
Original Research Article

Evaluation of hydration status calculated from differences
in venous and capillary plasma dilution during stepwise
crystalloid infusions: A randomized crossover study
in healthy volunteers

Christer H. Svensen a,*, Edgaras Stankevičius b, Jacob Broms a, Vytautas Markevičius c,
Audrius Andrijauskas d

a Section of Anaesthesiology and Intensive Care, Department of Clinical Science and Education, Karolinska Institutet, Stockholm, Sweden
b Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
cDepartment of Electronics Engineering, Kaunas University of Technology, Kaunas, Lithuania
dClinic of Anaesthesiology and Intensive Care, Faculty of Medicine, Vilnius University, Vilnius, Lithuania

m e d i c i n a 5 0 ( 2 0 1 4 ) 2 5 5 – 2 6 2

a r t i c l e i n f o

Article history:

Received 11 April 2014

Accepted 7 August 2014

Available online 1 October 2014

Keywords:

Noninvasive hemoglobin

Hydration status

Crystalloid

Interstitial fluid

Mini volume loading test

a b s t r a c t

Background and objective: A mini volume loading test (mVLT) was proposed for estimating

hydration status and interstitial fluid accumulation during stepwise infusion of crystalloids.

The method is based on both the transcapillary reflux model and the hypothesis that when

subjects are dehydrated, venous plasma dilution induced by a fluid challenge is higher than

in the capillaries, and that difference is diminished when the fluid challenge is given to more

hydrated individuals. Our objective was to test that hypothesis by evaluating the veno-

capillary dilution difference during mVLT in subjects with different hydration status.

Materials and methods: In a prospective randomized crossover study, three mini fluid chal-

lenges were given to 12 healthy volunteers on two occasions. The subjects were either

dehydrated or hydrated before the experiments.

Results: In dehydrated subjects only, capillary plasma dilution was significantly lower than

venous (P = 0.015, 0.005 and 0.006) after each mini fluid challenge.

Conclusions: Veno-capillary dilution difference during mVLT depends on the hydration status.

The mVLT method could possibly discriminate between the different states of hydration.
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1. Introduction

Intravenous fluid administration is a routine practice in
anesthesia, surgery, and critical care. Crystalloid solutions
are commonly used for rehydration and maintenance pur-
poses. Such solutions are isotonic, have low molecular weight
and are distributed throughout the extracellular volume. They
can either rapidly be eliminated as urine in healthy, awake and
normotensive subjects or accumulate in interstitial tissues,
especially during anesthesia, surgery or inflammatory condi-
tions [1–3]. Fluid retention in the circulatory system and fluid
shift into tissues may differ because transcapillary fluid
movement is affected by many factors such as volume status,
integrity of the endothelial barrier or differences in interstitial
compliance. This has been investigated in laboratory and
animal work [4]. An effort to evaluate the compliance capacity
of interstitial tissues has been investigated in human
volunteers [5]. Currently, there is no clinically useful method
for detecting and quantifying interstitial accumulation of fluid.

As a development of the volume loading test (VLT) [6], we
introduce a mini volume loading test (mVLT). It implies
calculation of plasma dilution (PD) induced by small volume
(mini) fluid challenges to evaluate the state of hydration and
possibly detect imminent interstitial edema. The method is
based on the transcapillary reflux model that points to
differences between PD in different sites of circulation during
fluid loading. The transcapillary fluid filtration absorption ratio
(FAR) is dependent on multiple factors such as Starling forces,
the integrity of the glycocalix layer, the volume status and the
expansion of interstitium by fluids (hydration status). The
model states that the difference between venous and capillary
PD is higher due to a higher FAR when subjects are dehydrated.

The objective of this study was to test the hypothesis that
veno-capillary dilution difference, determined both invasively
and noninvasively, is higher when the healthy individuals are
dehydrated before fluid loading.

