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Summary. Background. Alveolar hypoxia is an important condition related to many disorders 
such as chronic pulmonary hypertension, pulmonary vasoconstriction, and pulmonary vascular re-
modeling. The aim of present study was to disclose the biological response and the potential tran-
scriptome networks regulating the hypoxia response in the lungs.

Materials and Methods. In this study, the microarray dataset GSE11341 was used to construct 
a regulatory network and identify the potential genes related to alveolar hypoxia. In addition, Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) term enrichment 
analyses were also performed. 

Results. Hypoxia inducible factor 1 alpha (HIF-1α), peroxisome proliferator-activated receptor 
gamma (PPARγ), and nuclear factor of kappa light polypeptide gene enhancer in B cells (NF-кB) 
were to be the hub nodes in the transcriptome network. HIF-1α may regulate potassium voltage-
gated channel, shaker-related subfamily, member (5KCNA5), solute carrier family 2 (facilitated 
glucose transporter), member (1SLC2A1), and heme oxygenase (decycling) 1 (HMOX1) expression 
through the regulation of membrane potential, glucose metabolism, and anti-inflammation path-
ways. HMOX-1 mediates signaling pathways that relate to NF-кB. CCND1 (cyclin D1) expression 
could be regulated by PPARγ and HIF-1α via the cell cycle pathway. In addition, new transcrip-
tional factors and target genes, such as phosphofructokinase (PFKL, liver), aldolase A (ALDOA, 
fructose-bisphosphate), and trefoil factor 3 (intestinal) (TFF3), were also identified. 

Conclusions. Transcriptome network analysis is a helpful method for the identification of the 
candidate genes in alveolar hypoxia. The KEGG pathway and GO term analysis are beneficial in 
the prediction of the underlying molecular mechanism of these identified genes in alveolar hypoxia.

Introduction
Alveolar hypoxia is a pathological condition 

when alveolar epithelial cells are exposed to much 
lower oxygen tensions due to high altitude or the 
consequence of hypoventilation related to a central 
nervous disorder, obstructive airway diseases, or 
pulmonary edema from heart failure or acute lung 
injury (1).

There are 2 general mechanisms that cells invoke 
during hypoxia to prevent oxygen depletion. First, 
cells attempt to maintain ATP synthesis by increas-
ing anaerobic glycolysis. Hypoxic cells can upregu-
late pyruvate kinase and phosphofructokinase, both 
glycolytic enzymes, and increase lactate production 
(2). In addition, hypoxia has been shown to stimulate 
glucose transport into cells, which is in association 
with an increase in the glucose transporter, GLUT1 
(3). In addition to the up-regulation of glycolysis, 
alveolar epithelial cells induce vascular endothelial 
growth factor (VEGF) by HIF-1 during hypoxia (4). 

The increase in VEGF stimulates angiogenesis, 
which increases oxygen delivery. Second, cells 
down-regulate ATP consumption pathways, such 
as Na+ channels, Na+-K+-ATPase activity, NF‑кB, 
and protein synthesis, in order to decrease cellular 
respiration rates and oxygen demand (5). Howev-
er, the prolonged exposure (days to weeks) to low 
oxygen concentrations results in the development 
of chronic pulmonary hypertension, pulmonary va-
soconstriction, pulmonary vascular remodeling, and 
inflammation, which are often characterized by the 
accumulation of extracellular matrix proteins and 
hemoxygenase 1 (HO-1) (6). 

However, the molecular mechanism has not been 
completely understood yet. Advances in molecular 
genetics and computational biology have led to the 
development of innovative methods that enable the 
analysis of differential gene expression profiles. A 
DNA microarray technology represents a powerful 
tool for the rapid, comprehensive, and quantitative 
analysis of gene expression profiles of normal/dis-
ease states and developmental processes (7). The 
expression levels of thousands of genes can thus be 
quantified simultaneously with this technology (8). 
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This technology has successfully been applied to in-
vestigate many physiological mechanisms in health 
and disease (9, 10). A high-throughput microarray 
experiment has also been designed to analyze ge-
netic expression patterns and identify the potential 
target genes for alveolar hypoxia (11, 12). 

In this study, we aimed to apply the same ap-
proach to disclose the biological response and the 
potential transcriptomics networks regulating the 
hypoxia response in the lungs. Furthermore, the 
relevant target genes and pathways in the network 
were also analyzed to interpret the potential mecha-
nisms in response to the alveolar hypoxia based on 
previous reports. 

