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Abstract

Studies have shown that the iron concentration in the peritoneal fluid of women
is associated with the severity of endometriosis. Therefore, investigation of iron
metabolism-related genes (IM-RGs) in endometriosis holds significant implications
for both prevention and therapeutic strategies in affected patients. Differentially
expressed IM-RGs (DEIM-RGs) were identified by intersecting IM-RGs with differ-
entially expressed genes derived from GSE86534. Mendelian randomization analysis
was employed to determine DEIM-RGs causally associated with endometriosis, with
subsequent verification through sensitivity analyses and the Steiger test. Biomark-
ers associated with IM-RGs in endometriosis were validated using expression data
from GSE86534 and GSE105764. Functional annotation, regulatory network construc-
tion, and immunological profiling were conducted for these biomarkers. Single-cell
RNA sequencing (scRNA-seq) (GSE213216) was utilized to identify distinctively ex-
pressed cellular subsets between endometriosis and controls. Experimental validation
of biomarker expression was performed via reverse transcription–quantitative poly-
merase chain reaction (RT-qPCR). BMP6 and SLC48A1, biomarkers indicative of cellular
BMP response, were influenced by a medicus variant mutation that inactivated PINK1
in complex I, concurrently enriched by both biomarkers. The lncRNA NEAT1 regulated
BMP6 through hsa-mir-22-3p and hsa-mir-124-3p, while SLC48A1 was modulated by
hsa-mir-423-5p, hsa-mir-19a-3p, and hsa-mir-19b-3p. Immune profiling revealed a
negative correlation between BMP6 and monocytes, whereas SLC48A1 displayed a
positive correlation with activated natural killer cells. scRNA-seq analysis identified
macrophages and stromal stem cells as pivotal cellular components in endometrio-
sis, exhibiting altered self-communication networks. RT-qPCR confirmed elevated
expression of BMP6 and SLC48A1 in endometriosis samples relative to controls. Both
BMP6 and SLC48A1 were consistently overexpressed in endometriosis, reinforcing
their potential as biomarkers. Moreover, macrophages and stromal stem cells were
delineated as key contributors. These findings provide novel insights into therapeutic
and preventive approaches for patients with endometriosis.
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1. Introduction
Endometriosis is defined by the migration and implantation of viable endometrial

tissue, including stroma and glands, at ectopic locations outside the uterine cavity, resulting
in dysmenorrhea, severe pelvic pain, infertility, and psychological disorders such as anxiety,
depression, and sleep disturbances, which collectively impair the physical and mental
health of women of reproductive age [1,2]. The precise prevalence of endometriosis remains
unclear, with estimates ranging from 2% to 10% in the general female population and
reaching nearly 50% among women affected by infertility [3]. Despite its high burden,
this disorder is frequently overlooked or underestimated [4]. The latency between the
onset of symptoms and a definitive diagnosis may extend from 4 to 10 years, during which
delayed recognition exacerbates individual suffering, perpetuates poor health, and results
in a disease state that is more challenging to treat effectively [5].

Biomarkers are biological or physiological indicators reflecting normal or pathological
processes or therapeutic responses, functioning as essential tools for diagnosis, progno-
sis, prediction, and drug evaluation [6]. For diagnostic purposes, disease biomarkers are
principally categorized into nucleic acids and proteins [7]. The trajectory of biomarker dis-
covery has shifted from morphological and cytogenetic markers to sophisticated molecular
techniques such as polymerase chain reaction and next-generation sequencing, markedly
enhancing diagnostic accuracy and facilitating targeted therapeutic strategies [8]. Cur-
rently, no single biomarker, nor any biomarker panel, has demonstrated sufficient accuracy
and reliability for the definitive diagnosis of endometriosis [9]. Therefore, investigation
into biomarkers for endometriosis holds substantial importance for promoting early di-
agnosis and timely intervention, thereby offering a pivotal pathway toward improved
patient outcomes.

