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Diversity and properties of connexin gap junction channels
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Summary. Gap junction channels are composed of two apposing hemichannels (connexons)
in the contiguous cells and provide a direct pathway for electrical and metabolic signaling between
adjacent cells. The family of connexin genes comprises 20 members in the mouse and 21 genes in
the human genome. Connexins are expressed in all tissues except differentiated skeletal muscle,
erythrocytes, and mature sperm cells. Various tissues express more than one type of connexins;
therefore, homotypic, heterotypic, and heteromeric gap junction channels may form between
cells. In this article, we briefly review basic gating and permeability properties of homotypic and
heterotypic gap junction channels as well as recent achievements in the research of their regulation
by transjunctional voltage, intracellular calcium, pH, and phosphorylation.
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Families of gap junction proteins
Gap junction (GJ) channel proteins are subdivided

into three families: innexins, pannexins, and connexins
(1–3). Innexins are expressed in protostomes, while
connexins and pannexins have been identified in
deuterostomes. Pannexins have no homology with
connexins and share 20% homology with innexins.
All these proteins have four alpha helical transmem-
brane domains (M1–M4), intracellular N- and C-ter-
mini, two extracellular loops (E1, E2), and a cyto-
plasmic loop (I1) (4–6) (Fig. 1).

Six innexin/pannexin/connexin subunits form a
hemichannel (innexon/pannexon/connexon). The
presence of cysteine residues in the extracellular loops
is critical for gap junction formation by two apposing

Fig. 1. Topological model of a connexin
Connexins, as well as pannexins and innexins, possess four
transmembrane domains (M1–M4), intracellular N- and

C-termini, two extracellular loops (E1–E2) and one
intracellular loop (I1)

hemichannels in contiguous cells. Connexins and
innexins possess 3 or 2 cysteines in each extracellular
loop, respectively, and form hemichannels and gap
junction channels. The pannexins contain 2 cysteines
in each extracellular loop; however, glycosylation of
extracellular loops and protein in general precludes
formation of functional gap junction channels (7). In
that way, pannexins most likely form only nonjunc-
tional channels and play paracrine role releasing ATP
or glutamate into extracellular space and uptaking
certain membrane-impermeant molecules into cells
(8, 9). In contrast to connexin-based gap junctions,
innexin-based channels are sensitive to membrane
potential, closing with depolarization (10).

Structure of connexin gap junction channels
GJ channels provide a direct pathway for electrical

and metabolic signaling between adjacent cells (11–
14). The family of connexin (Cx) genes consists of
20 members in the mouse and 21 genes in the human
genome. hCx25, hCx59 occur only in the human
genome and mCx33 only in the mouse genome. Also,
unusual Cx23 with four instead of six cysteine residues
in its two extracellular loops was identified in the
mouse (15, 16). All other genes are orthologous pairs.
Connexins are named by their molecular mass within
the range of 23–62 kDa. For example, Cx30 molecular
mass is 30366 Da, Cx43 – 43036 Da. A gap junction
channel pore is approximately 100–150 Å in length
and 12.5 Å in width with a 20 Å gap between conti-
guous cells. A single GJ channel is formed by stable,
noncovalent interactions of two hemichannels located
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in the plasma membranes of adjacent cells via H-bonds
between extracellular loops of their connexins. The
specialized domains in the intracellular loop and the
carboxyl terminus are responsible for specific channel
properties of different connexins, including unitary
conductance, pH dependence, voltage dependence,
and selective permeability to small molecules up to
1 kDa. Molecular mass does not determine the single
channel conductance. For example, Cx40 forms
channels with larger conductances (150–160 pS) than
Cx43 channels (90–115 pS) (17–20). In contrast, Cx45
channels exhibit a much lower main state conductance
of ~30 pS. The process of docking of apposed con-
nexons is poorly understood. Ultrastructurally, in
freeze-cleaved replicas, GJ plaques can be seen to
consist of tightly clustered GJ channels (~10 000/µm2)
(21, 22). Recently, crystal structure of human Cx26
GJ channel was demonstrated at 3.5 Å resolution (23).
In the absence of plaques, there is no electrical
coupling between contiguous cells. Plaques exceeding
several hundred channels always confer coupling, but
only a small fraction of channels is functional at any
given time (24). Recently, a fusion protein consisting
of Cx43 and green fluorescent protein (GFP) attached
to its carboxyl terminus (Cx43-GFP) was transfected
into mammalian cells and was shown to be transported
to the cell surface and assembled into functional GJs
(25). GJ plaques and unapposed hemichannels imaged
in our laboratory are shown in Fig. 2.