Material and Methods 
Data Source
Affymetrix Microarray Data. One transcrip-

tion profile of GSE11341 (13) was obtained from 
a public functional genomics data repository Gene 
Expression Omnibus (GEO, http://www.ncbi.nlm.
nih.gov/geo/, accessed on February 19, 2011), 
which is based on the Affymetrix GPL96 platform 
data (Affymetrix Human Genome U133A Ar-
ray). Human pulmonary microvascular endothelial 
cells were grown on sterile tissue culture dishes in 
EGM‑2MV endothelial growth medium according 
to the manufacturer’s instructions (cat. no. CC-
3202, Lonza, formerly Cambrex). At the beginning 
of the experiment, the medium was changed, and 
the dishes were transferred to a hypoxia chamber 
(Coy Labs) and cultured at 1% O2, 5% CO2, and 
94% N2 for 3, 24, or 48 hours. The cells cultured 
in a normoxia incubator (21% O2, 5% CO2, and 
74% N2) were used as control cells. At the end of 
the experiment, the cell medium was removed, and 
the cells were washed with a phosphate buffer solu-
tion and thoroughly lysed in RLT buffer (Rneasy 
Mini Kit, Qiagen). Three independent hypoxic time 
course experiments were carried out in lung cells. 
Eight hypoxia (1% O2, 2 for 3 hours, 3 for 24 hours, 
and 3 for 48 hours) and 3 normoxia (21% O2) chips 
were applied to identify differentially expressed 
genes (DEGs) (13). 

Pathway Data. The Kyoto Encyclopedia of Genes 
and Genomes (KEGG) is a collection of online da-
tabases dealing with genomes, enzymatic pathways, 
and biological chemicals (14). The PATHWAY data-
base records the networks of molecular interactions 
in the cells and variants of them specific to particu-
lar organisms (http://www.genome.jp/kegg/). A 
total of 130 pathways, involving 2287 genes, were 
collected from the KEGG.

Regulation Data. There are approximately 2600 
proteins in the human genome that contain DNA-
binding domains, and most of them are presumed 

to function as transcription factors (TFs) (15). The 
combinatorial use of a subset of the approximately 
2000 human TFs easily accounts for the unique reg-
ulation of each gene in the human genome during 
development (16). 

These TFs are grouped into 5 super class families 
based on the presence of conserved DNA-binding 
domains. The TRANSFAC database contains data 
on TFs, their experimentally proven binding sites, 
and regulated genes (17). 

The Transcriptional Regulatory Element Data-
base (TRED) has been built in response to the in-
creasing needs of an integrated repository for both 
cis- and trans-regulatory elements in mammals (18). 
The TRED has done the curation for transcriptional 
regulation information, including TF binding mo-
tifs and experimental evidence. The curation is cur-
rently focusing on the target genes of 36 cancer-
related TF families. 

A total of 774 pairs of regulatory relationships 
among 219 TFs and 265 target genes were collect-
ed from the TRANSFAC (http://www.gene-regula 
tion.com/pub/databases.html); 5722 pairs of regu-
latory relationships among 102 TFs and 2920 target 
genes were collected from the TRED (http://rulai.
cshl.edu/TRED/). After combining these 2 regula-
tion datasets, 6328 regulatory relationships among 
276 TFs and 3002 target genes were collected.

Methods
Analysis of Differentially Expressed Genes. The 

limma method (19) was used to identify DEGs for 
the GSE11341 dataset. The original expression data-
sets from all conditions were processed into expres-
sion estimates using the Robust Multiarray Average 
method with the default settings implemented in 
Bioconductor, and then the linear model was con-
structed. The DEGs only with the fold change value 
greater than 2 and the P value less than 0.05 were se-
lected. The corrected P value (FDR) was calculated 
by using the Benjamini and Hochberg method (20). 

Coexpression Analysis. For demonstrating the 
potential regulatory relationships, the Pearson cor-
relation coefficients (PCC) were calculated for all 
pair-wise comparisons of gene expression values 
between TFs and the DEGs. The regulatory rela-
tionships with a PCC of greater than 0.6 were con-
sidered significant. 

