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Abstract

Chromosome segregration and cell division requires
the regulated assembly of the mitotic spindle
apparatus. This mitotic spindle is composed of
condensed chromosomes attached to a dynamic array
of microtubules. The microtubule array is nucleated
by centrosomes and organized by associated
structural and motor proteins. Mechanical linkages
between sister chromatids and microtubules are
critical for spindle assembly and chromosome
segregation. Defects in either chromosome or
centrosome segregation can lead to aneuploidy and
are correlated with cancer progression. In this review,
we discuss current models of how centrosomes and
chromosomes organize the spindle for their equal
distribution to each daughter cell.

Introduction

A fundamental property of all cells is their ability to multiply
and reproduce. The replication and segregation of the
genome must be performed with high fidelity, ensuring that
each daughter cell receives a full complement of DNA. For
all eukaryotic cells, separation of the replicated genome is
accomplished by the mitotic spindle during the M-phase of
the cell cycle. For a rapidly dividing mammalian cell, M-
phase lasts for about an hour out of each 24 hour cell cycle.
The spindle is assembled at M-phase and is a transient
structure, built to accurately move chromosomes and then
disassemble. In this review we discuss mechanisms
responsible for assembling the mitotic spindle and attaching
replicated chromosomes and centrosomes to this biological
machine. To provide a reference point, we begin by
describing the structure of the spindle at metaphase - the
midpoint of mitosis. We then describe the roles of
centrosomes, microtubule associated proteins (MAPs),
motor proteins and chromosomes in assemblying and
maintaining the mitotic spindle and anchoring
chromosomes and centrosomes to this structure.

The Spindle at Metaphase

The major structural components of the spindle are the
microtubules, polymers of α and ß tubulin subunits. The

microtubule lattice has an intrinsic structural polarity due
to the polarized arrangement of tubulin dimers within the
lattice. The two ends of the microtubule differ in growth
rate, with the faster growing (plus) end localized away from
the centrosome. Spindle microtubules are organized into
two overlapping arrays that form the bipolar metaphase
spindle (see Figure 1). Here the fast growing plus ends
originating at each centrosome meet in the spindle midzone
(for more extensive reviews see Inoue and Salmon, 1995;
Wittmann et al., 2001).

Chromosomes attach to the spindle by binding the plus
ends of microtubules. Before anaphase begins, each
chromosome is actually a pair of replicated sister
chromatids (reviewed in Salmon, 1989). These chromatids
are held together along the lengths of their arms by a
complex of proteins called cohesins (below). At metaphase,
chromosomes are aligned in the center of the spindle, with
sister chromatids facing the opposite poles. Chromosome
attachment is mediated by the kinetochore, a complex of
DNA and proteins (shown in red in Figure 1B,C). The
kinetochores of sister chromatids are organized on opposite
sides of the chromosome complex. Based on the
organization of the sister kinetochores, the attachment of
a kinetochore to microtubules from one half spindle
positions the opposite kinetochore toward the opposite
pole. This organization ensures that replicated chromatids
are attached to opposite poles and that each daughter cell
will receive one, and only one, copy of each chromosome
as cells divide (reviewed in Salmon, 1989).

The opposite ends of the microtubules, the minus ends,
are focused near the centrosome, but not directly attached
to it. The spindle microtubules are nucleated at the
centrosome, but then released from the nucleation site.
The minus ends of these free microtubules are then focused
and anchored by several structural and motor proteins
(discussed below). The centrosome is likely held to the
minus ends of microtubules by additional proteins. This
centrosome anchoring mechanism would serve to link the
centrosome to the microtubules of the spindle and allow
each daughter cell to inherit one, and only one, centrosome.

The majority of spindle microtubules do not form
attachments to chromosomes. These non-kinetochore
microtubules turn over rapidly by dynamic instability, a novel
behavior where individual microtubules exist in persistent
phases of elongation or rapid shortening, with infrequent
and abrupt transitions between these phases. The transition
from elongation to rapid shortening has been termed
catastrophe, while the transition from rapid shortening to
elongation has been termed rescue (Walker et al., 1988).

Setting the stage: Microtubule reorganization at the
G2/M transition

As the cell enters mitosis, a radial array of long interphase
microtubules is disassembled to make way for the spindle.
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Dissolution of the interphase microtubule array occurs at
the G2/M transition and coincides with the brief period of
time when the nuclear envelope is broken apart (Zhai et
al., 1996). Changes in the dynamic turnover of microtubules
likely play a major role in disassembly of the interphase
microtubules. During interphase, the frequency of rescue
(the switch from a shortening state to a growth state) is
relatively high. Frequent rescues allow microtubules to grow
to the longer lengths typical of interphase cells (~ 100 µm
in a typical mammalian epithelial cell; Gliksman et al.,
1993). At the G2/M transition, rescue frequency drops about
8-fold (Rusan et al., 2002). This drop in rescue, combined
with a reduction in the amount of time microtubules spend
neither growing nor shortening (paused), results in an
overall loss of microtubule polymer (Rusan et al., 2002).

The removal of microtubules from the peripheral
regions of cells is also partially accomplished by
microtubule bundling and dynein-driven transport of these
bundles (Figure 2). Bundles are moved to the minus ends
of microtubules and these bundles can be incorporated
into the forming spindle (Rusan et al., 2002). This dynein-
dependent clearing of microtubules from the cytoplasm
continues through prometaphase and metaphase stages
of mitosis (Rusan et al., 2002). Dynein-dependent transport
of free microtubule bundles has also been observed
recently within mitotic spindles (Khodjakov et al., 2003).

