to have a role in oral cancer [117]. Therefore, ATRA treatment was able to
restore gap junctional intercellular communication for oral cancer cells by the upregulation of Cx32
and Cx43 [117].

RAR promoter methylation can be used as a predictive diagnostic marker for non-small cell lung
cancer (NSCLC) [118]. The hypermethylation of RAR promoter has been shown to be associated with
other known factors that influence lung cancer, one of the most important being cigarette smoke [119].
The therapeutic induced hypomethylation of RAR promoter has been achieved by using curcumin,
thus identifying a possible anti-cancer therapy [120]. In addition, retinoid X receptor (RXR) and
histone deacetylase (HDAC) have been in vitro and in vivo targeted for activation and inhibition,
respectively, revealing pleiotropic antitumor activities [121]. The repression of PPAR has been shown
to promote chemoresistance in NSCLC [122], while PPAR agonists have been associated with a role in
preventing and treating lung cancer [123]. PPAR-related mechanisms have been used in experimental
models to inhibit key genes involved in tumorigenesis, such as matrix metalloproteinase 2 (MMP-2)
in the lung adenocarcinoma cell line A549 [124]. Some tumors were observed to be resistant to the
antiproliferative action of RA, mainly via protein kinase B (AKT) or different mitogen activated protein
kinases (MAPKs), including extracellular signal-regulated kinase (ERK), Jun N terminal kinase (JNK)
or p38 [55]. Despite the exposition of the possible underlying molecular mechanisms, the association
between vitamin A (including retinol and carotenoids) and cancer still remains controversial.

A meta-analysis study demonstrated that dietary intake of vitamin A, beta-carotene and lycopene
is inversely associated with pancreatic cancer [125]. On the contrary, there are also studies showing
that an increase in vitamin A dietary intake is linked to an increase in cancer incidence. Several studies
grouped together in a meta-analysis showed a slight increase in cancer incidence simultaneous with
vitamin A consumption, when compared to the majority of β-carotene supplements which showed
no significant correlation with cancer incidence [126,127]. Similar results are shown in the CARET
study (Beta-Carotene and Retinol Efficacy Trial), in which a positive correlation between beta-carotene
consumption and lung cancer has been shown [128].

Altogether, these studies show the heterogeneity of cancer susceptibility, especially regarding
the link between cancer and vitamin A or beta carotene consumption. Nevertheless, the effect that
Vitamin A has on different diseases, including oral cancer, must be considered in correlation with the
synthesized metabolized by-products, organism microbiota and interactions with non-provitamin A
carotenoids [108].

3.3. Vitamin D

Another type of vitamin that has been associated with low risk for cancer development is vitamin
D, previously known for its relation to bone metabolism and, through extension, bone diseases.
The analysis of heterogeneous population groups in the light of vitamin D status has shown that this
molecule holds protective properties, especially in the context of oral, head and neck, breast, ovarian,
prostate and colon cancers [129,130].

The dual role of vitamin D in cancer development is dependent on the administrated amount
and time [71]. The vitamin D receptor (VDR) is a ligand-inducible transcription factor that targets
genes with key roles in cellular processes related to metabolism, inflammation, cell growth and
differentiation [131]. It has been demonstrated that genetic polymorphisms of VDR genes and vitamin
D metabolism pathway initiators, CYP27B1 and CYP24B1, are related to a specific susceptibility to and
patient prognosis of oral squamous cell carcinoma [132]. For example, VDR FokI gene polymorphism
was related to an unfavorable survival rate in oral cancer [132]. Vitamin D defective pathway might
have an etiologic role in the development of prostate cancer [133], colon and breast malignancies [134].

At the genomic level, vitamin D mediates a wide range of nuclear effects via VDR. Conversely,
at the cellular level, the same transcription factors induce a signaling cascade in both the membrane
and the cytosol. This fact sustains the complex role of vitamin D in cellular immunity, providing



Medicina 2019, 55, 283 8 of 22

protection against pathogens [135]. In the clinical context, the level of circulating 25OH vitamin D has
been shown to be positively correlated with overall survival and progression-free survival [136]. As a
therapeutic approach, vitamin D has demonstrated the ability to induce radiosensitization in breast
cancer cells [137]; unfortunately, there was only a modest effect in vivo [138]. In pancreatic cancer, the
active form of vitamin D and its analogs, through their intermediary effects on p21 and p27, have been
shown to induce differentiation, prevent proliferation, and inhibit angiogenesis [139]. Lastly, Vitamin
D can prevent apoptosis resistance in oral cancer cells [129] by modulating the VDR expression in
precancerous lesions [140].