2. Materials and methods

2.1. Explanation of the mini volume loading test

A mVLT method consists of mini fluid challenges. These usually
consist of 2.5 mL kg�1 boluses of crystalloid solutions infused
over 5 min followed by 5 min periods without fluid. Hemoglobin
samples are used for determining venous (vHb), arterial (aHb)
and capillary (cHb) before and after each mini fluid challenge. Hb
is used for calculation of plasma dilution – venous (vPD), arterial
(aPD) and capillary (cPD). The PDs are further used to calculate
the plasma dilution efficacy (PDE) from a single mini fluid
challenge – venous (vPDE), arterial (aPDE) and capillary (cPDE).
Finally, the plasma dilution efficacy difference (PED) among the
Hb measuring sites – arterio-venous (avPED), veno-capillary
(vcPED) and arterio-capillary (acPED) – is calculated.

2.1.1. Mathematical equations
The PD is calculated from a mini fluid challenge induced by a
change in Hb. Since we are considering the dilution of plasma,
we need to adjust for the hematocrit (Hct):
PDi ¼ ðHb � Hbi�1
i � 1Þ � ð1 � HctÞ�1 (1)

where PDi is the plasma dilution after the mini fluid challenge
with the number i, Hb is the initial hemoglobin concentration
value obtained before the first mini fluid challenge, Hbi is the
hemoglobin concentration value obtained after the mini fluid
challenge number i, and Hct is the initial hematocrit value
obtained before the first mini fluid challenge (since the nonin-
vasive hematocrit is not available during the noninvasive
determination of PD, the initial hematocrit value is derived
by dividing the noninvasive initial hemoglobin concentration
by 330, which is the mean value of the normal range for the
mean cell hemoglobin concentration).

However, comparison of the PD after repetitive fluid
boluses that are only separated by a few minutes cannot fully
reflect the differences in intravascular fluid retention because
the dilutions overlap. Thus, PDE is used to evaluate the ability
of a mini fluid challenge to increase the PD from a preceding
mini fluid challenge. The PDE can be calculated as follows:

PDEi ¼ ðPDi þ 1Þ � ðPDi�1 þ 1Þ�1 � 1 (2)

where PDEi is the plasma dilution efficacy of the mini fluid
challenge number i, PDi is the plasma dilution at the end of the
mini fluid challenge number i, and PDi � 1 is the plasma dilu-
tion at the end of the preceding mini fluid challenge.

The PED between the Hb measuring can be calculated as
follows:

vcPEDi ¼ vPDEi � cPDEi (3)

where vcPEDi is the veno-capillary plasma dilution efficacy
difference of the mini fluid challenge number i, vPDEi is the
venous plasma dilution efficacy of the mini fluid challenge
number i, and cPDEi is the capillary plasma dilution efficacy of
the mini fluid challenge number i. The avPED and acPED are
calculated in a similar way.