By late prophase, growing microtubule ends are
concentrated in the area surrounding the nuclear envelope.
These microtubules are stabilized by dynein/dynactin
associated with the nuclear envelope (Piehl and
Cassimeris, 2003). Since dynein/dynactin specifically
associates with the nuclear envelope at prophase (Busson
et al., 1998), the motor complex provides local microtubule
stabilization during a brief window of time. The interaction
between nuclear envelope-bound dynein and microtubules
allows dynein-dependent tearing of the nuclear envelope
to facilitate breakup of the envelope (Salina et al. 2002;
Beaudouin et al.2002; see Figure 2).

By the processes outlined above, both the interphase
microtubule array and the nuclear envelope are broken
down. The stage is now set for spindle assembly.
Microtubules rapidly assemble into the nuclear area once
the nuclear envelope is broken apart. Since microtubule
assembly begins at the centrosome, in the next section
we discuss how centrosomes contribute to spindle
assembly.

The Centrosome: Microtubule nucleation and perhaps
a bit more

The centrosome contributes to spindle assembly and
mitotic fidelity through several functions. The major function
of the centrosome is to nucleate microtubule assembly.
Centrosomes can also serve as a scaffold to anchor
regulatory proteins and they are necessary for cell cycle
progression, as discussed below.

Centrosomes and microtubule nucleation

Centrosomes are microtubule-organizing centers capable
of nucleating microtubules - they stimulate microtubule

assembly at tubulin concentrations insufficient to allow
spontaneous microtubule assembly. Within the
centrosome, microtubules are nucleated by ring complexes
composed of γ tubulin and associated proteins (Oakley and
Oakley, 1989; Zheng et al., 1995). The precise mechanism
by which these γ tubulin ring complexes nucleate
microtubule assembly remains a controversial issue (Job
et al., 2003).

Each centrosome nucleates a starburst array of
microtubules, such that each interphase cell typically has
a single microtubule array, and each mitotic cell, with its
replicated and separated centrosomes, forms a bipolar
spindle composed of two such arrays (Figure 1). Thus,
centrosomes determine where microtubule assembly
begins and can organize those microtubules into simple
patterns depending on the placement of the centrosomes
relative to each other. When separation of replicated
centrosomes fails at entry into mitosis, the resulting
monopolar spindle contains a single radial array of
microtubules, which cannot support chromosome
segregation.

The centrosome’s capacity to nucleate microtubules
increases approximately 5-fold at mitosis (Synder and
McIntosh, 1975; Kuriyama and Borisy, 1981; Telzer and
Rosenbaum, 1979), beginning at the G2/M transition (Piehl
et al., 2002). This increase in nucleation rate correlates
with an increase in the concentrations of γ tubulin and
pericentrin associated with the centrosome (Khodjakov and
Rieder, 1999; Dictenberg et al., 1998). It is not yet known
whether the recruitment of γ tubulin, or other proteins
necessary for nucleation, is sufficient to generate the higher
mitotic rate of microtubule nucleation, or whether other
regulatory mechanisms, such as phosphorylation,
contribute to centrosome maturation. A second pathway
independent of γ tubulin, may also contribute to microtubule
nucleation during mitosis (Hannak et al., 2002). The higher
rate of nucleation during mitosis contributes signficantly to
the approximately 4 to 10-fold increase in the number of
microtubules per cell.

Although microtubules are nucleated at the
centrosome, spindle microtubules do not remain tethered
to the centrosome. Instead, they are released, and the
release rate is increased at mitosis (Belmont et al. 1990;
reviewed in Compton, 2000; Bornens, 2002). It is not yet
clear whether katanin, a microtubule severing protein
localized to centrosomes, contributes to this microtubule
release (Buster et al., 2002).

Centrosomes as depots for regulatory proteins

Studies over the last several years have pointed to an
additional function of centrosomes as a depot for regulatory
kinases and other potential upstream regulators of cell cycle
progression. Multiple kinases and phosphatases have been
localized to centrosomes, and these are often associated
with scaffold proteins such as AKAP (reviewed by
Zimmerman et al., 1999; Diviani and Scott, 2001; Doxsey,
2001). Centrosome localization may contribute to the
substrate specificity of some kinases and phosphatases
(see Diviani and Scott, 2001; Doxsey, 2001).

The centrosomal protein pericentrin, which is required
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Figure 1. Microtubule organization in interpase (A) and mitotic (B) HeLa
cells. (A) Microtubule (green) and chromosomes (blue) in an interphase
cell. A single radial array of microtubules eminates from the single
centrosome located near the nucleus (shown here only as the brightest
green spot). (B) Microtubules (green) of the metaphase spindle are
organized into two overlapping arrays. Kinetochore regions of chromosomes
are shown in red. (C) Diagram of spindle organization at metaphase.
Centrosomes are shown as violet circles, microtubules as black or blue
lines and chromosomes as yellow ellipses. Microtubule minus ends are
anchored to spindle poles by structural and motor proteins (shown as thick
orange lines), while some plus ends make connections to the kinetochores
of chromosomes (red). Overlapping anti-parallel microtubules are
highlighted in blue. Cohesion factors, anchoring the chromatids together
are shown in green. Each of these components is discussed in detail in the
text.