Ferroptosis, a regulated form of cell death closely linked to iron overload, is in-
duced by hemosiderin deposition resulting from hemorrhage at ectopic endometriosis
lesions, thereby initiating aberrant ferroptosis that subsequently influences cellular
clearance [10]. Iron metabolism represents a central molecular mechanism governing
ferroptosis [11]. In recent years, dysregulated iron metabolism has emerged as a defin-
ing feature of endometriosis, distinguishing it from other pathological conditions [12].
These findings highlight the importance of evaluating iron metabolism in women with
endometriosis, indicating its potential as a valuable marker for both disease presence
and progression. This perspective offers novel implications for endometriosis diagnosis
and monitoring [13].

Mendelian randomization (MR) employs genetic variation to strengthen causal infer-
ence regarding modifiable risk factors for disease, relying on germline genetic variants to
elucidate the impact of modifiable factors on outcomes [14]. To establish causal relation-
ships between exposures and outcomes, MR typically applies genetic variants that satisfy
the assumptions of an instrumental variable (IV), with single-nucleotide polymorphisms
(SNPs) serving as the preferred instruments due to their abundance [15]. The core assump-
tions include a strong association between SNPs and relevant exposures, independence
of SNPs from potential confounders, and the requirement that SNPs influence outcomes
exclusively through the exposure of interest, thereby excluding alternative pathways. These
principles ensure both methodological rigor and interpretability of MR analyses [16]. This
approach has been utilized to investigate associations between endometriosis and epithelial
abnormalities, ovarian cancer, and related conditions [17,18]. Moreover, Yan et al. re-
ported that plasma ADAMTS13 expression was significantly correlated with endometriosis
through two-sample MR analysis, suggesting its potential as a biomarker for endometrio-
sis [19]. Collectively, these findings indicate that MR represents an important strategy for
the identification of endometriosis-related biomarkers.
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By integrating the robust causal inference afforded by MR with the unique resolution
of single-cell analysis, in contrast to conventional transcriptomic methods, this study
was designed to advance the identification and validation of iron metabolism-related
biomarkers in endometriosis.

Given the emerging evidence that iron metabolism influences the pathophysiology
of endometriosis, we propose that iron metabolism–related genes (IM-RGs) may be im-
plicated in disease mechanisms and could represent potential diagnostic markers. To
test this hypothesis, the present study integrates Mendelian randomization with single-
cell transcriptomic analysis to identify and validate IM-RGs with a causal relationship
to endometriosis.

2. Materials and Methods
2.1. Data Collection

The datasets GSE86534, GSE105764, and GSE213216 were obtained from the Gene Ex-
pression Omnibus database (https://www.ncbi.nlm.nih.gov/geo/ accessed on 19 January
2024). GSE86534 comprised microarray data from the GPL20115 platform, including
tissue samples of 4 ectopic endometrium (EC) from endometriosis and 4 eutopic en-
dometrium (EU) from controls [20]. GSE105764, derived from the GPL20301 platform
for high-throughput analysis, contained tissue samples of 8 EC from endometriosis and 8
EU from controls, with only mRNA data selected [21]. GSE213216 was a single-cell RNA
sequencing (scRNA-seq) dataset from the GPL24676 platform, consisting of tissue samples
from 22 EC of endometriosis and 9 EU of controls [22]. GSE86534 and GSE105764 were
used as the training and validation sets, respectively. Additionally, 505 iron metabolism-
related genes (IM-RGs) were retrieved from the Molecular Signatures Database (MSigDB)
(https://www.gsea-msigdb.org/gsea/index.jsp accessed on 19 January 2024) (Table S1).
The dataset ukb-b-10903 for endometriosis (outcomes) was obtained from the Integra-
tive Epidemiology Unit (IEU) Open Genome-wide Association Study (GWAS) database
(https://gwas.mrcieu.ac.uk/ accessed on 28 January 2024). The GWAS dataset for en-
dometriosis included 462,933 samples (3809 endometriosis cases and 459,124 controls) and
9,851,867 SNPs. All samples in this dataset were of European descent.