2.1.2. Transcapillary reflux model
Transcapillary reflux model explains the differences between
PD during mVLT at various sites of circulation by relating them
to different states of hydration. According to this model, a
difference between vHb and cHb (here called the gap) could be
explained in two ways. The Fahraeus effect [7] related
constituent is constant because it is related to changes of blood
viscosity when it enters vessels with a lower inner radius.
However, it applies only to metarteriole because the inner radii
of true capillaries allow the passage of only one erythrocyte at a
time. Hence, the hematocrit cannot be influenced by the
Fahraeus effect. However, the Hb in true capillaries (sHb) is
affected by the transcapillary fluid exchange. Thus, another
constituent of the gap is dependent on the FAR. It changes due to
the shifts of transcapillary fluid movement. The Hb in
metarteriole (mHb) is not affected by the FAR since these
capillaries are simply connections between arteries and veins
(arterio-venous shunts). Thus, the PD induced by a mini fluid
challenge is equal in a large artery and a metarteriole, but it may
be different in corresponding veins due to the influx of blood
from true capillaries. Fig. 1 shows a simplified outline of PD
trends during a simulated five mini fluid challenges. The aPD
and vPD induced by the mini fluid challenge decrease and reach
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Fig. 1 – A model of the dilution plateau observed during the mVLT fluid protocol. The graph shows a theoretical relationship
between changes of transcapillary fluid filtration absorption ratio (FAR) and plasma dilution (PD), as well as its derivative
variables during the five mini fluid challenges. The 3rd mini fluid challenge indicates venous dilution non-responsiveness
(venous plateau) because only vPD is equal to the values seen after the preceding (2nd) mini fluid challenge. The 4th mini
fluid challenge indicates total dilution non-responsiveness (arterial and venous plateaus) because both aPD and vPD are
equal to the values seen after the preceding (3rd) mini fluid challenge. The net fluid extravasation is equal to the infused
volume. This may indicate imminent interstitial edema. The fifth mini fluid challenge is an indication of transcapillary reflux
where venous blood is more diluted than arterial because of an influx of more diluted blood from true capillaries. Thus, in
contrast to the first four mini fluid challenges, the avDD, acDD and vcDD values are negative. (See Appendix A for the more
detailed explanation of this figure).
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a value close to nil (a dilution plateau) after the third and fourth
mini fluid challenges. This is an indication that the net fluid
extravasation is equal to the net volume of the infused fluid. The
vPD is lower than the aPD because of an influx of less diluted
blood from the true capillaries. Thus, the fluid infusion is no
longer contributing (not any longer efficacious) in diluting the
blood at this point. The fifth mini fluid challenge is equivalent to
the first two challenges. The increase of aPD, however, is lower
than the increase of vPD because of an increased flux of
interstitial fluid into capillaries (a transcapillary reflux). This in
turn is dependent on a significant decrease in FAR. This may be a
first indication of a release of edema. Most importantly,
the avDD, acDD and vcDD values have changed from
positive to negative during the mVLT. The PED variables
are more indicative for monitoring of these trends. Fig. 2
shows an outline of PED trends during the corresponding
five mini fluid challenges. The related equation
0 < vcPED < acPED is associated with rehydration during
recovery from dehydration, vcPED = acPED = 0 is associated
with imminent interstitial edema and 0 > vcPED > acPED < 0 is
associated with transcapillary reflux. It may appear during
edema release in overhydration, or after administration of a
diuretic medication. The trend of PED is therefore very
important for the mVLT.

2.2. The protocol

This was a prospective randomized crossover study in healthy
young volunteers conducted at the Department of Anaesthe-
siology and Intensive Care at Södersjukhuset, Stockholm,
Sweden. Ethical permit (no. 2009/1187-31/1) was granted by the
Regional Ethical Board of Stockholm. Twelve healthy young
volunteers were enrolled in 2009 and followed the CONSORT
diagram for studies (CONSORT Fig. 3). The subjects were 11
females and one male with mean age 29 (SEM 1.5). They were
on the average 71 kg (SEM 3). Each of them, in a random order,
underwent two fluid experiments separated by at least 14
days. They were allocated to two groups. The experiment
started at 07:00 in the morning. The subjects had no breakfast
in the morning of the experiments. One group was considered
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dehydrated (DEH) due to an overnight fast and the other group
was considered hydrated (HYD) after drinking 5 mL kg�1 of
water 45 min before the 1st fluid bolus.

On arrival monitors for ECG, pulse-oximetry and non-
invasive blood pressure measurement were applied. In
addition, the measuring of cardiac stroke volume by means
of bioimpedance based noninvasive (PhysioFlowTM, Bristol,
PA) technique was applied. A spectrophotometric adhesive
sensor R2-25 (Masimo Inc., Irvine, CA) was used for non-
invasive measurements of Hb (SpHb®, Masimo Inc., Irvine,
CA). It was placed on the nail of a middle finger and connected
to a Radical-7 Pulse CO-Oximeter (Masimo Inc., Irvine, CA).
The averaging time for SpHb was set to ‘‘short’’, and then
switched to ‘‘venous’’ mode. Intravenous line for blood
sampling was set in the same arm. An intravenous line was
placed in an independent arm. Oxygen was provided through
a facemask.