Microfilaments and microtubules may be involved
in turnover mechanisms and trafficking of Cxs to,
within, and from the cell membrane (see (26) for more
details). Formation of gap junctions requires
appropriate cell adhesion, especially that mediated by
Ca2+-dependent molecules, cadherins (27). Most con-
nexins are cotranslationally integrated into the endo-
plasmic reticulum membrane. The oligomerization of
six connexins into a hemichannel starts in the endo-
plasmic reticulum and ends in the trans-Golgi network
(28–30). Then vesicles containing connexons are
transported along microtubules and actin filaments to
the cell membrane and recruited to the outside of exist-
ing plaques (31). Moreover, recently it has been shown
that tethering of the microtubule plus ends at the adhe-
rens junction promotes delivery of connexin hemi-
channels directly to the cell-cell border (32). Interna-
lization of GJ channels starts from the middle of the
plaque via vesicular structures called “annular junc-
tions” (33) that are rapidly degraded by lysosomal and
proteosomal pathways (34–36). Gap junction biosyn-
thesis and assembly are strictly regulated, and inter-
cellular junctions have a short half-life time of only a

Fig. 2. Combined representation of Cx43-GFP gap junction
plaques, imaged by conventional fluorescent microscopy
(visible in green pseudocolor and indicated by arrows),
clusters of unapposed Cx43-GFP hemichannels in the cell
membranes, imaged by TIRF microscopy (visible in red
pseudocolor), and phase contrast (gray scale) of adjacent
HeLa cells (A) and rabbit’s skeletal myoblasts (B). 3D-
image of two adjacent HeLa cells, containing huge gap
junction plaque and numerous clusters of hemichannels (C).

few hours (35, 37). The continuous synthesis and
degradation of connexins through these mechanisms
may provide for the quick adaptation of tissues to
changing environmental conditions.

Expression patterns of connexins
Connexins are expressed in all tissues except dif-

ferentiated skeletal muscle, erythrocytes, and mature
sperm cells (see Table 1). Big variety of connexin iso-
forms has been reported in the nervous system, where
different cell types often express different sets of
connexins (38–40). Major connexins in the neurons
of CNS are Cx36, Cx30.2, and Cx45 (41). Astrocytes
most abundantly express Cx30 and Cx43; endothelial
cells of blood-brain barrier express Cx40 and Cx43
(42). Ten isoforms of connexins have been identified
in different layers of the skin. Their physiological role
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is not well determined; however, mutations of Cx26,
Cx30, Cx30.3, Cx31, and Cx43 have been shown to
be related with congenital diseases of the skin. Main
connexins in the liver are Cx32 and Cx43. Moreover,
Cx26 is expressed in the periportal acinar area, while
liver vascular cells express Cx37 and Cx40. Also,
small amounts of Cx39 and Cx30.2 (in the mouse
liver) and Cx31.9 (in human liver) have been identified
(43). In the heart, mCx30.2, Cx40, Cx43, and Cx45
can form GJs between myocytes of the conduction
system and working myocardium of atria and
ventricles. Cx45 and recently identified mCx30.2 are

most abundantly expressed in the sinoatrial and
atrioventricular nodes (44). Cx40 is expressed in the
atria and the conduction system of ventricles, while
Cx43 is a major connexin forming GJs between work-
ing cardiomyocytes (45). These distinct expression
patterns are important for synchronous excitation of
the atria and ventricles and for imparting a substantial
AV delay that ensures the effective blood circulation
(46). Expression of Cx40, Cx43, Cx45 together with
Cx37 has also been reported in blood vessels, with
most abundant expression of Cx40 in endothelial cells
and Cx43 in smooth muscle cells (47).