Analysis of Gene Ontology. The Biological Net-
works Gene Ontology tool (BiNGO) (21) deter-
mines the significant enrichments of GO catego-
ries among a class of genes of interest using the 
hypergeometric distribution. The BiNGO was used 
to identify the overrepresented GO terms of a bio-
logical process in a set of genes with the P value of 
<0.05 and the count of >2.
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Construction of Regulation Network. Using 
the regulation data that were collected from the 
TRANSFAC and TRED databases, the relationships 
between differentially expressed TFs and their dif-
ferentially expressed target genes were matched.

Based on the above 2 regulation datasets, we 
built the regulation networks by Cytoscape (22) to 
combine with the DEGs. Based on the significant 
relationships (PCC>0.6 or PCC<–0.6) between 
TFs and their target genes, 33 putative regulatory 
relationships were predicted between 7 TFs and 29 
target genes.

Significance Analysis of Pathway. We adopted an 
impact analysis that includes the statistical signifi-
cance of the set of pathway genes but also consid-
ers other crucial factors such as the magnitude of 
change of each gene expression, the topology of 
the signaling pathway, and their interactions (23). 
The impact factor (IF) is a parameter proposed for 
pathway analysis that attempts to capture the im-
pact of gene expression profile changes on specific 
pathways. Individual genes often cannot play a role 
on their own, but they might play a regulatory role 
through the interaction with other genes. Therefore, 
it is meaningful to analyze the significant dysfunc-
tional pathways. IFs correspond to the negative log 
of the global probability of having both a statisti-
cally significant number of DEGs and a large per-
turbation in the given pathway.

The IF of a pathway Pi is calculated as the sum 
of 2 constituents:

                       				  

[1]

The first constituent in the equation [1] is a 
probabilistic component that captures the signifi-
cance of the given pathway Pi from the perspective 
of the set of genes contained in it. The Pi value cor-
responds to the probability of obtaining a value of 
the statistic used at least as extreme as the one ob-
served, when the null hypothesis (that the pathway 
is not significant) is true. It is obtained by using the 
hypergeometric model in which Pi is the probability 
of obtaining at least the observed number of differ-
entially expressed gene, Nde, just by chance (24, 25). 

The second constituent in the equation [1] is a 
functional component that depends on the identity 
of the specific genes that are differentially expressed 
as well as on the interactions described by the path-
way (i.e., its topology). 

The second constituent sums up the absolute 
values of the perturbation factors (PFs) for all genes 
g in the given pathway Pi. 

The PF of a gene g is calculated as follows: 

                 					   
[2]

In this equation, the first constituent ΔE(g) cap-
tures the quantitative information measured in the 
experiment of gene expression. The factor ΔE(g) 
represents the normalized measured expression 
change (log2 fold change) of the gene g. The first 
constituent in the above equation is a sum of all PFs 
of the genes u directly upstream of the target gene 
g, normalized by the number of downstream genes 
of each such gene Nds(u) and weighted by a factor 
βug, which reflects the type of interaction: βug=1 
for induction and βug=−1 for repression (KEGG 
supplies this information about the type of interac-
tion of 2 genes in the description of the pathway 
topology). USg is the set of all such genes upstream 
of g. For a given pathway, the value of PF(u) needs 
to be normalized by dividing it by Nde(Pi), which is 
the number of DEGs in the given pathway. In order 
to make the IFs as independent as possible from the 
technology and comparable between problems, we 
also divided the second constituent in the equation 
1 by the mean absolute fold change ΔE, calculated 
across all DEGs. Then, the top 10 significant path-
ways with the IF of >5 and the P value of <0.05 
were selected.

Regulation Network Between Transcriptional Fac-
tors and Pathways. To further investigate the reg-
ulatory relationships between TFs and pathways, 
DEGs were mapped to the KEGG pathways, and a 
regulation network was obtained between TFs and 
pathways. The number of regulatory relationships 
between a TF and its target genes in the same path-
way were then calculated. Once more than 66.6% 
of the regulatory relationships of TF to target genes 
were activated or depressed simultaneously in one 
pathway, it was considered that the pathway was ac-
tivated or depressed by the TFs.