3.4. Folic Acid

Folic acid, or the natural form present in food sources, folate, is now the substrate of an intense
debate regarding its pro- or anticarcinogenic effects. Low folate concentrations have been linked to
carcinogenesis by the incorporation of uracil in the DNA helix and the causation of double stranded
breaks, which in turn can cause cancer-driven mutations [141]. Some controversial literature data
showed that in some cases this supplement can inhibit the development of malignant masses, whereas
in others it can contribute to the progression of cancer; thus, folate can act as a “double-edged sword”.
Folate is an essential water-soluble factor found in food sources. It is one of the nutrients that are
widely used in fortification programs, either from natural sources or in synthetic form. This is due to its
important role in the processes of DNA, RNA, and protein methylation, as well as DNA synthesis and
maintenance [142]. A methylation profiling study in the case of 162 elderly subjects versus 14 controls
led to the identification of 431,312 differentially methylated genes. The differentially methylated
regions (DMRs) were mainly grouped in six regions, based on comparing the folic acid group versus
the control group. An important modification pattern was observed in the case of DIRAS3, ARMC8,
and NODAL genes, involved in carcinogenesis and early embryonic development [73].

One important gene implicated in the metabolism of folic acid is methylene tetrahydrofolate
reductase (MTHFR), which catalyzes the synthesis of 5-methyl tetrahydrofolate. A significant
polymorphism at the level of the MTHFR gene is C677T, which induces increased homocysteine
concentrations and DNA hypomethylation. Furthermore, it has been shown to be associated with
neural tube defects, white matter integrity in Alzheimer patients, venous thrombosis, colorectal
cancer survival, breast cancer and leukemia [143–149]. Continuing on, the links between MTHFR
polymorphisms and lung cancer have also been extensively studied. C677T polymorphism is associated
with a higher risk of developing this malignancy [150–153].

Folic acid is involved in physiological processes related to DNA methylation which, once
unbalanced, will lead to alterations in DNA biosynthesis, repairing and methylation mechanisms.
Perturbing these processes can accelerate aging mechanisms and carcinogenic processes, in addition to
affecting normal embryonic development [72,73]. It is clear that this small compound is involved in the
genomic stability of eukaryotic cells [154]. It was demonstrated that DNMT3B methylation enzyme
polymorphism (C46359T and SHMT1 C1420T) can be involved in the regulation of the folate pathway,
related to carcinogenesis in the head and neck [155].

Several studies link folate status to various types of cancer, such as lymphoma, leukemia,
colorectal cancer, breast cancer and prostate cancer [156–160]. As an application in lung cancer patients,
a variety of folic acid conjugated nanoparticles were developed and showed enhanced antitumor
activity [22,160–163]. Dietary folate and vitamin B6 can have protective roles for nasopharyngeal
carcinoma, a fact demonstrated in a large patient cohort on a Chinese population [164], and in an
Egyptian patient cohort [165].

As a therapeutic agent, folic acid has been used in various combinations showing modest
effects in preventing colorectal cancer [166], or in preventing secondary effects of chemotherapy
for lung cancer [167]. Unfortunately, little to no effects have been shown in the prevention of
colorectal adenomas [168]. There is a demand for more studies utilizing folic acid as an adjuvant.
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In these particular situations, one should always remember that cancer is not a single disease, but a
heterogeneous combination of pathological states.

4. Selenium

Selenium is a natural mineral with powerful effects on the organism, even in small amounts.
Selenium enters the food chain through plants; its amount and bioavailability in the soil is typically
reflected within plants. Selenium is normally acquired by humans through diet, but may also be
derived from drinking water, environmental pollution, and supplementation. RNAseq-based studies
led to the identification of 25 selenoproteins, presented as the human selenoproteome, centered on the
selenocysteine insertion RNA structures and the coding capacity of UGA codons [169]. This information
has been continuously updated through recent research [170,171]. With our improved understanding
of the genome, selenium offers new data concerning its significance for human health [76].