Table 1. Expression patterns and single channel conductances (gj) of human and mouse connexins

Human Mouse
Connexins Connexins gj (pS)                 Expression patterns of connexins in different tissues

Cx23 Cx23 ND* Human and mouse genomes. Transcription and translation have not been
demonstrated in humans (48)

Cx25 ND Human genome
Cx26 Cx26 115–150 Breast (49); skin (50); cochlea (51); liver (52); endometrium (53);

glial cells (54); airway epithelium (55); somniferous tubules (56);
pancreas (57)

Cx30 Cx30 160 Skin (58); brain (59); cochlea (60); airway epithelium (61);
exocrine gland (62)

31.3 Cx29 ND Oligodendrocytes (63, 64), skeletal muscle, liver, pancreas, kidney (65)
Cx30.3 Cx30.3 ND Skin (58)
Cx31 Cx31 85/15 Skin (58); airway epithelium (61); cochlea (66); placenta (67)

Cx31.1 Cx31.1 ND Skin (58)
Cx31.9 Cx30.2 15 Mouse heart (68); mouse brain (69)
Cx32 Cx32 58–70 Liver (70); skin (58); Schwann cells (71); oligodendrocytes (72);

endometrium (53); gland cells (62)
Cx33 Testes (73)

Cx36 Cx36 5–15 Retina (74); pancreatic beta cells (75);
neurons throughout the central nervous system (76)

Cx37 Cx37 219–300 Vascular smooth muscle (77); endothelium (78); ovaries (79); skin (58)
Cx40 Cx40 158–198 Skin (58); nervous system (80); endothelium (81); heart (82)

Cx40.1 Cx39 ND Human genome; developing muscle of mouse (83)
Cx43 Cx43 90–110 Most widely expressed connexin, present in at least 34 tissues and 46 cell

types (84)
Cx45 Cx45 30 Human pancreatic ductal epithelial cells (85); SA and AV nodes

of the heart (82); neurons (86); oligodendrocytes (87), astrocytes (88),
vascular system (89),  skin (58); osteoblasts (90); retina (74); uterus (91)

Cx46 Cx46 140–152 Lens (92); alveolar epithelium (93)
Cx47 Cx47 55 Brain, spinal cord (94), oligodendrocytes (64)
Cx50 Cx50 212 Lens (92)
Cx58 ND Human genome
Cx62 Cx57 57 Mouse oocytes (95); horizontal cells of the retina (24, 96)

     *ND, not determined.
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Regulation of connexin gap junction channels
Transjunctional voltage. Voltage sensitivity is

particularly important in regulating the intercellular
coupling between excitable cells. Cx43 channels are
relatively insensitive to changes in transjunctional
voltage compared with channels composed of Cx45
(17, 97–99) (Fig. 3).  Each GJ composing hemichannel
contains two Vj sensitive gates (100). The fast gate is
located at the cytoplasmic entrance of hemichannels
and operates from open to residual state. The slow, or
“loop,” gate is located toward extracellular ends of
hemichannels and exhibits slow gating transition to
the fully closed state. Functional and structural studies
conducted mainly on Cx26 and Cx32 channels
indicate that the first several positions of the
cytoplasmic NT-domain contain charged residues that
determine the magnitude and also polarity of fast Vj
gating. For instance, Cx26, Cx30, Cx50 close at
positive voltages, and Cx31, Cx32, Cx37, Cx40, Cx43,
Cx45, Cx57 at negative. Interestingly, Cx46 hemichan-
nels close at both, positive and negative, voltages;
however, gating mechanisms are different. At inside
positive voltages, fast gate, located on N-terminal
domain, closes unapposed Cx46 hemichannels to the
residual state, while at inside negative voltages, slow
or “loop” gate, likely located on the extracellular
domains, closes to the fully closed state (101, 102).
Moreover, gj of some connexins, like of innexins in
invertebrates, appears to be sensitive to membrane
potential, Vm, and connexins can be classified in two
groups according to their polarity of closure, e.g.,
Cx45 and C57 channels close upon hyperpolarization,
whereas Cx43, Cx26, Cx30 channels close upon de-

polarization (103). Interestingly, Vm sensitivity of
Cx43 depends on species, i.e. in HeLa cells Cx43
shows no sensitivity to Vm (100), while in Xenopus
laevis oocytes Vm sensitivity is obvious (104), and
Vm sensors probably are located in the CT region
between 242 and 257 residues (104).