Subjects were closely observed while remaining still in a
supine position for 45 min before the start of infusion. An
mVLT was provided to both groups. This test consisted of three
2.5 mL kg�1 boluses of acetated Ringer's followed by the 5 min
periods without fluids (3 steady states) during the mVLT. The
vHb was immediately determined before the first bolus and
after each of the three mini fluid challenges. The first blood
samples were analyzed in a laboratory by a CO-Oximetry
analyzer (COULTER®, Brea, CA) and the rest were analyzed
with a bed-side hemoglobinometer (HemoCue®, Ängelholm,
Sweden). Noninvasive SpHb values were simultaneously
recorded manually along with the blood sampling. In this
study, the SpHb is labeled as capillary hemoglobin (cHb) because
it is measured in the capillaries under a fingernail.

2.2.1. Statistical methods
A Kolmogorov–Smirnov test was used to evaluate the pooled
data for normality, and the data is presented as the mean
� SEM for the normally distributed data and as the median,
25th and 75th percentiles for the nonnormally distributed
data. The mean values were compared using paired t test. The
Wilcoxon signed rank test was applied to nonnormally
distributed data when appropriate. A statistical analysis was
performed using PASW (PASW Statistics 17, SPSS, IBM
Corporation, NY). The significance level was set to alpha = 0.05
(two-sided).

3. Results

All subjects completed the study. In the dehydrated subjects
the three observations of vPD (0.058 [0.039–0.105], 0.079 [0.056–
0.114] and 0.097 [0.068–0.116]) induced by the three mini fluid
challenges was higher than cPD (0.006 [0.000–0.037], –0.006
[–0.486 to 0.036], and 0.032 [–0.019 to 0.079], P = 0.015, 0.005 and
0.006, respectively) (Fig. 4). An important observation was that
the mean vcPED became negative in the 2nd mini fluid
challenge for the hydrated group, while this occurred in the 3rd
mini fluid challenge dehydrated group (Fig. 5). The vcPED
decreased significantly during the mVLT only in the dehy-
drated subjects (from 0.069 � 0.021 (SEM) in the 1st mini fluid
challenge to –0.019 � 0.013 (SEM) in the 3rd (P = 0.015). There
was no change in vcPED during the mVLT in hydrated subjects.
We used the procedure defined unit (p.d.u.) for the estimates of
PD and its derivatives because there are no consensus units for
these variables.

4. Discussion

The aim of this paper was to investigate the differences
between invasive venous and noninvasive capillary plasma
dilutions induced by the stepwise crystalloid infusion in
healthy individuals with different baseline hydration status.
As shown in Fig. 4, the mVLT used three relatively small (mini)
fluid challenges, each consisting of a 2.5 mL kg�1 crystalloid
bolus followed by 5-min period without fluid. The hypothesis
suggested by the physiology-based transcapillary reflux model
was confirmed. Venous plasma dilution was significantly
higher than the corresponding capillary plasma dilution in
dehydrated subjects only.

We have tried to quantify the level of hydration status by
determining the change in plasma dilution induced by a
stepwise crystalloid infusion. Our transcapillary reflux model
has also introduced a new concept to indicate where the
administered fluid is no longer efficacious but instead starts to
contribute to interstitial edema. This occurs when net fluid
extravasation is equal to the net volume that enters circula-
tion. Thus, the invasively and noninvasively measured plasma
dilution induced by a mini fluid challenge becomes negligible
in the part of the PD trend which is labeled as dilution plateau
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(Fig. 1; see Appendix A). According to the model, this would be
a time point when no more fluid should be given to prevent
interstitial tissue from being unnecessarily overfilled. The
increasing absorption of excessive interstitial fluid into
capillaries in that situation leads to capillary PD becoming
higher than arterial or venous PD. The calculated arterio-
capillary and veno-capillary plasma dilution efficacy differ-
ences will then be negative (Fig. 2). Our findings indicate that
during a stepwise administration of a crystalloid, this occurred
after the 2nd mini fluid challenge in hydrated while it occurred
only after the 3rd challenge in dehydrated subjects (Fig. 5).