Studies have connected genetic variants in selenium metabolism to the progression of complex
pathologies like cancer [172]. This essential trace element is a constitutive part of selenocysteine, an
essential amino acid that is incorporated in particular proteins like glutathione peroxidases (GPxs)
and thioredoxin reductases (TrxRs). Moreover, GPX3 promoter methylation has been shown to have a
predictive value in oxaliplatin resistance in colorectal cancer [173].

These selenium-containing proteins possess a wide range of biological functions, from antioxidant
to anti-inflammatory activities [74]. There are more than 30 genes that affect selenium uptake,
metabolism, and excretion. Selenium plays a central role in the elimination of reactive oxygen species,
molecules that, in high doses, can contribute to the malignant phenotypic transformation of cancer
cells [74]. Selenium is also important for the recirculation of cancer inhibitory-antioxidants through the
body, a fact that indirectly emphasizes the anti-carcinogenic role of this element [67]. The different
oxidation forms of selenium (selenium oxide, selenious acid, selenite salts) prevent: the formation of
DNA adducts; DNA or chromosome breakage; and chromosome gain or loss, even on mitochondrial
DNA. Preventing all the aforementioned genomic events improves the overall genomic stability [77].
A lesser known fact, but one that still supports genomic stability, is that selenium has also been
linked to affecting telomere length and function [77]. The effects of selenium, selenium proteins and
selenium binding proteins have been demonstrated clinically by several studies. Selenium binding
protein 1 (SBP1) level has been correlated with lymph node metastasis and survival in the case of lung
cancer [174]. This same protein has been demonstrated to have prognostic roles in nasopharyngeal
carcinoma [175], breast cancer [176] and renal cancer [177]. More explicitly in breast cancer, SBP1
appears to regulate the antiproliferative effects of selenium [176].

The protective role of selenium in lung cancer has been demonstrated in a meta-analysis, presenting
a decrease in cancer incidence with its consumption [178]. Selenium dietary levels were shown to be
linked to selenoprotein expression, and to affect the immune response by influencing interferon-γ and
IL-6 secretion [179]. TXNRD1, a selenoprotein, was shown to be overexpressed with a fold change of
1.5 in lung cancer compared to the adjacent normal tissue [180].

Selenium treatment was associated with reduced levels of mRNA for the DNA methyl transferases
(DNMTs) 1 and 3A; moreover, this effect was further confirmed at the protein level for DNMT1 [75].
Selenium is able to restore the expression of hypermethylation-based silenced genes GSTP1, APC
and CSR1 in human prostate cancer cells by the downregulation of DNMT and inhibition of HDAC
activity [181].

Identified two centuries ago by Berzelius, selenium is an essential element of life processes.
Despite this research field flourishing in recent years, the role of most of the selenoproteins is still
unclear [76]. It remains important to evaluate the complex role of selenium, in the context of its
absorption, metabolism, and excretion capacity relative to individual selenoprotein genotypes. This
can be analyzed using systems biology approaches, combining nutrigenetics and nutrigenomics for
optimizing the implementation and real-time monitoring of selenium.
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5. Polyunsaturated Fatty Acids (PUFAs)

Another highly debated topic related to cancer risk is represented by polyunsaturated fatty acids
(PUFAs), which are essential for cellular homeostasis. Disruptions in their metabolism lead to cellular
abnormalities and increased cancer risk. The production of unbalanced pro- and anti-inflammatory
lipid metabolites can activate cell proliferation, angiogenesis, and migration [78]. Even if the current
status of PUFAs is quite inconsistent regarding cancer, there is interest regarding the anti-carcinogenic
properties of these molecules if administrated in correct doses, ratios and intervals. PUFAs such
as ω-3 and ω-6, also known as ω-3 and ω-6 fatty acids, have an important effect on transcriptome
expression patterns, not coincidentally related to lipid and carbohydrate metabolism. PUFAs also
seem to be interconnected to two genetic polymorphisms, APOA1−75G→A and PPARA Leu162Val,
having an effect on cardiovascular disease risk factors [182]. Firstly, increased PUFA intake, in patients
with APOA1−75G→A polymorphism, decreased HDL-cholesterol concentrations without affecting
triacylglycerol concentrations. Secondly, increased PUFA intake caused decreased triacylglycerol
concentrations in patients, specifically with the PPARA Leu162Val polymorphism [182,183].