Behavior of GJs may be predicted by mathematical
modeling. Earlier, gating properties of homotypic and
heterotypic GJ channels were described by two-state
Boltzmann function (105, 106), assuming that each
hemichannel gates independently (to open and fully
closed states), which may be accurate only when both
hemichannels have the same gating polarity and single
channel conductance and are relatively insensitive to
Vj. Recently the stochastic four-state model was pro-
posed that accounts for voltage distribution inside the
pore, i. e., takes into account contingent gating. It also
takes into consideration residual and open-state con-
ductances, gating polarities, voltage sensitivity, steep-
ness of gj decay, and Vj-dependent rectification of each
hemichannel (107).

Intracellular Ca2+. The closure of the channel by
intracellular Ca2+ plays a vital role in protecting intact
cells from membrane depolarization and leakage of
metabolites through gap junctions by disconnecting
them from damaged cells. This process is called heal-
ing-over (Deleze, 1970) and occurs not only during
different pathological conditions but also after inci-
sions performed during surgery. It is still not deter-
mined if gj is affected by the physiological Ca2+ tran-
sients during the process of the excitation-contraction
coupling. The GJ sensitivity to Ca2+ ranges from nano-
molar to micromolar concentrations and depends on
connexin and cell types (108–113). However, it is not
completely understood whether Ca2+ acts on GJ chan-
nel gating directly or through some intracellular inter-
mediates. High Ca2+ medium does not alter the per-
meability of Cx32 hemichannels incorporated into
liposomes (114). In contrast, the D178Y mutant of
Cx32 that destroyed the divalent cation-binding site
caused a complete loss of the blocking actions exerted
by Ca2+ on hemichannel activity in Xenopus laevis
oocytes (115). On the other hand, many experimental
studies suggest that Ca2+-dependent GJ gating may
be mediated by calmodulin (see (116) for more de-
tails). It contains specialized domains in the N- and
C-lobes that follow NH2 terminus (117). Ca2+ binding
to these domains induces conformational changes
enabling calmodulin to interact with receptors. Such
interaction was demonstrated with Cx38 (118), Cx32
(119), Cx37 and Cx43 (120), Cx44 (121), and Cx50
(122).

Fig. 3. Voltage dependence of Cx43-GFP and Cx45-CFP
gap junction channels expressed in HeLa cells (arrows)
Vj sensitivity of the channel is characterized by voltage
corresponding half conductance between gmin and gmax.
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Intracellular pH. In virtually all cells, acidification
of intracellular milieu decreases gj; however, sensi-
tivity to intracellular pH depends on connexin type.
Cx32 and Cx43 are less sensitive to pHi than Cx38,
Cx50, and Cx57 (123–125). Delmar and coworkers
tested gj-pHi dependence in oocyte pairs expressing
different connexins and showed the following order
of decreasing sensitivity to pHi: Cx50>Cx46>Cx45>
>Cx26>Cx37>Cx43>Cx40>Cx32 (126). Protonation
of histidine residues in carboxyl tail and cytoplasmic
loop of connexins modulates GJ channel permeability.
The latest study provided evidences that pHi-de-
pendent increase in gj of Cx57 GJ channels was caused
by an increase of channel open probability and number
of functional channels (125). Interestingly, Cx36 GJ
channels demonstrate opposite gj dependence on pHi,
uncoupling upon alkalosis rather than acidosis (127).
However, these data contradict earlier report demons-
trating uncoupling of Cx36 GJs under acidification
with CO2 (128). By now, it is not completely clear,
whether H+ acts directly on GJ channels. Heteromeric
Cx26/Cx32 hemichannels incorporated into liposomes
were insensitive to low pH when H+ was buffered with
maleate, bicarbonate, or Tris, but showed some pH
sensitivity in the presence of aminosulfonate buffers
(114). Therefore, it was concluded that H+ affected
GJ gating indirectly via protonation of endogenous
aminosulfonate taurine (129). However, sensitivity of
Cx46 hemichannels in excised patches to cytoplasmic
pH suggests that gating is affected by direct proto-
nation (130).