Figure 2. Illustration of proposed steps of microtubule reorganization at the
G2/M transition. Step 1, the long microtubules of the G2 interphase array
(blue) are disassembled or bundled (shown as a red complex at the minus
ends of the bundled microtubules) and moved towards the centrosome by
dynein/dynactin. At this stage, dynein/dynactin also transiently associates
with the nuclear envelope. Step 2, new microtubules are stabilized at the
nuclear envelope by binding to dynein/dynactin. Step 3, dynein-dependent
pulling forces tear the nuclear envelope apart and microtubules now have
access to the chromosomes. See text for citations to relevant experiments.

Figure 3. Illustration of one model for chromatid pairing. Cohesin association with chromatin requires the deposition complex (shown on the left). A subset of
cohesins appears associated with chromatin prior to S-phase, suggesting stepwise assembly (not shown). To establish pairing, cohesin rings must either
become catenated (yellow rings, shown on the right) or a single cohesin ring encircles both sister chromatids (not shown). The role of the establishment
complex is unknown, but may facilitate ring catenation during DNA replication (shown in the center).
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for microtubule nucleation and forms a structural lattice
with gamma tubulin at the centrosome (Dictenburg et al.,
1998), is a member of the AKAP scaffold family (Diviani
and Scott, 2001). The sequence similarity between AKAPs
and pericentrin suggests that a dual scaffold is possible:
one that can both participate in microtubule nucleation and
anchor signaling molecules.

Several other regulatory proteins are also localized to
centrosomes including proteins of the ubiquitin degradation
pathway and the tumor suppressor, p53 (Ciciarello et al.,
2001; reviewed by Zimmerman et al., 1999). The
localization of p53 to centrosomes may be related to its
function in cell cycle arrest (Ciciarello et al., 2001), but
p53 also appears necessary for maintenance of normal
centrosome numbers (reviewed by Tarapore and
Fukasawa, 2002).

Centrosomes: spindle integrity and cell cycle
progression

Centrosomes are essential for spindle assembly in most,
but not all, cells (Sluder and Rieder, 1985; Zhang and
Nicklas, 1995). For example, spindles do not assemble in
insect spermatocytes if centrosomes are removed at
prophase or early stages of mitosis (Zhang and Nicklas
1995). Surprisingly, laser ablation of centrosomes suggests
that some cells can assemble a spindle in the absence of
centrosomes (Khodjakov et al., 1999). When centrosomes
are present, as is usually the case, they dominate spindle
assembly by nucleating microtubules (Heald et al., 1997).
Once spindle assembly has progressed to metaphase/
anaphase, centrosomes are no longer necessary for
spindle maintenance (Mitchison and Salmon, 1992; Nicklas
et al., 1989).

Given that centrosomes do not appear necessary for
maintenance of microtubules and bipolar spindle structure
once cells progress to metaphase or anaphase, it is
surprising that centrosomes are required for mitotic exit,
completion of cytokinesis and entry into the next S phase
(Khodjakov and Rieder 2001; Piel et al., 2001; reviewed
by Doxsey, 2001). These results suggest that centrosome
inheritence is important for cell cycle progression. We
suggest that during mitosis, it is necessary to attach
centrosomes to spindle poles to ensure their delivery to
daughter cells. Centrosome inheritence may be necessary
not only to provide a microtubule organizing center, but
also to ensure the proper localization of regulatory proteins,
such as those discussed above.

Defects in the number of centrosomes have been
observed in a number of human tumors, including cells
from the early stages of tumor development (Pihan et al.,
2001; Lingle et al., 2002; D’Assoro et al., 2002). In one
case, expression of human papillomavirus E6 and E7
oncoproteins was sufficient to upset the normal coupling
between centrosome replication and the cell cycle, resulting
in extra centrosomes and anueploidy (Duensing et al.,
2000). While the experiments with papillomavirus protein
expression suggest a causitive role for increased
centrosome number in causing anueploidy, it is not yet
known whether abberant numbers of centrosomes causes
the anueploidy associated with cancers, or results from
that anueploidy.

Microtubule Dynamics during mitosis

The above discussion focused on several possible
functions for centrosomes, but their role as microtubule
nucleators is clearly the most important for spindle
assembly. Once nucleated, these microtubules turn over
at a fast rate, primarily by dynamic instability. Below we
discuss regulation of this dynamic turnover by the
antagonistic activities of proteins able to stabilize or
destabilize microtubules. This dynamic turnover is
necessary for spindle assembly by allowing rapid
attachments to form between microtubules and
chromosomes (Hill et al., 1985; Kirschner and Mitchison,
1986).

Microtubule assembly dynamics are regulated by the
cell cycle machinery, resulting in much more dynamic
microtubules during mitosis. The ~ 10 fold faster turnover
of microtubules was initially observed using photobleaching
methods almost 20 years ago (Saxton et al., 1984).
Observations of individual microtubules in a number of
different experimental systems has shown that microtubule
growth rate is faster in mitosis, although increased rates
vary from a small 1.1 - 1.3 fold increase (Rusan et al.,
2001; Belmont et al., 1990) to a near doubling in velocity
(Piehl and Cassimeris, 2003; Hayden et al., 1990).
Experiments in Xenopus egg extracts (Belmont et al., 1990)
suggested that the major change in microtubule dynamics
at mitosis is a large increase in catastrophe frequency. In
other systems, such as sea urchin egg extracts and
mammalian epithelial cells, rescue is regulated to a larger
degree (Glicksman et al., 1992; Rusan et al., 2002). These
changes in catastrophe or rescue rates could each
generate short microtubules with more rapid turnover rates.