2.2. Identification and Enrichment Analyses of Differentially Expressed IM-RGs (DEIM-RGs)

Differential expression analysis was performed on endometriosis and control sam-
ples from the training set using “limma” (version 3.56.2), applying the thresholds
|log2FoldChange (FC)| > 0.5 and p < 0.05 [23]. The results were visualized with “ggplot2”
(version 3.4.2) and “pheatmap” (version 1.0.12) (https://CRAN.R-project.org/package=
pheatmap accessed on 28 January 2024) to generate a volcano plot and heatmap, respec-
tively [24]. DEIM-RGs were subsequently identified through the intersection of differ-
entially expressed genes (DEGs) and the 505 IM-RGs by employing “ggVennDiagram”
(version 1.2.3) [25]. To further investigate the biological processes associated with DEIM-
RGs, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrich-
ment analyses were carried out (p < 0.05) using “clusterProfile” (version 4.8.2) [26].

2.3. Screening of Instrumental Variables (IVs) in MR Analysis

Expression quantitative trait loci data for DEIM-RGs (exposure factors) were obtained
from the IEU OpenGWAS database. The extract instrument function of “TwoSampleMR”
(version 0.5.8) was employed to read the exposure factors and filter SNPs, applying a
threshold of p < 5 × 10−8 [27]. To ensure SNP independence, those in linkage disequilibrium
(LD) were excluded using clump = TRUE, r2 = 0.001, and kb = 10,000. The outcome data
were retrieved with the extract outcome data function of “TwoSampleMR” (version 0.5.8).

https://www.ncbi.nlm.nih.gov/geo/
https://www.gsea-msigdb.org/gsea/index.jsp
https://gwas.mrcieu.ac.uk/
https://CRAN.R-project.org/package=pheatmap
https://CRAN.R-project.org/package=pheatmap
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Among the SNPs associated with exposure factors, variants unrelated to the outcome were
removed. Furthermore, SNPs with F-statistic < 10 or with fewer than three instruments were
excluded. The formula for calculating the F-statistic is F = R2

1−R2 × N−K−1
K , R2 represents

the coefficient of determination, N denotes the sample size, and k indicates the number of
included SNPs [28].

2.4. Mendelian Randomization (MR) Analysis and Expression Verification

To identify DEIM-RGs causally associated with endometriosis, uniform effect alleles
and effect sizes were harmonized using the harmonize data function of “TwoSampleMR”
(version 0.5.8). MR analysis was subsequently conducted with the mr function, integrating
five algorithms [MR Egger, weighted median, inverse variance weighted (IVW), simple
mode, weighted mode] [29–33]. Particular emphasis was placed on the IVW algorithm.
The p-value, odds ratio (OR), and 95% confidence interval (95% CI) derived from the
IVW method were evaluated, with p < 0.05 indicating a significant causal relationship
between DEIM-RGs and endometriosis. Moreover, OR > 1 suggested that DEIM-RGs
acted as risk factors for endometriosis, whereas OR < 1 indicated protective effects. DEIM-
RGs identified through IVW and exhibiting consistent expression trends in the training
set were defined as candidate genes. Scatter plots were applied to depict correlations
between candidate genes and endometriosis, forest plots to illustrate SNP effect sizes on
endometriosis for each candidate gene (evaluated by IVW), and funnel plots to assess
the randomization of MR analysis. To evaluate the robustness of MR results, sensitivity
analyses were conducted, including heterogeneity testing, horizontal pleiotropy testing,
and leave-one-out (LOO) analysis. A p-value of Cochran’s Q test > 0.05 for IVW indicated
no heterogeneity between candidate genes and endometriosis samples, whereas p > 0.05
in MR-Egger regression suggested no horizontal pleiotropy. LOO analysis confirmed
the reliability of the overall effect in the absence of serious bias distortion. To exclude
confounding by reverse causality, the Steiger test was performed, with TRUE and p < 0.05
regarded as evidence of causal direction. Finally, expression levels of candidate genes
were analyzed in endometriosis and control samples from the training and validation sets
using the Wilcoxon test (p < 0.05). Candidate genes with consistent expression trends and
significant differences were designated as biomarkers for subsequent analyses.

2.5. Functional Annotation of Biomarkers

To identify additional genes functionally related to the biomarkers and their associated
roles, the biomarkers were uploaded to the Gene Multiple Association Network Integration
Algorithm (GeneMANIA) (https://genemania.org/ accessed on 21 February 2024) to
construct the gene-gene interaction network (false discovery rate < 0.05). The reference
gene set c2.cp.kegg.v2023.1.Hs.symbols.gmt was obtained from MSigDB (https://www.
gsea-msigdb.org/gsea/msigdb/ accessed on 21 February 2024). With the biomarkers as
the target genes, the correlation coefficients between the expression of all genes and the
target genes were calculated in the training set, and the genes were ranked accordingly
(descending order). Based on these rankings, gene set enrichment analysis (GSEA) was
performed (p < 0.05) using “clusterProfiler” (version 4.8.2).