Phosphorylation. Cytoplasmic C-tail of connexins
contains multiple serine, threonine, and tyrosine resi-
dues that may be phosphorylated by various protein
kinases. Cx36 and Cx56 also can be phosphorylated
within cytoplasmic loop (131). Many connexins
(Cx31, Cx32, Cx36, Cx37, Cx40, Cx43, Cx45, Cx46,
Cx50, and Cx56) have been shown to be phospho-
proteins (132, 133). Activation of protein kinases
(134–136) or phosphatases (137) may cause changes
in cell-to-cell communication and rapid turnover of
channels (133, 138, 139). Phosphorylation modifies
electrical and metabolic communication between
contiguous cells by changing channel molecular
structure that affects channel unitary conductance (99),
mean open time (134), or open probability (140).
Moreover, phosphorylation alters the net charge of
C-terminus that in turn may modulate voltage or pH
sensitivity of the connexins.

Cx43 is present in at least 34 tissues and 46 cell
types, and has been the most intensively studied
connexin (see (141) for more details). Cx43 does not

contain serine residues in cytoplasmic loop, and there
are no reports on phosphorylation of Cx43 N-terminus;
however, activation of PKA, PKC, cyclin B kinase,
casein kinase CK1, MAPK, and Src tyrosine kinase
can cause, respectively, increased phosphorylation of
S262, S265, S279, S282, S325, S328, S330, S364,
S365, and I382 residues in C-terminus. Consequently,
activation of PKA increases Cx43 insertion into plas-
ma membrane (142, 143), PKC, MAPK, and epider-
mal growth factor activation accelerates the interna-
lization of Cx43 (144–146), CK1 regulates assembly
of Cx43 hemichannels to GJ plaques (147). The exa-
mination of the role of single kinase (e.g. PKC) in
regulation of connexin properties and expression is
quite sophisticated because it often exerts not only
direct effects but causes the activation of other kinases
(e.g. MAPK, Src) with successive phosphorylation of
multiple residues and overlapping consequences
(141).

Heterotypic gap junction channels
Since various tissues express more than one type

of connexins, homotypic, heterotypic, and heteromeric
GJ channels may form between cells. The number of
combinations of heteromeric connexons and GJ chan-
nels is very large, and little is known about their bio-
logical significance in the heart, CNS, and other tis-
sues. Some of connexins are incompatible to form
heterotypic junctions, and this property may affect not
only electrical and metabolic communication, but also
cell differentiation during development. Typically,
most embryonic cells express one or several Cx iso-
forms and strong connexin-mediated cell-cell coupling
tend to eliminate intercellular gradients of permeants,
such as ions, metabolites, small peptides, oligonucleo-
tides, and small interfering RNA (siRNA) (129, 148,
149). Thus, in order for neighboring cell populations
to develop independently, it may be important to ex-
press connexin isoforms that are incompatible to form
heterotypic junctions, thereby preventing electrical
synchronization, transfer of signaling molecules, or
metabolic communication. Several studies reported
formation of functional heterotypic junctions between
cells expressing Cx45 with those expressing Cx40 and
Cx43 (150–154). Recent evidences also suggest that
Cx43 and Cx45 can form both heteromeric connexons
and homomeric, heterotypic channels (155, 156). In
general, among all “cardiac” connexins (Cx30.2,
Cx40, Cx43, and Cx45), only Cx40 and Cx43 are not
compatible to form heterotypic gap junction channels
(157, 158).

Diversity and properties of connexin gap junction channels
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Gating of heterotypic junctions is typically asym-
metric with respect to Vj=0 and the degree of asym-
metry depends on the intrinsic gating properties of
the component hemichannels. Cx45 homotypic junc-
tions exhibit the highest Vj-gating sensitivity among
all members of the connexin family and this property
contributes to the high degree of Vj-gating asymmetry
in all heterotypic junctions containing Cx45 on one
side, such as mCx30.2/Cx45 (44), Cx31/Cx45 (159),
Cx43/Cx45 (154), and Cx40/Cx45 (157) (see Fig. 4).