Regulation of microtubule assembly dynamics by
associated proteins

The changes in microtubule assembly dynamics throughout
the cell cycle are regulated by the activation or inactivation
of microtubule associated proteins (MAPs; reviewed in
Cassimeris, 1999). The cell cycle regulation of oncoprotein
18 (Op18), a microtubule destabilizer, is the best-studied
example. Op18 is phosphorylated at entry into mitosis and
all 4 serine residues must be phosphorylated to allow
mitotic progression (Larsson et al., 1997). Phosphorylation
preceeds sequentially: ser 25 and 38 are first
phosphorylated by CDK1, allowing subsequent
phosphorylation of ser 16 and 63 by an unknown kinase(s)
(Larsson et al., 1997; Marklund et al., 1996). Expression
of non-phosphorylatable Op18 mutants prevents assembly
of the mitotic spindle, presumably because microtubule
assembly is severly compromised by the presence of
excess microtubule destabilizing activity.

The idea that microtubule dynamics are regulated by
a balance between stablizing and destabilizing MAPs was
first proposed for XMAP215 (a stabilizer) and XKCM1 (a
destablilizer). Depletion of one protein from Xenopus egg
extracts resulted in very long or very short microtubules,
depending on the protein removed. Depletion of both
proteins returned microtubule lengths and catastrophe
frequency to near normal levels (Tournebize et al., 2000).
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The counteracting activities of these associated proteins
has also been demonstrated for their S. cerevisiae
homologs (Severin et al., 2001), but whether the
mammalian homologs function to antagonize each other
is not yet clear.

XMAP215 is phosphorylated by CDK1, which
significantly reduces the ability of XMAP215 to stimulate
microtubule growth rate (Vasquez et al., 1999). CDK1-
phosphorylated XMAP215 still binds microtubules
(Vasquez et al., 1999) and protects microtubules from the
destabilizing activity of XKCM1 (Tournebize et al. 2000;
Popov et al., 2001). Therefore, mitotic phosphorylations
can modify a protein’s activity without simply turning the
protein “off”. In contrast to XMAP215, XKCM1 does not
appear regulated by phosphorylation.

The antagonistic activities of XMAP215 and XKCM1
are not the only balancing act able to regulate microtubule
assembly. The microtubule stabilizer MAP4 counteracts
the microtubule destabilizing activities of both XKCM1 and
Op18 (Holmfeldt et al. 2002). It is not yet clear whether the
counter-acting activities of these proteins is important
during mitosis. Op18 is turned off by mitotic phosphorylation
(Larsson et al., 1997), as is the rescue-promoting activity
of MAP4 (Ookata et al., 1995). Since XKCM1 (MCAK in
mammalian cells) counteracts the stabilizing activities of
both XMAP215 and MAP4, mitotic phosphorylation of both
stabilizers may allow XKCM1/MCAK to gain the upper hand
and generate the more dynamic microtubules present
during mitosis.

Dissecting the functions of specific MAPs in mitotic
spindle assembly has not been straightforward since many
proteins show complex binding patterns. The XMAP215
family of MAPs is predominately localized to centrosomes
(Cullen et. al., 1999; 2001; Charrasse et al., 1998; Wang
and Huffaker, 1997), where they may contribute to
microtubule nucleation (Lee et al., 2001; Popov et al.,
2002). Genetic evidence also points to a function for this
protein family at microtubule plus ends or kinetochores
(Nabeshima et al., 1998; Garcia et al., 2001). Likewise,
XKCM1 is likely necessary for the high rate of mitotic
microtubule turnover since this kinesin stimulates
catastrophes (Walczak et al., 1996), but XKCM1 is also
necessary for microtubule attachments to kinetochores
(Walczak et al., 2002). Disruption of the mammalian
homolog, MCAK, also delays onset of anaphase (Maney
et al., 1998).

While dynamic microtubule turnover is required for
spindle assembly, subsets of microtubules become
differentially stabilized during mitosis. The most obvious
example of local stabilization occurs when microtubule plus
ends attach to kinetochores. By attaching to microtubule
plus ends, kinetochores reduce the dynamic turnover of
these microtubules by approximately 7 fold (Cassimeris et
al., 1990; Zhai et al., 1995). It is important to note that
kinetochore binding to microtubule plus ends still allows
tubulin subunit addition and subtraction from these ends
(Mitchison et al., 1986), but the rates of addition and
subtraction are greatly reduced.

Microtubules also turn over by flux, where the
microtubule polymer is pulled toward the microtubule minus
end (the poles), with concomitant assembly at the plus end

and disassembly at the minus end. Flux is likely driven by
minus end directed motors, but the motor responsible has
not been identified. The rate of flux differs considerably in
different systems, and thus the contribution of flux to
microtubule turnover rates can vary significantly (Maddox
et al., 2002; Mitchison, 1989; Waterman-Storer et al., 1998).