ω-3 andω-6 fatty acids, or their specific metabolic products, are able to target a wide variety of key
players in essential pathways: transcription factors like PPARs; nuclear factor κ-light-chain-enhancer
of activated B cells (NFκB); or molecules related to inflammation such as tumor necrosis factor (TNFα),
IL-1β or IL-6 [184]. Furthermore, PUFAs interfere with angiogenesis (VEGF, platelet derived growth
factor-PDGF, MMP-2), cell cycle and proliferation (cyclins, p53, phosphate and tensin homolog-PTEN)
molecules, all leading to the activation of tumorigenic pathways [79]. More specifically,ω-3 PUFAs
have shown to contribute to the chemoprevention of oral cancer, by regulation via β-catenin signaling
pathways [185] or via ERK1/2 phosphorylation [186]. In the end, one of the primary sources of lipid
molecules is polyunsaturated fatty acids, representing the building blocks of the cell and its processes.

6. Prebiotics, Probiotics and Dietary Fibers

The human body includes a personalized microbiome that is indispensable for health support,
but also capable of inducing pathological states [187]. The regulation of microflora composition offers
the possibility of disease prevention through the control of the involvement of mucosal and systemic
immunity [187]. There is very good rationale for the microbiota to be taken into consideration, when
infections could account for 15% of all worldwide malignancies [188].

Probiotics are described as live microorganisms administered in suitable amounts, to give a health
benefit to the host [189], meanwhile prebiotics are selective substrates used by host microorganisms,
providing a health benefit [189]. These two systems are designed to revive the normal balance of gut
microbiota [189].

The oral cavity microbiota is related to a wide range of oral diseases and cancer of the aero-digestive
tract [190]. Understanding the relationship between microbiota and susceptibility towards oral
carcinogenesis could guide new approaches using prophaylactics or new microbiota-enhancing
therapies [190,191]. The strategy of preventing bacterial and viral infection to hinder the development
of cancer could use oral cancer and oral cavity microbiota as a proof of concept. This notion is supported
by the fact that infections from bacterium or viruses are associated with the incidence of certain cancers:
the bacterium Helicobacter pylori has been casually correlated to gastric adenocarcinoma; Epstein–Barr
virus was conclusively proven as a carcinogen for non-Hodgkin’s lymphoma, Hodgkin’s disease and
nasopharyngeal carcinoma; lastly, Human Papillion virus increased association to cervical cancer [192].

There are three main mechanisms by which infections can cause cancer, primarily facilitating the
initiation and promotion of carcinogenesis. Firstly, the infectious agent becomes persistent in the host,
thereby inducing chronic inflammation. Secondly, infectious agents can directly transform cells by
inserting active oncogenes into the host genome or by inhibiting tumor suppressor genes. Thirdly,
infectious agents can induce immunosuppression and consequently reduce immunosurveillance [188].
Thus, preventing carcinogenesis through the use of microbiota needs to target at least one of these
three mechanisms.
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Studies have accumulated investigating the effect of prebiotics and probiotics consumption from
fermented or unfermented dairy products on cancer, albeit indirect experimental evidence of cancer
suppression in human patients. The recent in vitro and in vivo study results are promising, with an
indication that probiotic bacteria reduce the risk, incidence and number of colon, liver or bladder
tumors. This protective effect against cancer development can be ascribed to multiple general biological
explanations: enhancing the immune system of the host, modulating oxidative stress and inflammation,
or maintaining the healthy bacterial populations such that they outcompete/suppress bacteria that
produce carcinogens. However, more specifically, probiotic intake is currently associated with the
components from lactic bacteria capable of modulating immune response, principally by the regulation
of several factors like interleukins (Interleukin-12) and tumor necrosis factors (TNFα), concurrently
improving the cytokine-associated pathways [91,193,194].

On the other hand, prebiotics and gut microbiota are in direct relationship with a wide range of
pathologies like obesity or inflammatory processes [195]. Both insoluble and soluble dietary fibers
can affect the intestinal bastion’s absorption rate. Moreover, an extensive selection of xenobiotics are
reported to be involved with cancer chemoprevention mechanisms [83]. For example, as presented in
Table 1, for the cases of stomach and ovarian cancer, an inverse relationship was observed between
cancer risk and various types of fibers derived from vegetables and fruits [85,86]. At the same time,
breast cancer protection by dietary fibers was achieved either by blocking the intestinal absorption
of estrogens released by biliary systems, or by modulating insulin-like growth factors and insulin
resistance [81,82].