Results
Construction of Regulatory Network in Alveolar 

Hypoxia. To get pathway-related DEGs of alveo-
lar hypoxia, publicly available microarray datasets 
GSE11341 were obtained from the GEO. After mi-
croarray analysis, the DEGs with the fold change 
value of greater than 2 and the P value of less than 
0.05 were selected. Fifty-seven genes (Table 1) 
were selected as DEGs from the GSE11341. To get 
the regulatory relationships, the coexpressed value 
(PCC≥0.6) was chosen as the threshold. Finally, we 
got 33 regulatory relationships between 7 differen-
tially expressed TFs and their 29 differentially ex-
pressed target genes. By integrating the above regu-
latory relationships, a regulatory network of alveolar 
hypoxia was built between TFs and their target 

                    
1       

Σ|PF(g)|
IF(Pi) = log(    ) + 
                   Pi      |∆E|∙Nde(Pi)

g∈Pi

                    
               PF(u)

PF(g) = ∆E(g) + Σβug ∙ 
                                    Nds(u)u∈USg

Bi-li Zhang, Rong-liang Xu, Yong-wen Qin, et al.
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genes (Fig. 1). In this network, hypoxia inducible 
factor 1 alpha (HIF-1α), peroxisome proliferator-ac-
tivated receptor gamma (PPARγ), and nuclear factor 
of kappa light polypeptide gene enhancer in B cells 
(NF-кB) with higher numbers of interactions with 
other proteins formed a local network, suggesting 
that these TFs might play important roles in alveolar 
hypoxia. Besides, the heme oxygenase (decycling) 
1 (HMOX1) target gene was regulated by 4 TFs in 
this network.

GO Analysis of the Regulatory Network in Alveo-
lar Hypoxia. Several GO categories were enriched 
among these genes in the regulatory network (Ta-
ble 2 only list the top 10 enriched GO terms with 
the cutoff of corrected P value <0.05 and count 
>2), including response to chemical stimulus, 
chemical homeostasis, homeostatic process and re-
sponse to hypoxia.

Significant Pathway in Alveolar Hypoxia. To 
identify the relevant pathways changed in alveolar 
hypoxia, a statistical approach at the pathway level 
was used. Significance analysis at single gene level 
may suffer from the limited number of samples and 
experimental noise that can severely limit the power 
of the chosen statistical test. Because one pathway 
always includes many genes, significance analy-
sis at the pathway level may raise the reliability by 
relaxing the significance threshold applied to sin-
gle genes. Therefore, we adopted a pathway based 
impact analysis method that contained many fac-
tors, such as the statistical significance of the set of 
DEGs in the pathway, the magnitude of change of 
each gene expression, the topology of the signaling 
pathway, and their interactions. The impact analysis 
method yielded several significant pathways, such 
as phosphatidylinositol signaling system, cell cycle, 
and p53 signaling pathway (Table 3). 

Regulation Network Between Transcriptional Fac-
tors and Pathways in Alveolar Hypoxia. To further 
investigate the regulatory relationships between 
TFs and pathways, we mapped DEGs to pathways 
and got a regulation network showing the associa-
tions between TFs and different pathways (Fig. 2). 
In the network, HIF-1α, PPARγ, and CCAAT/en-
hancer binding protein delta (CEBPδ) were shown 
as hub nods linked to many pathways of alveolar 
hypoxia. For example, the JAk-STAT signaling 
pathway, cell cycle, ABC transporters, endocyto-
sis, hematopoietic cell lineage, cytokine-cytokine 
receptor interaction, and phagosome were all regu-
lated by HIF-1α.