Dynamic microtubules and motor proteins can self-
organize into a bipolar spindle

Dynamic microtubules nucleated by the centrosome are
sculpted into a fusiform spindle in large part by molecular
motors. This is clearly observed for the focusing of
microtubule minus ends at the spindle pole. Microtubules
released from the centrosome are focused by two types of
motors, cytoplasmic dynein and the Kin C class of kinesins
(Gaglio et al., 1996; Mountain et al., 1999; Walczak et al.,
1998). These motors are all minus end-directed motors
and would move along microtubules toward the spindle
pole. By binding and crosslinking adjacent microtubules,
these motors pull the minus ends together. For cytoplasmic
dynein, crosslinking requires the associated complex
dynactin and the structural protein NuMA (Merdes et al.,
2000). The plus end directed kinesin Eg5 (bimC kinesin
family) is also required for spindle pole organization,
although the precise function of this motor in spindle pole
formation is not known (Gaglio et al., 1996; Sawin et al.,
1992; Heck et al., 1993; Blangy et al., 1995; Wilson et al.,
1997).

The crosslinking of focused minus ends is critical for
spindle function. The presence of free minus ends at the
spindle poles is thought necessary for microtubule flux,
while these minus ends also must be anchored to generate
tension on chromosomes and allow chromosome
movement. In the absence of proper anchorage, the
chromosomes would remain stationary and the poles and
microtubules would be pulled toward them (Nicklas, 1989),
as shown experimentally after inhibition of both NuMA and
HSET, a kin C kinesin (Gordon et al., 2001).

Plus and minus end directed kinesins also act
antagonistically to each other to generate a bipolar spindle.
These antagonistic functions were first demonstrated in S.
cerevisae (Saunders and Hoyt, 1992) and have been
shown subsequently in a wide range of experimental
systems (Sharp et al., 1999; Mountain et al., 1999). In the
absence of Eg5 or related plus end kinesins (bimC family),
centrosome separation fails and a monopolar spindle forms
(Saunders and Hoyt, 1992; Sawin et al., 1992; Gaglio et
al., 1996; Sharp et al., 1999; Mountain et al., 1999; Kapoor
et al., 2000). These results suggest that the plus end
directed bimC kinesins push anti-parallel microtubules
apart. Each bimC kinesin is a bipolar, tetrameric molecule
making it capable of sliding antiparallel microtubules past
each other (Kashina et al., 1996). The plus end directed
sliding of antiparallel microtubules would push the spindle
poles apart and would antagonize the tendency of minus
end directed motors to pull the centrosomes together. For
all experimental systems tested, simultaneous inactivation
of the bim C (plus end directed) and Kin C (minus end
directed) kinesins allows formation of a bipolar spindle.
Neither class of motors is absolutely required for spindle
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assembly since bipolar spindles will assemble, provided
both classes of motors are absent.

Structural proteins, such as TPX2 and the XMAP215
family, also contribute to spindle bipolarity (Gruss et al.,
2002; Garrett et al., 2002; Gergely et al., 2003). Whether
these proteins function to cross-bridge anti-parallel
microtubules or act in conjunction with motor proteins is
not yet known.

Chromosomes and spindle integrity

Microtubule dynamics, spindle assembly and maintenance
of the mitotic apparatus until anaphase onset are critically
dependent not only on centrosomes, MAPs and motors,
but also on the chromosomes which bridge the two half-
spindles. In this context, chromosomes represent both a
chemical depot that generates a microtubule plus-end
stabilizing environment and a mechanical structure that
can generate forces and link two half-spindles together.
The importance of chromosomes in spindle stability was
elegantly demonstrated by Zhang and Nicklas (1995).
Using micromanipulation to detach chromosomes and
move them out into the cytoplasm, they showed that
spindles disassembled when the chromosomes were taken
away.

Chromosomes as chemical depots of microtubule
regulatory factors.

Although most cells rely on centrosomes to organize a
bipolar spindle, some meiotic oocytes and plant cells are
able to assemble a spindle in the absence of centrosomes.
In meiotic oocytes, or cell extracts derived from them,
chromosomes play the central organizing role. By binding
factors that act upstream to regulate microtubule stability,
chromosomes mark the area where microtubule assembly
will occur (Kalab et al, 1999; Carazo-Salas et al., 1999;
Ohba et al., 1999; Wilde and Zheng, 1999; Zhang et al.,
1999). Motor proteins, such as dynein/dynactin and Eg5,
along with structural proteins such as NuMA, and TPX2,
then organize and gather these microtubules into a bipolar
spindle shape (Walczak et al., 1998; Carazo-Salas et al.,
2001; Gruss et al., 2001, Wiese et al., 2001; Nachury et
al., 2001).

Chromosomes are thought to create a local
microtubule stabilizing environment in their vicinity because
several regulatory proteins have been localized to mitotic
chromatin, including RCC1, a guanine nucleotide exchange
factor for Ran (Carazo-Salas et al., 1999), and a Polo-like
kinase (Budde et al., 2001). Recent experiments have
demonstrated a local high concentration of Ran-GTP
around chromatin in meiotic Xenopus egg extracts (Kalab
et al, 2002), suggesting that downstream effectors may be
regulated in this local environment. Each of these regulators
is thought to act upstream to regulate specific MAPs. For
example, local inactivation of a microtubule destabilizing
protein (oncoprotein 18) near chromatin would favor
microtubule assembly in this region of the cell (Anderson
et al., 1997; Budde et al., 2001).