2.6. Construction of Regulatory Network

To investigate the molecular regulatory mechanisms of biomarkers, their miRNAs were
predicted using miRTarBase (https://mirtarbase.cuhk.edu.cn/~miRTarBase/miRTarBase_
2025/php/index.php accessed on 28 February 2024) and TarBase (https://dianalab.e-ce.uth.
gr/tarbasev9 accessed on 28 February 2024) through the NetworkAnalyst platform (https://
www.networkanalyst.ca/NetworkAnalyst/home.xhtml accessed on 28 February 2024). The
intersection of the miRNAs predicted from both databases was defined as the targeted

https://genemania.org/
https://www.gsea-msigdb.org/gsea/msigdb/
https://www.gsea-msigdb.org/gsea/msigdb/
https://mirtarbase.cuhk.edu.cn/~miRTarBase/miRTarBase_2025/php/index.php
https://mirtarbase.cuhk.edu.cn/~miRTarBase/miRTarBase_2025/php/index.php
https://dianalab.e-ce.uth.gr/tarbasev9
https://dianalab.e-ce.uth.gr/tarbasev9
https://www.networkanalyst.ca/NetworkAnalyst/home.xhtml
https://www.networkanalyst.ca/NetworkAnalyst/home.xhtml
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miRNAs of the biomarkers. Subsequently, starBase (https://rnasysu.com/encori/ accessed on
6 March 2024) was employed to predict the lncRNAs of the targeted miRNAs, and the lncRNA-
miRNA-mRNA regulatory network was constructed using “Cytoscape” (version 3.10.0) [34].

2.7. Immune Infiltration Analysis

In the training set, to assess differences in the immune microenvironment between
endometriosis and control samples, CIBERSORT was applied to estimate the composition
and relative abundance of 22 immune cell types in the training set [35,36]. CIBERSORT is a
computational method based on gene expression deconvolution. Its core principle involves
utilizing the Support Vector Regression algorithm to fit the global gene expression profile of
mixed tissues with a pre-defined signature gene set (Signature Matrix), thereby estimating
the relative proportions of specific immune cell types within the mixed tissues. CIBER-
SORT commonly employs the LM22 signature gene set, which is designed to accurately
distinguish 22 subtypes of human immune cells. The classification of these cell subtypes is
based on their functions and lineages, specifically including:

B cells: naive B cells, memory B cells, plasma cells;
T cells: CD8+ T cells, naive CD4+ T cells, resting memory CD4+ T cells, activated

memory CD4+ T cells, follicular helper T cells, regulatory T cells (Tregs), gamma delta T
cells (γδ T cells);

Natural killer (NK) cells: resting NK cells, activated NK cells;
Myeloid cells: monocytes, M0 macrophages, M1 macrophages, M2 macrophages,

resting dendritic cells, activated dendritic cells, resting mast cells, activated mast cells;
Granulocytes: eosinophils, neutrophils.
Infiltration levels of immune cells between endometriosis and controls were then

compared using the Wilcoxon test (p < 0.05). Furthermore, correlations between biomarkers
and differential immune cells were evaluated by Spearman analysis (|cor| > 0.5, p < 0.05).