Discussion
From the result of regulatory network construc-

tion in alveolar hypoxia, we could find that many TFs 

Gene_Symbol logFC P Value FDR

NDRG1
HIF-1a
DUSP1
BHLHE40
SLC2A1

–1.475735312
1.052216325

–1.354317867
–1.940694786
–2.084750448

0.000261
0.001939
1.32E-06
2.71E-07
5.08E-05

0.006982
0.028803
8.07E-05
5.01E-05
0.00121

ENO2
TGFBI
BNIP3
MXI1
SLC2A3

–1.455878832
–1.292338829
–1.133049677
–1.018848919
–2.284931989

5.95E-05
0.004839
2.07E-05
0.00165
1.45E-07

0.002781
0.047639
0.000421
0.027806
5.01E-05

PLOD2
TNFSF10
ADM
FAM13A1
STC2

–1.567059472
1.312928069

–2.131820379
–1.038141985
–1.344661506

0.0005
0.010143
6.81E-05
0.029089
0.032433

0.01079
0.069833
0.002781
0.099997
0.476391

NFIL3
HMOX1
CHST2
ARG2
CEBPD

–1.041953825
1.107798422

–1.302524486
–1.635797873
–1.010387116

3.08E-08
0.032674
0.000896
0.00924
0.000685

3.43E-05
0.502874
0.021998
0.062882
0.017649

FABP4
DUSP4
BACH1
AK3L1
STC1

1.097613378
1.029762867

–1.432415703
–1.749690775
–1.601142552

0.006174
0.000256
1.14E-05
0.001245
0.00054

0.050287
0.006287
0.000421
0.02696
0.011436

HSD17B2
ADORA2A
SLC6A6
LDB2
SLC16A6

–1.184083276
–1.025750437
–1.13524485
1.290180313

–1.577351173

0.014084
0.001664
4.42E-05
0.0086

0.017649

0.07586
0.027946
0.000807
0.062872
0.078799

P4HA1
GADD45B
METTL7A
PPARG
ID1

–1.452817836
–1.014154572
1.027985404

–1.023557534
1.286480675

0.000126
0.001112
0.017954
0.000143
0.017693

0.004917
0.022178
0.099997
0.006157
0.082036

C10orf10
VLDLR
TGFB2
INHBA
VEGFA

–1.227935765
–1.480715285
–1.283518883
–1.125616337
–2.507940626

1.51E-06
0.017869
0.026586
0.008509
0.000627

0.000121
0.084357
0.099997
0.061569
0.017134

AKAP12
LIMCH1
EPB41L3
JMJD1A
TMEM158

–1.040477779
–1.079596402
–1.392658734
–1.304426577
–1.462687237

0.000627
0.044843
0.023107
3.28E-05
0.030233

0.017134
0.857777
0.099997
0.000501
0.179462

LOX
CXCR4
GREM1
LYVE1
EGLN3
C4orf18

–2.237838767
–1.604643802
–1.155183981
1.196798605
–1.0272714
1.13596533

0.001986
1.25E-05
0.017268
0.015217
0.005515
0.013053

0.037782
0.000421
0.396378
0.077735
0.050106
0.069873

SPAG4
ANGPTL4
APOLD1
TNS1
UGCG
SLC2A14

–1.14748353
–2.476902739
–1.564719119
–1.691417265
–1.629526411
–1.808674541

0.005424
6.75E-08
0.000365
0.001324
0.000378
8.10E-05

0.049168
3.43E-05
0.007586
0.027071
0.008204
0.003608

Gene_Symbol indicates the gene name; logFC, the log fold 
change value of differentially expressed genes. The P value was 
calculated using the t test, and FDR indicates the corrected 
P value using the Benjamini method (26).

Table 1.The List of Differentially Expressed Genes

Potential Candidate Genes for Alveolar Hypoxia Identified by Transcriptome Network Analysis
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Fig. 1. Construction of regulatory network in alveolar hypoxia
The triangles denote transcription factors, and the circles denote target genes. The arrow suggests that the transcription 

factor could activate their target genes. In contrast, the another indicator suggests that the transcription factor could inhibit 
the expression of their target genes.

GO-ID Description Count P Value Corr P Value
42221
48878
42592
1666
70482
50896
50793
31325
6950
22603

Response to chemical stimulus
Chemical homeostasis
Homeostatic process
Response to hypoxia
Response to oxygen levels
Response to stimulus
Regulation of developmental process
Positive regulation of cellular metabolic process
Response to stress
Regulation of anatomical structure morphogenesis

21
13
14
8
8
25
13
14
18
9

8.15E-13
1.46E-10
1.32E-09
2.13E-09
3.39E-09
1.41E-08
1.95E-08
2.27E-08
2.46E-08
3.14E-08

1.06E-09
9.49E-08
5.69E-07
6.90E-07
8.79E-07
3.04E-06
3.55E-06
3.55E-06
3.55E-06
4.07E-06

GO-ID indicates the GO term ID; count, enriched numbers. The P value was calculated using the hypergeometric distribution. 
The corrected P value indicates the P value corrected with the Benjamin method (26).