In all cases, there is higher Vj-gating sensitivity
when the Cx45 side is made relatively negative, which
has been shown to result predominantly from closure
of the slow gate of the Cx45 hemichannel (154). The
fast gate of Cx45 also closes on this polarity, but its
voltage sensitivity is shifted to higher Vjs. The fast
and slow Vj-sensitive gates of Cx43 GJs also close on
relative negativity. Differences in the unitary conduc-
tances of component hemichannels resulted to higher
Vj-gating asymmetry in Cx43/Cx45 junctions than that
predicted by simple connection of two hemichannels
exhibiting equal unitary conductances. Most of the
Vj applied across a Cx43/Cx45 junction falls across
the Cx45 hemichannel, which has ~3.5-fold smaller
conductance than the Cx43 hemichannel, resulting in
increased and decreased Vj-gating sensitivities of
Cx45 and Cx43 hemichannels, respectively (154).

The strong gj-Vj gating asymmetry of Cx43/Cx45
(154) and Cx31/Cx45 (159) heterotypic junctions
produces signal transfer asymmetry that can be in-
creased or decreased by making the cell expressing
Cx45 relatively more negative or positive, respecti-
vely. Therefore, this cell-to-cell signaling asymmetry
seems to be a common feature of heterotypic junctions
containing a Cx45 hemichannel on one side. Such

signaling asymmetry may be functionally relevant in
the CNS where signal propagation in one direction is
preferred and both Cx43 and Cx45 are expressed. It
has been shown in heterotypic Cx43/Cx45 GJs that
dye transfer can be enhanced or reduced depending
to which cell action potential arrived first, expressing
Cx43 or Cx45 (160).

Cx30.2 was recently characterized as the fourth
cardiac Cx, which is expressed preferentially in the
SA- and AV-nodal regions of the mouse heart (44).
mCx30.2-EGFP/Cx40 junctions are functional and
exhibit an asymmetric steady-state gj-Vj relation with
higher Vj-sensitivity at voltages relatively negative
on the mCx30.2 side. In cocultures of HeLaCx30.2-
EGFP and HeLaCx43-CFP, the steady-state gj-Vj
relation of this heterotypic junction is strongly asym-
metric and exhibits an increase in gj when the cell
expressing mCx30.2 is made more positive. mCx30.2/
Cx45 junctions are characterized by a markedly asym-
metric gj-Vj relation. Steep and sensitive gating occurs
at Vjs relatively negative on the Cx45 side (44, 158).

These findings have potential implications for
intercellular coupling in specific regions of the heart,
such as the interface between the sinus node and atrial
myocardium or Purkinje fibers and ventricular myo-
cardium.

Permeability of gap junction channels
GJs are permeable to second messengers and meta-

bolites, such as Ca2+, PI3, glutamate, glutathione, ADP,
and ATP. To study permeability of homotypic and
heterotypic GJ channels formed of different connexin
isoforms, fluorescent dyes of different net charge and
size are being used. Techniques to evaluate dye
permeability include the monitoring of dye transfer
after scrape loading in the cell monolayer; the injection
of dye in a single cell through a microelectrode and
monitoring fluorescence recovery after photo bleach-
ing; the measurement of single channel permeability
by correlating cell-to-cell transfer of fluorescent dyes
with GJ numbers estimated by electron microscopy
(152, 161–164).