2.8. ScRNA-Seq Data Analysis

In the GSE213216 dataset, “Seurat” (version 4.4.0) was employed for scRNA-seq data
analysis [37]. Parameters were set as min.cells = 3 and min.features = 500 to generate the
“Seurat” library. Double-cell detection was performed using “scDblFinder” (version 1.16.0),
with the double-cell rate set to 8% for samples containing more than 10,000 cells and to
5% for those with fewer than 10,000 cells [38]. The screening criteria included library
size > 200 and <95% of the second quartile, gene counts < 95% of the second quartile,
mitochondrial content < 10%, and exclusion of bicellular cells. Following quality control,
the FindVariableFeatures function was applied to select the top 2000 highly variable genes.
All samples were integrated using IntegrateData, and principal component analysis (PCA)
was conducted on cell distributions based on the 2000 highly variable genes. The per-
centage of variance explained by each principal component (PC) was ranked, and PCs
preceding the elbow point in the PCA elbow plot were selected for downstream analysis.
Subsequently, the FindNeighbors and FindClusters functions of “Seurat” (version 4.4.0)
were used for unsupervised clustering of cells via UMAP (resolution = 1). Cell clusters
were annotated according to marker genes obtained from the literature (Table S2) to identify
distinct subpopulations [39]. Differences in cell subpopulations between endometriosis
and control samples were evaluated using the Wilcoxon test (p < 0.05), and significantly
altered subpopulations were designated as key cells. Visualization was performed with
“ggplot2” (version 3.4.2). Cell–cell communication among subpopulations was analyzed
with “CellChat” (version 1.6.1) to examine intercellular interactions [40]. Pseudo-time anal-
ysis of key cells was carried out using the Monocle2 algorithm implemented in “monocle”
(version 2.30.0) to investigate cellular differentiation trajectories [41]. Finally, key cells were

https://rnasysu.com/encori/
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further subdivided into distinct subtypes by UMAP, and gene set variation analysis (GSVA)
of these subtypes was conducted using “GSVA” (version 1.50.0) [42].

2.9. Reverse Transcription-Quantitative Polymerase Chain Reaction (RT-qPCR)

There are ethical and practical difficulties in obtaining fresh human endometriosis
lesion tissue and matching normal endometrial tissue, as well as difficulty in controlling
confounding factors. Therefore, to preliminarily verify the expression trend of biomarkers
in the in vivo environment, this study chose to perform RT-qPCR in a rat model. An en-
dometriosis model was generated in five SPF-grade female Sprague-Dawley rats (190–210 g)
via autologous endometrial implantation. Under aseptic conditions, endometrial tissue
fragments of 5 mm × 5 mm size were grafted into subfascial tunnels with the mucosal
surface of muscle. Diethylstilbestrol (0.02 mg/kg) was administered orally for three days
postoperatively. Lesions were evaluated every three days by palpation. After four weeks,
laparotomy confirmed successful modeling by lesion volume (≥8 mm3), fluid-filled cysts
(≥2 mm), and fibrotic encapsulation with neovascularization. Autologous endometrial
fragments were observed to successfully adhere and implant at the grafting sites, form-
ing cystic and fibrotic nodules resembling human endometriotic lesions. Histological
confirmation was performed using hematoxylin and eosin (H&E) staining, which demon-
strated preserved endometrial glandular epithelium and surrounding stromal components,
thereby verifying the presence of ectopic endometrial tissue (Figure S1). Ectopic lesions
were then harvested for subsequent analyses. Five sham-operated rats, which did not
receive endometrial transplantation, served as controls.

To minimize variability, rats were age- and weight-matched, housed under standard-
ized environmental conditions, and randomly assigned to groups. All animals underwent
standardized surgical procedures and postoperative care, and outcome assessments were
performed in a blinded manner to ensure reliability. For RT-qPCR validation of biomarkers,
tissue samples were obtained from five ectopic lesions (EC group) in endometriosis model
rats and five eutopic endometrial tissues (EU group) from sham-operated controls. Each
sample was subjected to three technical repetitions. All procedures involving animals were
conducted in accordance with institutional guidelines.

Total RNA was extracted from endometriosis and control tissues using TRIzol reagent.
The RNA concentration and purity were measured with the NanoPhotometer N50. The
RNA was reverse-transcribed into complementary DNA (cDNA) using the SweScript First
Strand cDNA synthesis kit (Servicebio, Wuhan, China). qPCR was subsequently performed
according to the manufacturer’s instructions. The amplification protocol was set as follows:
95 ◦C for 1 min, 95 ◦C for 20 s, 55 ◦C for 20 s, and 72 ◦C for 30 s. Relative gene expression
levels were calculated using the 2−△△CT method, with GAPDH serving as the internal
reference gene. Primers were synthesized by Tsingke Biotech (Beijing, China) (Table S3).