Table 2. Gene Ontology (GO) Biological Process Analysis

Database Name Pathway Name Impact Factor P Value P Value
KEGG
KEGG
KEGG
KEGG
KEGG
KEGG
KEGG
KEGG
KEGG
KEGG

Phosphatidylinositol signaling system
Cell cycle
p53 signaling pathway
Epithelial cell signaling in Helicobacter pylori infection
Pathways in cancer
Cytokine-cytokine receptor interaction
Adherens junction
Renal cell carcinoma
DNA replication
MAPK signaling pathway

21.558
20.026
16.005
13.569
11.697
11.481
10.111
9.002
7.582
6.895

0.703935
2.35E-08
9.10E-07
0.666085
2.42E-05
4.53E-05
0.351794
1.61E-04
0.002234
0.009764

9.79E-09
4.22E-08
1.90E-06
1.86E-05
1.06E-04
1.29E-04
4.51E-04

0.001231879
0.004372882
0.007996347

Table 3. Significant Pathway Analysis

γ

α

к

Bi-li Zhang, Rong-liang Xu, Yong-wen Qin, et al.
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and pathways closely associated with alveolar hy-
poxia have been linked by our method. The HIF‑1α, 
NF-кB, and PPARγ genes are also hub nodes in our 
transcriptome network, which is in agreement with 
previous studies. Related target genes and pathways 
were also identified to be involved in alveolar hy-
poxia in a direct or an indirect manner. 

HIF-1 is a basic helix-loop-helix TF that trans-
activates genes participating in homeostatic respons-
es to hypoxia. HIF-1 is a heterodimer composed of 
an alpha (α) subunit and a beta (β) subunit. When 
alveolar epithelial cells are exposed to 1% oxygen 
for 2 hours, a major increase in HIF-1α protein and 
mRNA are observed. However, HIF-1α protein and 
mRNA levels decrease from 8 to 16 h, which may be 
related to mRNA stability (27). HIF-1α expression 
could further regulate a series of downstream gene 
products in our regulatory network (Fig. 1), which 
may contribute to the pathogenesis of pulmonary 
hypertension through different pathways (4). 

For example, HIF-1α could inhibit KCNA5 
expression in alveolar hypoxia. The KCNA5 gene 
encodes a member of the potassium channel, volt-
age-gated, shaker-related subfamily. Acute alveolar 
hypoxia elicits pulmonary vasoconstriction. Ca2+ 
concentration is an important signal in regulat-
ing the contraction and proliferation of pulmonary 

artery smooth muscle cells. Hypoxia-induced in-
creases in [Ca2+] are, in part, mediated by the se-
lective inhibition of voltage-gated KCNA5 channels 
in these cells. Therefore, KCNA5 is an important 
hypoxia-sensitive K+ channel in pulmonary artery 
smooth muscle cells, contributing to regulation of 
membrane potential and intracellular Ca2+ homeo-
stasis during hypoxia (28). 

Under hypoxia, ATP supply is dependent on the 
ability of cells to increase anaerobic glycolysis by 
up-regulating the expression of glycolytic enzymes 
and increasing glucose transport at the membrane 
level. SLC2A1, also known as GLUT1, encodes a 
major glucose transporter in the mammalian blood-
brain barrier. Ouiddir et al. found that the level of 
glucose transporter GLUT1 in alveolar epithelial 
cells was increased by 3-fold at both protein and 
mRNA levels when exposed to hypoxia (0% O2) 
for 18 hours (29). A previous study has shown that 
HIF-1α can also regulate the SLC2A1 expression by 
binding to the SLC2A4 gene promoter (30). There-
fore, HIF‑1α may be involved in glucose metabo-
lism through regulating the SLC2A1 expression.

HMOX1, an inducible heme oxygenase, belongs 
to the family of heme oxygenases. The activity of 
HMOX1 can be induced by various stimuli, such as 
hyperthermia, hypoxia, endotoxin, ischemic/reper-

Fig. 2. Regulatory network of TF-PATHWAY
The triangles denote transcription factor and squares denote pathways. The arrow suggests that the transcription 

factor could activate the pathways in alveolar hypoxia. In contrast, the another indicator suggests that the transcription 
factor could inhibit the expression of the pathways in alveolar hypoxia.

α γ

2

Potential Candidate Genes for Alveolar Hypoxia Identified by Transcriptome Network Analysis
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fusion injury, and radiation, that have the capacity of 
provoking oxidative stresses (31). Some reports have 
shown that transgenic mice overexpressing HO-1 
are protected from the development of pulmonary 
inflammation, as well as pulmonary hypertension 
and vessel wall hypertrophy induced by hypoxia 
(6, 32). Therefore, the up-regulated expression of 
HMOX1 induced by HIF-1α may be conducive to 
alleviate alveolar hypoxia damage.