Potential downstream targets of the Ran pathway
include TPX2, (Gruss et al., 2001), NuMA (Wiese et al.,

2001; Nachury et al., 2001), and the kinesin Eg5 (Wilde et
al., 2001). Both TPX2 and NuMA are structural components
necessary to organize spindle poles (reviewed in Compton,
2000). TPX2 and NuMA are nuclear proteins during
interphase and therefore both are cargo for the nuclear
import pathway, and have the sequences necessary to form
a complex with the importins. Ran-GTP can release these
proteins from importinß, freeing them to participate in
spindle assembly (Gruss et al., 2001; Wiese et al., 2001;
Nachury et al., 2001).

In tissue cells containing centrosomes, it is not known
whether a local environment favoring microtubule
stabilization is present during assembly of the mitotic
spindle, or whether such an environment is necessary. In
C. elegans embyros, Ran is required for spindle assembly,
but RCC1 is not (Askjaer et al., 2002). It is likely that
centrosomes dominate spindle assembly when they are
present and can override any defects in a Ran-dependent
stabilization pathway (e.g., Faruki et al., 2002).

For a local stabilizing gradient to function, the gradient
would have to decay with dimensions approximating that
of the spindle. Odde has developed a model to estimate
the hypothetical shape of a gradient of a phosphorylated
protein. This model incorporates a localized kinase, a
uniform concentration of phosphatase, and free diffusion
of the substrate. Based on assumptions of enzyme
phosphorylation and dephosphorylation rates, and protein
diffusion, he predicts that a gradient of phosphorylated
substrate would decay exponentially over approximately
10 µm (Odde, 2001). This 10 µm dimension is
approximately the length of a typical mammalian spindle,
suggesting that “microtubule chemotaxis” toward
chromosomes is feasible.

Chromosomes as mechanical bridges and force
producing organelles

A centrosome and associated microtubule radial array
comprise a half-spindle, an organelle capable not only of
force generation but motility. In large vertebrate cells,
premature centrosome separation during early prophase
can result in two independent and free moving half-spindles
that “swim” throughout the cytoplasm (Bajer, 1982; Waters
et al., 1993). Proper spindle assembly or fusion of the two
half-spindles into a stable mitotic apparatus requires that
opposing centrosomes become mechanically tethered
through microtubule interactions. Three possible linkages
that can tether half-spindles together involve 1) anti-parallel
microtubule interactions (described above), 2) kinetochore
- microtubule attachments and 3) microtubule interactions
with kinesins localized to chromosome arms (termed
chromokinesins).

One component of the mechanical linkage between
two half-spindles involves interdigitation of opposing polar
microtubules. As described above, crosslinking of
microtubules from opposing spindle poles are in part
produced by a variety of kinesin-like motor proteins. While
sufficient to initiate the association between two half
spindles, polar microtubule cross-linkages may not be
sufficient to maintain a spindle structure. For instance,
separated asters devoid of chromosomes initially form a
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bipolar spindle-like array, but this structure decays over
time (Faruki et al., 2002). Thus, chromosomes remain an
important contender in both spindle assembly and
maintenance.

A second component linking two half spindles together
involves chromosome interactions with microtubules via
the kinetochore. Kinetochores are unique protein
complexes assembled onto the single centromere DNA
region of each sister chromatid (Cheeseman et al., 2002;
Kitigawa and Hieter, 2001). Kinetochore-microtubule
interactions provide, on average, a poleward pulling force
(Skibbens et al., 1993; Khodjakov and Rieder, 1996; Waters
et al., 1996). This net pulling force occurs through coupled
microtubule plus-end depolymerization and motor protein
activities (such as CENP-E, MCAK/XKCM1, and
cytoplasmic dynein) located at the kinetochore (Pfarr et
al., 1990; Steuer et al., 1990; Yen et al., 1992; Wordeman
and Mitchison, 1995; Walczak et al., 1996). These
poleward-directed pulling forces act to counterbalance the
centrosome separation forces supplied by opposing polar
microtubule-associated motors (Kapoor and Compton,
2002). In the presence of chromosomes, half-spindles
remain independent up until microtubule plus-ends of one
half-spindle are captured and stabilized by kinetochores
of chromosomes associated with the other half spindle.
Images obtained using high resolution video microscopy
and electron microscopy indicate that microtubule capture
by a single opposing kinetochore is sufficient for two half-
spindles to initiate fusion, effectively producing a mitotic
spindle apparatus that is stable over time (Bajer, 1982;
Nicklas and Kubai, 1985; Rieder et al., 1990). These
observations (and below) reveal that chromosomes
ultimately tether centrosomes together.