A few studies have examined single-channel per-
meability of homotypic and heterotypic GJ channels
using simultaneous double whole-cell patch-clamp
electrophysiology and fluorescence imaging record-
ings, when fluorescent dye was loaded into one cell
of a cell pair through a patch pipette, and dye transfer to
the neighboring cell was measured. Valiunas with co-
workers examined single channel permeabilities of ho-
motypic and heterotypic Cx40 and Cx43 GJ channels

Fig. 4. Voltage gating of heterotypic Cx40/Cx45 GJs
Superposition of a gj-Vj plot of a Cx40/Cx45 heterotypic
junction with gj-Vj plots of Cx40 (dashed line) and Cx45

(solid line) homotypic GJs (157).
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to fluorescent dye Lucifer yellow (LY) in HeLa cells
and showed that heterotypic channels demonstrated
intermediate permeability (152). Another study has
evaluated single channel permeabilities of homotypic
Cx26, Cx32, Cx37, Cx40, Cx43, Cx45 and heterotypic
Cx26/Cx32, Cx37/Cx43 GJ channels for series of
Alexa Fluor (AF) dyes in Xenopus laevis ovocytes
(162) and in contrast to the first one, shown that
permeability of heterotypic channels was determined
by permeability of more restrictive connexin. A recent
study (158) has examined single-channel permea-
bilities of homotypic and heterotypic GJ channels
formed of all known cardiac connexins, mCx30.2,
Cx40, Cx43, and Cx45, to fluorescent dyes LY and
AF. Single channel permeabilities calculated for ho-
motypic and heterotypic GJs are presented in Table 2.
The ratio of single channel conductance to per-
meability for AF350 was 40- to 170-fold higher for
mCx30.2 GJs than for Cx40, Cx43, and Cx45,
suggesting that recently identified in the conductive
system of the heart Cx30.2 GJs are more adapted to
perform electrical rather than metabolic cell-to-cell
communication.

Concluding remarks
In the last two decades, a huge number of studies

have improved our knowledge about cell-to-cell com-
munication through connexin gap junction channels.
However, despite relatively well-examined properties
of the channels as the single entities, very little is
known about organization of spatio-temporal signaling
cascades, nexuses, involved in connexin trafficking,
docking, removal, phosphorylation/dephosphoryla-
tion, protein-protein interactions. Therefore, the major
future challenges are to identify and quantify these
proteins forming complexes, to picture their geometry,
the hierarchy of organization and dynamic regulation
by microscopic, structural and molecular biology app-
roaches, and to understand the functional significance
of these protein interactions in intercellular signaling
and pathophysiology.
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Table 2. Single channel permeability (×10–15 cm3/s) of cardiac homotypic and heterotypic gap junctions
for Alexa Fluor (AF350) and Lucifer yellow (LY) (158)

Dye\Cx Cx30.2 Cx40 Cx43 Cx45 Cx30.2/Cx40 Cx30.2/Cx43 Cx30.2/Cx45 Cx40/Cx45 Cx43/Cx45

AF350 0.04 33.1 86 5.5 0.22 0.09 0.09 14.5 15.9
LY n.p. 6.9 24.6 1.1 n.p. n.p. n.p. 2 2.3

n.p., non permeable.

Plyšinių jungčių įvairovė ir savybės

Mindaugas Račkauskas, Vaidas Neverauskas, Vytenis Arvydas Skeberdis
Kauno medicinos universiteto Kardiologijos institutas

Raktažodžiai: koneksinai, koneksonai, plyšinės jungtys, struktūra, funkcija.

Santrauka. Plyšinės jungtys užtikrina elektrinį ir metabolinį ryšį tarp ląstelių. Jos yra sudarytos iš dviejų
puskanalių (koneksonų), esančių besiliečiančiose ląstelėse. Puskanaliai sudaryti iš šešių subvienetų – koneksinų.
Pelės genome koneksinų genų šeimą sudaro 20 narių, žmogaus genome – 21 narys. Koneksinų yra visuose
audiniuose, išskyrus diferencijuotas skeleto raumenų ląsteles, eritrocitus ir subrendusias spermos ląsteles.
Daugelyje audinių gali būti daugiau nei vieno tipo koneksinų, todėl tarp ląstelių gali formuotis ne tik
homotipinės, bet ir heterotipinės, heteromerinės plyšinės jungtys. Šiame straipsnyje trumpai aptariamos
pagrindinės homotipinių ir heterotipinių plyšinių jungčių elektrinės ir pralaidumo savybės, taip pat naujausi
pasiekimai tiriant jų priklausomybės nuo jungties įtampos, viduląstelinio Ca2+, pH ir fosforilinimo mechanizmus.
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