In addition, our study also showed that 
HMOX1 expression could be regulated by NF-кB. 
NF-кB is a transcription regulator that is activated 
by various intra- and extracellular stimuli, such 
as cytokines, oxidant-free radicals, ultraviolet irra-
diation, and bacterial or viral products. The inap-
propriate activation of NF-кB has been associated 
with a number of inflammatory diseases. The ef-
fects of alveolar hypoxia were studied in rat lungs, 
exposing rats to 10% oxygen over the periods of 1, 
2, 4, 6, and 8 hours. The number of macrophages 
in bronchoalveolar lavage fluid of hypoxic animals 
was found to be increased between 1 and 8 hours. 
NF-кB binding activity was increased within the 
first 2 hours of exposure to hypoxia. The elimina-
tion of alveolar macrophages led to a decreased 
expression of NF-кB binding activity. In sum-
mary, alveolar hypoxia may induce macrophage 
recruitment and enhance expression of inflamma-
tory mediators, such as NF-кB (33, 34). Because 
of the inverse effect, the HMOX1 expression may 
be inhibited by the NF-кB expression. Previ-
ous studies from several laboratories suggest that 
HMOX-1 can mediate signaling pathways that are 
associated with NF-кB (35).

The PPARγ protein is a member of the peroxi-
some proliferator-activated receptor family. PPARγ 
has been implicated in the pathology of numerous 
diseases including obesity (36–38), diabetes (38, 
39), atherosclerosis (40, 41), and cancer (42, 43). 
Chronic alveolar hypoxia contributes to the devel-
opment of pulmonary hypertension. PPARγ expres-
sion is decreased in the lung tissues of the group 
that was exposed to hypoxia (44).

The CCND1 protein belongs to the highly con-
served cyclin family, whose members are charac-
terized by a dramatic periodicity in protein abun-
dance throughout the cell cycle. Hypoxia can cause 
G (0)/G (1) cell cycle arrest in human lung adeno-
carcinoma cell line A549 (45). Increased cyclin D1 
expression could promote G1-S cell cycle transi-
tion and cell proliferation showing that the level of 
cyclin D1 expression is negatively correlated with 
G (0)/G (1) arrest (46). CCND1 expression could 
be regulated by PPARG (47) and HIF-1α (48) 

through the cell cycle pathway in alveolar hypoxia. 
Our results also indicated several other pathways 

to be involved in alveolar hypoxia, such as adhe-
sion and PI3K signaling pathway. Alveolar hypoxia 
causes pulmonary hypertension, vasoconstriction, 
and inflammation, which have been related to al-
veolar vascular remodeling, showing the accumula-
tion of adhesion molecules. Therefore, our results 
suggest HIF-1α to be involved in the focal adhe-
sion pathway. However, hypoxia-induced mitogenic 
factor (HIMF) could modulate vascular adhesion 
molecule 1 (VCAM-1) expression via the PI3K/
Akt-NF-кB signaling pathway. The recombinant 
HIMF protein, intratracheally instilled into adult 
mouse lungs, led to a significant increase of VCAM-
1 production in vascular endothelial, alveolar type 
II, and airway epithelial cells. A dominant-negative 
mutant of PI-3K, Δp85, as well as PI-3K inhibitor, 
LY294002, blocked HIMF-induced NF-кB activa-
tion and attenuated VCAM-1 production (49). The 
PI3K/AKT-NF-кB pathway has also been described 
to be activated by hypoxia and to regulate HIF-1 
expression (50). 

It is important to understand the mechanism un-
derlying the function of genes involved in alveolar 
hypoxia. However, the deeper insight of TFs and 
their regulated genes remains an area of intense re-
search in the future. These interactions still need to 
be confirmed by future experimental studies since 
our results were based on microarray data derived 
from a small sample size. 

Conclusions
In our study, many related transcriptional fac-

tors, target genes, and pathways were identified 
to be linked with alveolar hypoxia. HIF-1α may 
regulate the expression of KCNA5, SLC2A1, and 
HMOX1 through the regulation of membrane po-
tential, glucose metabolism, and anti-inflamma-
tion. HMOX-1 can mediate signaling pathways 
that associated with NF-кB. The CCND1 expres-
sion could be regulated by PPARγ and HIF-1α 
through the cell cycle pathway. In addition, some 
new transcriptional factors and target genes, such 
as phosphofructokinase (PFKL, liver), aldolase A 
(ALDOA, fructose-bisphosphate), and trefoil fac-
tor 3 (TFF3, intestinal), were shown to be associ-
ated with alveolar hypoxia, which have not been 
identified in previous works. However, further ex-
periments are still indispensable to confirm these 
conclusions.
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