Amazingly, the kinetochore-microtubule attachment
site continues to tether chromosomes to spindle poles
during tubulin addition and loss - allowing for chromosome
motion away and toward the centrosome while
mechanically linked to spindle poles (Rieder and Salmon,
1998). The role of the kinetochore-microtubule mechanical
linkage is evident in the characterization of yeast
kinetochore proteins such as the Duo1p, Dam1p, Dad1p
complex or Slk19p that associate with centromere DNA
and microtubules. Loss of any one of these kinetochore
proteins not only results in high rates of chromosome
missegregation, but also in a diversity of spindle defects.
For mutations in either Duo1p, Dam1p, Dad1p, cells contain
aberrant spindles structures including bent spindles and
partially elongated spindles that contain discontinuous or
decreased microtubule staining in the spindle center
(Cheeseman-Barnes et al., 2001; Enquist-Newman et al.,
2001; Jones et al., 2001). It is likely that these cells contain
two half spindles that are no longer joined together, similar
to the two separate prometaphase half spindles
occasionally observed in newt lung cells (Bayer, 1982;
Waters et al., 1993). In contrast, loss of Slk19p function
resulted in cells that contained abnormally short, but still
bipolar, spindles (Zeng et al., 1999). Cells harboring
mutations in both Slk19p and Kar3p (a kinesin-like
microtubule minus-end destabilizing factor) were unable
to assemble a bipolar structure and instead contained
monopolar spindles. If allowed to pre-form, bipolar spindles

quickly collapsed (Zeng et al., 1999; Meluh and Rose, 1990;
Endow et al., 1994). While the above observations reveal
that opposing kinetochore microtubule attachments provide
a mechanical link that tethers together centrosomes of
opposing half-spindles, not all kinetochore defects result
in overt spindle defects but instead cause cell cycle arrest.
This observation may be due to the intimate involvement
of the kinetochore-spindle assembly checkpoint system or
in partial abrogation of kinetochore structure. The reader
is directed to reviews on kinetochore structure and mitotic
checkpoints (Cheeseman et al., 2002; Hoyt, 2001;
Kitagawa and Hieter, 2001; Amon, 1999).

Several recent findings reveal that a third component
of spindle assembly and maintenance involves
chromosome-microtubule interactions via chromokinesins
(XKLP1, KLP38B and KID) - kinesins associated along
chromosome arms. The chromokinesins KLP1 and
KLP38B are critical for establishing and maintaining spindle
integrity. For instance, XKlp1 depletion by antisense
oligonucleotides resulted in unstable spindles. Addition of
XKlp1 antibodies to mitotic extracts containing preformed
spindles resulted in spindle collapse and dissociation of
spindle microtubules. Likewise, defects in KLP38B function
or KLP38B depletion resulted in aberrant circular mitotic
structures and abnormal anaphase (Vernos et al., 1995;
Wang and Adler, 1995; Molina et al., 1997; Ruden et al.,
1997; Walczak et al., 1998). Thus, microtubule association
with one class of chromokinesins associated along the
chromosome arms appears central to spindle assembly
and maintenance.

In contrast, KID-like kinesin family members are not
required for spindle assembly/maintenance but instead
appear to generate pushing or polar ejection forces that
promote chromosome movement away from the spindle
pole. Typically, chromosomes reside at the half-spindle
periphery near microtubule plus-ends. Depletion of Kid from
chromosomes within either monopolar or bipolar spindles
resulted in chromosome positioning close to the
centrosomes and defects in chromosome congression to
the metaphase (or meiosis II metaphase) plate (Antonio et
al., 2000; Funabiki and Murray, 2000; Levesque and
Compton, 2001; Perez et al., 2002). Intriguingly, spindles
remained predominantly intact under these conditions,
suggesting that the kid class of chromokinesins contribute
to chromosome positioning rather than spindle
maintenance.

Sister chromatid cohesion - gluing together
kinetochore and chromokinesin functions

Given the central role of chromosomes in both assembling
and maintaining spindle integrity, it is not surprising that
the stable association of two half spindles in part relies on
the glue that holds sister chromatids together. During S-
phase, each chromosome is replicated to produce two
identical chromosomes - termed sister chromatids. Sister
chromatids are paired along their entire length by an ill-
defined interaction of three different cohesion complexes:
the structural cohesins Smc1p, Smc3p, Mcd1p/Scc1p,
Scc3p/Irr1p, and Pds5p; the deposition complex comprised
of Scc2p and Scc4p; and the establishment factors Ctf7p/
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Eco1p, Ctf18p/Chl12p, Ctf8p and Dcc1p (Figure 3)
(Strunnikov et al. 1993; Kurlandzka et al. 1995; Guacci et
al. 1997; Michaelis et al. 1997; Toth et al. 1999; Hartman
et al. 2000; Panizza et al. 2000; Ciosk et al., 2000; Furuya
et al., 1998; Skibbens et al., 1999; Hanna et al., 2001;
Mayer et al., 2001). Structural cohesion factors assemble
as rings structures that either encompass both sisters or
one ring encircling each sister with the rings catentated
together (Carson and Christman; 2001, Melby et al., 1998;
Akhmedov et al., 1998; Campbell and Cohen-Fix, 2002;
Ivanov et al., 2002). This pairing, or cohesion, sterically
constrains sister chromatids so that sister kinetochores face
away from each other, promoting proper chromosome bi-
orientation. Cohesion also resists the poleward forces
generated at the kinetochore-microtubule interface and
spindle poles that act to pull sister chromatids apart.
Tension resulting from poleward pulling forces and sister
chromatid cohesion is monitored by eukaryotic cells to
ensure that each sister chromatid is properly associated
with spindle microtubules before initiating anaphase onset.