Venous plasma dilution plateau per se is not fully indicative
of fluid status. The reason is that many factors affect the rate of
intravascular fluid retention. The increase of transcapillary
fluid filtration absorption ratio and an increase in renal
elimination would therefore have an important and similar
impact on venous plasma dilution during mVLT. Thus, an
‘‘optimized’’ hydration status (optimal interstitial fluid expan-
sion) is not necessarily equivalent to the hydration nonrespon-
siveness presenting as a dilution plateau. Changes of
transcapillary fluid equilibration would therefore be more
specific to changes of interstitial fluid accumulation. The
transcapillary fluid exchange between blood and tissues is
regulated by several factors such as the integrity of the
endothelial glycocalyx, the net transcapillary pressure, the
interstitial fluid compliance, and the lymphatic flow [1–3,8,9]. It
would be an overwhelming task to monitor all of these in a
model with such high complexity. Therefore, a reasonable
approximation of changes in transcapillary fluid equilibration
can be obtained from evaluating changes of capillary plasma
dilution, which presumably can be derived from non-invasively
measured total hemoglobin [10]. In this study, we used a



Fig. 4 – The plasma dilution trends during mVLT on two occasions in healthy volunteers. The figure shows non-invasively
(capillary) and invasively (venous) determined plasma dilution (cPD and vPD, respectively) at four data points in hydrated
(HYD) and dehydrated (DEH) healthy volunteers. Data point 1 is at the baseline before the first bolus, and data points 2–4 are
after the 5 min periods without fluids that followed each of the three 2.5 mL kgS1 crystalloid boluses in the three mini fluid
challenges. (A) The non-invasive capillary PD (cPD). (B) The invasive venous PD (vPD) in HYD and DEH groups. The data are
presented as the means W SEM. (C) The PD variables in the boxplot for the comparison of cHb and vPD that are nonnormally
distributed.
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noninvasive hemoglobinometer, the Radical 7 device that
calculates SpHb in the capillaries of derma from under the
finger nail. We hypothesized that the SpHb is equivalent to the
cHb suitable for the mVLT method. This is because SpHb is not a
conventional directly measured hemoglobin concentration but
a variable which is calculated from the net light absorbance in a
segment of a capillary bed. According to the anatomy of
microcirculation in derma under the finger nail, the true



Fig. 5 – The difference between venous and capillary plasma
dilution efficacy during mVLT on two occasions in healthy
volunteers. The figure shows veno-capillary plasma
dilution efficacy difference (vcPED) of the three mini fluid
challenges in hydrated (HYD) and dehydrated (DEH)
healthy volunteers. Data points 1–3 were after the 5 minute
periods without fluids that followed each of the three
2.5 mL kgS1 crystalloid boluses in the three mini fluid
challenges. The vcPED became negative earlier in better
hydrated individuals. The negative vcPED presumably
signifies transcapillary reflux and imminent edema. The
data are presented as the means W SEM.
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capillary flow is prevailing over metarteriolar. Thus, hemoglobin
in true capillaries is the main determinant of SpHb value. We
used SpHb as a surrogate for the cHb in calculating the cPD, cPDE
and vcPED. By evaluating and comparing the capillary and
venous variables in a stepwise fluid loading protocol, it was
possible to determine which subjects were less hydrated before
the mVLT. The negative vcPED indicates that transcapillary
reflux is active, and that interstitial fluids are being released in
the vicinity of a single capillary bed under the fingernail and are
being removed from circulation.