The gene exchanges within the gut microbiota were demonstrated to be more frequent than
expected [196]. The protective action of dietary fibers is attributed to their ability to dilute toxic
environmental agents and to increase the intestinal tract transit, therefore leading to a reduced
absorption at the intestinal level. Dietary fiber supplementation brings physical changes in microbiota
composition [195], and these changes involve horizontal gene transfer either through transduction
or bacterial conjugation. This bacterial genetic crosstalk, in turn, improves human health from a
meta-genomic perspective [195].

Last but not least, probiotic therapy offers an interesting approach to stimulate host health via
the transportation of anti-inflammatory mediators [87]. The human gut microbiome is represented
by a highly complex ecosystem of uncultured bacteria, responsible for the catabolism of dietary
fibers that were not metabolized in the upper digestive tract due to a lack of carbohydrate active
enzymes (CAZymes) [92]. Studies identified 33 CAZymes encoding genes with a high homologous
structure, from a meta-genomic dataset consisting of at least 20 individuals. Furthermore, 18 multigenic
clusters encoding complementary enzymes responsible for plant cell wall digestion have also been
identified [92].

7. Conclusions and Further Perspectives

Despite the highly debatable role of natural compounds in combating cancer, these products
are now emerging as important factors for cancer prevention or inhibition. Even if their activity is
not necessarily directly correlated to the induction of cancer cell apoptosis, the intake of vitamins or
other molecules from various food sources or synthesized drugs is starting to be more thoroughly
investigated using next-gen technologies in oncology. Therefore, any deficiency in the previously
mentioned nutrients has been correlated to a majority of cancers, and their genomic characterization
can distinguish important information involving mechanisms and pathways. This complex biological
effect can be deciphered using systems biology approaches, specifically evaluating the optimal dose of
these micronutrients, in order to maximize the beneficial effects. Table 2 summarizes the impact that
nutrients can have in cancer therapy, while the metabolism, including mechanism of action, of certain
representative nutrients can be seen in Figure 2.
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Figure 2. Pathways or interactions representative of the metabolism of nutrients. The majority of the
nutrients function either as electron transporters in redox systems or as ligands for transcription factors
involved in gene regulation. These effects can be intertwined, as in the case of folate metabolism. Folate
metabolism has a dual effect in that it facilitates protein methylation by providing 1-carbon source
influencing gene regulation, and it acts in the redox system of oxidative stress by influencing the levels of
homocysteine. GPx = glutathione peroxidase; GSH = reduced glutathione; GSSG = oxidized glutathione;
GR = gluthatione reductase; NADP = nicotinamide dinucleotide phosphate; RAR = retinoic acid
receptor; RXR = retinoid X receptor; RARE = retinoic acid response element; VDR = vitamin D receptor;
VDRE = vitamin D response element; dUMP = deoxy uridine monophosphate; dTMP = deoxythymidine
monophosphate; TYMS = thymidilatesynthetase; DHF = dihydrofolate; T/HF = tetrahydrofolate;
MTHFR = methylene tetrahydrofolate reductase; MTHFD = methylene tetrahydrofolate dehydrogenase;
MS = methionine synthetase; SAM = S-adenosyl methionine; SAH = S-adenosine homocysteine;
MAT = methionine adenosine transferase; SAHH = S-adenylhomocisteine hydrolase.

Considering the aforementioned facts, it is becoming clearer that one way to obtain optimal
effects for health in general, and in cancer patients in particular, is to optimize diet for each individual,
taking into account their metabolic requirements. As previously mentioned, this approach can be
pursued through both nutrigenomics and nutrigenetics. By analyzing the potential genetic response
of an individual to a set of nutrients, it will be possible to recommend an ideal treatment diet that
synergistically works as an adjuvant in the inhibition of processes associated to specific malignancies.
As time passes, it will become more about personalized nutrition and less about one-size-fits-all
“good” diets; moreover, detailing the “good or bad” quantities of a certain nutrient. It should be
remembered that diet alone cannot work in preventing or treating cancer, but should always be seen
as an irremovable part of the whole array of molecular interactions that determine individual health.
As presented in this review, there is a lot of accumulated data regarding nutrients yet to be analyzed
and integrated into the bigger picture of personalized medicine. In addition, there is a dire need for an
integrated multi-omic strategy incorporating nutrients and health, in order to obtain patient-specific
beneficial outcomes concerning disease.
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