Loss of cohesion is thus predicted to result both in an
imbalance of forces, favoring chromosome-to-pole motion,
and disruption of the mechanical coupling that links two
half-spindles together. In both cases, the predictions are
borne out by experimentation. Mechanical or laser-induced
severing between sister chromatids or ablating the
kinetochore itself results in movement of the intact sister
chromatid(s) toward its associated spindle pole (Nicklas
and Staehly, 1967; McNeill and Berns, 1981; Rieder et al.,
1986; Hays and Salmon, 1990; Skibbens et al., 1995;).
Similarly, yeast cells harboring mutations in the cohesion
factors such as Ctf7p/Eco1p, Mcd1p/Scc1p and Pds5p
have partially elongated and often bent spindles with
separated but unequal masses of DNA (Guacci et al., 1997;
Skibbens et al., 1999; Hartman et al., 2000). Cohesion-
deficient cells delay in mitosis by activating the kinetochore/
spindle checkpoint. Coupled with the observation that these
spindles are only partially elongated (i.e., not true
anaphase) with broken spindles or spindles with decreased
microtubule intensity in the mid-region (i.e., half-spindle
separation), we suggest that defects in sister chromatid
cohesion result in the inability of kinetochore poleward
pulling forces to counteract the forces produced by
microtubule motors generating centrosome separation
forces. Thus, integrity of the spindle apparatus must in part
rely on maintaining cohesion between sister chromatids.

In the beginning: links between centrosome
duplication and establishment of sister chromatid
cohesion

The geometry of two separated centrosomes, each
nucleating a radial array of microtubules, is central to bipolar
spindle assembly and proper chromosome segregation
during mitosis. Typically, a single centrosome is passed
along to each daughter cell and replicated prior to division.
Under experimental conditions, centrosomes can form de
novo if the original centrosomes are first experimentally
destroyed. Cells apparently have a mechanism to sense
the absence of centrosomes and assemble new ones only
if necessary (Khodjakov et al., 2002). Cells lacking a

centrosome will not enter S phase (Khodjakov and Rieder,
2001), suggesting that DNA replication requires that a cell
have a centrosome.

In normal circumstances, however, centrosomes are
not produced de novo but duplicated in a highly regulated
fashion during S-phase under the control of CDK2
complexed with cyclin E (Hinchcliffe et al., 1998; Lacey et
al., 1999). For centrosome duplication, one target of active
CDK2 is nucleophosmin, a component of the nucleolus.
Phosphorylation likely regulates the activity or localization
of nucleophosmin, since expression of a non-
phosphorylatable mutant prevented centrosome duplication
by blocking centriole separation (Okuda et al., 2000).

Similarly, sister chromatid pairing is intimately coupled
to the DNA replication machinery. For instance, numerous
Replication Factor C (RFC) complex subunits (Rfc2p, Rfc4p
and Rfc5p) and at least one DNA polymerase (Polσ or
Trf4p) are now known to play additional roles in cohesion
(Wang et al., 2000; Mayer et al., 2001; Hanna et al., 2001;
Kenna and Skibbens, 2003). Ctf7p appears to be a critical
link between sister chromatid cohesion and DNA replication
(Figure 3). Ctf7p is required only during S-phase and
associates with each of three Replication Factor C (RFC)
complexes containing Rfc2p-Rfc5 and one of three larger
subunits: Rfc1p, Rad24p, or Ctf18p (Skibbens et al., 1999;
Kenna and Skibbens, 2003). RFC complexes load sliding
clamps onto DNA and thus promote processive DNA
replication (Kelman, 1997). Two such sliding clamps have
been identified. The homotrimeric PCNA sliding clamp
functions during the bulk of DNA replication while the
heterotrimeric Mec3p, Rad17p and Ddc1p sliding clamp is
a component of the DNA damage checkpoint mechanism
(Green et al., 2000; Kondo et al., 1999; Longhese et al.,
1997; Naiki et al., 2000; Paciotti et al., 1998). The
association of the cohesion establishment factor Ctf7p with
all three RFC complexes suggests that each is capable of
participating in cohesion establishment.

It is likely that cross-talk exists between the processes
required to activate centrosome duplication during S-phase
and those that couple cohesion establishment to DNA
replication. Toward this end, recent experiments in yeast
cells reveal a direct physical interaction between regulators
of chromatid cohesion and the spindle pole body duplication
machinery (L. Antoniacci, M. Kenna, P. Uetz, and R. V.
Skibbens, manuscript in preparation). Our understanding
of the mechanisms coupling DNA replication, cohesion
establishment and centrosome replication are likely to
expand in the next few years. It will be interesting to identify
the feedback controls that monitor each replication process,
and how it communicates to the other system when
problems arise. Such a feedback loop would ensure that
DNA and centrosome replication remain in synchrony, and
contribute to mechanisms to prevent anueploidy.

Concluding remarks

Numerous studies have detailed the critical roles
centrosomes and chromosomes play in spindle assembly
(while a few have suggested that each structure may not
be necessary at all times!). Given the importance of
centrosomes for subsequent cell cycle progression and
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for the localization of various signaling molecules (e.g. p53),
we suggest that centrosomes attach themselves to the
minus ends of microtubules to ensure their transport to
daughter cells, while chromosomes attach themselves to
the plus ends of microtubules for the same goal.
Centrosomes have staked themselves at homeplate, the
separated chromatids run to join them, giving each
daughter the right stuff to continue on and on.
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