However, the present study has several limitations. The
arterial variables were not obtained. The method and the
transcapillary reflux model are based on physiological reason-
ing without any validation of what actually happens in the
pertinent tissues because we did not measure either interstitial
pressure or volume. However, the interstitial fluid compliance
of the derma is similar to that of skeletal muscles [9], and taken
together these tissues account for the largest part of expandable
tissues in the body. Thus, a local release of the interstitial fluid
into the circulation can be considered as fairly equivalent to the
function of the entire interstitium in the body. The previously
reported negative arterio-venous dilution difference observed
soon after a brisk crystalloid infusion [11] supports our concept
of transcapillary reflux. Presumably, detection of transcapillary
fluid reflux (where vcPED < 0) or hydration non-responsiveness
(dilution plateau) during the mVLT (Figs. 1 and 2) suggests that
the whole-body fluid status could possibly be optimized.

The mathematical model deploys variables that are derived
from Hb measures, and thus evaluation of their trends may be
challenged by measurement errors, especially noninvasive.
The error is assumed to be normally distributed with a mean of
0 and an SD of 1% of the error-free vHb values. The vHb
measurements with errors may be generally not far from the
error-free measurements. The resulting vPD line, however,
may have a swinging appearance, but it will still be suitable for
trending. In contrast, the vPDE curve may look more noisy by
random. The small measurement errors may result in large
errors when the vPDE is calculated from repetitive vHb
measurements. The same sort of errors would occur for
noninvasively measured Hb and its derivatives (cPD and cPDE).
Obviously, the calculated curve of vcPED would show minimal
resemblance to the error-free curves shown in Figs. 2 and 4.
Polynomial trend lines however can solve that problem.

Our results encourage further validation of this method in
animal studies and clinical trials.

5. Conclusions

Veno-capillary dilution difference during mVLT depends on
the hydration status. The mVLT method allows discrimination
between the different states of hydration.
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Appendix A

The extended explanation of the transcapillary reflux model
and Fig. 1

During mVLT fluid protocol the aPD is measured at the
initial baseline and after the 5 min period without fluid that
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follows each fluid bolus (Fig. 1). Since arterial and venous plasma
dilutions (aPD and vPD) increase in the first two fluid challenges,
it is an indication that the body responds to fluid (hydration
responsiveness). The vPD increases less than aPD because
venous blood is a mixture of metarteriolar and true capillary
flows. The PD in metarteriole (mPD) is equal to aPD, but the true
capillary PD (sPD) is independent from aPD. The sPD changes are
solely FAR dependent. Thus, since FAR is equal after the first two
mini fluid challenges, the fluid influx into the true capillaries
makes the vPD increase lower than arterial because vPD = 0.5
(mPD + sPD). The arterio-venous, arterio-capillary and veno-
capillary dilution differences (avDD, acDD and vcDD) have
therefore increased in the second mini fluid challenge. Thus,
avDD, acDD and vcDD values are positive. If a state of
dehydration is apparent, the FAR is increased in respect to
individual physiologic target value which is present in the state
of normohydration. The sPD in the first two mini fluid
challenges is therefore lower than optimal leading to a
subphysiologic target dilution (sub-PTD) in true capillaries.
The third mini fluid challenge indicates a partially nonrespon-
sive situation (partial hydration non-responsiveness) because
aPD has increased but vPD is equal to the value seen after the
preceding mini fluid challenge (venous dilution plateau). The
FAR, however, has increased to the physiologic target value, and
sPD has therefore reached its optimal value – the physiologic
target dilution (PTD) in true capillaries. The avDD, acDD and
vcDD values have decreased but remain positive. The fourth
mini fluid challenge indicates a totally non-responsive situation
(total hydration non-responsiveness) because aPD and vPD are
equal to the values seen after the preceding mini fluid challenge
(arterial and venous dilution plateau). This means that the net
fluid extravasation is equal to the infused volume. The FAR and
sPD remain at their physiologic target values. That state may
signify imminent interstitial edema. The fifth mini fluid
challenge is an indication of hydration responsiveness similar
to the first two mini fluid challenges, but the increase of aPD is,
however, lower than an increase of vPD. This is because the sPD
and FAR have significantly increased above the physiologic
target values, and thus venous blood becomes more diluted
than arterial because of an influx of more diluted blood from
true capillaries. Thus, in contrast to first four mini fluid
challenges, the avDD, acDD and vcDD values are negative.
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