2.10. Statistical Analysis

R software (version 4.2.2) was used to conduct all analyses. The linear model frame-
work within the R package “limma”(version 3.56.2) was utilized to identify DEGs. The
Wilcoxon test was used for intergroup comparisons in the analysis of gene expression and
immune cell infiltration based on GEO datasets. For the Mendelian randomization analy-
sis, the inverse variance weighting (IVW) method was adopted as the primary analytical
approach, supplemented by a variety of methods for sensitivity analysis. A p-value less
than 0.05 was regarded as statistically significant. In the GSE86534 dataset, 4 samples of EC
tissue and 4 samples of EU tissue were derived from the same 4 patients. Similarly, in the
GSE105764 dataset, 8 EC tissue samples and 8 EU tissue samples were obtained from the
same 8 patients. This is used to control for inter-individual variability. For the RT-qPCR



Curr. Issues Mol. Biol. 2025, 47, 831 7 of 23

experiments, a two-tailed t-test was used for intergroup comparisons, and a p-value < 0.05
was considered statistically significant.

3. Results
3.1. Screening and GO/KEGG Enrichment Analysis of DEIM-RGs

In the endometriosis and control samples of the training set, 5361 DEGs were identi-
fied, including 1964 upregulated and 3397 downregulated genes (Figure 1a,b). From the
intersection of these 5361 DEGs with 505 IM-RGs, 114 DEIM-RGs were obtained (Figure 1c).
These 114 DEIM-RGs were significantly enriched in 527 GO terms, comprising 448 biologi-
cal processes (BPs), 39 cellular components (CCs), and 40 molecular functions (MFs), along
with 13 KEGG pathways. The top five and top ten BPs, CCs, and MFs were presented
separately (Figure 1d,e), and the top five KEGG pathways were also displayed (Figure 1f).
Notably, the 114 DEIM-RGs were predominantly enriched in iron ion transport (BP), phago-
cytic vesicle (CC), iron ion binding (MF), and oxidative phosphorylation (KEGG). Several
enriched pathways, including phagocytic vesicle, oxidative phosphorylation, and heme
binding, were closely related to endometriosis [43–46].

Figure 1. Screening of DEIM-RGs and GO/KEGG enrichment analysis. (a,b) Volcano and heat maps
of DEGs in treatment and control samples from the GSE86534 dataset. (c) Venn diagram showing the
overlap between DEGs and IM-RGs. (d,e) GO and KEGG enrichment analyses of DEIM-RGs. (f) Top
five KEGG pathways enriched by DEIM-RGs.
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3.2. BMP6 and SLC48A1 Were Identified as Biomarkers

To identify genes causally associated with endometriosis, MR analysis was con-
ducted. The results demonstrated that BMP6 [OR = 1.001002221, 95% confidence
interval (CI) = 1.00001099–1.001994429, p < 0.05] and SLC48A1 (OR = 1.000723176,
95%CI = 1.000012434–1.00143442, p < 0.05) were significantly associated with the risk of
endometriosis, suggesting that increased levels of these two genes were associated with
an elevated risk of endometriosis and that they acted as risk factors for endometriosis
according to the IVW algorithm, consistent with their expression trends in the training
set (Table 1 and Table S1).

Table 1. Causal relationship between exposure factor and outcome.

Outcome Exposure Method nSNP p Value or or_lci95 or_uci95

ukb-b-
10903

eqtl-a-
ENSG00000153162

(BMP6)

Inverse
variance
weighted

10 0.04750698 1.001002221 1.000010995 1.001994429

ukb-b-
10903

eqtl-a-
ENSG00000211584

(SLC48A1)

Inverse
variance
weighted

5 0.046119158 1.000723176 1.000012434 1.001434424

In scatter plots, the positive slopes of the IVW algorithm indicated that BMP6 and
SLC48A1 increased endometriosis risk (Figure 2a,b). In forest plots, the overall effect sizes
of SNPs for BMP6 and SLC48A1 were positioned to the right of zero, further suggesting
their contribution to endometriosis susceptibility (Figure 2c,d). SNPs were approximately
symmetrically distributed on both sides of IVW (Figure 2e,f), consistent with random
allocation as described by Mendel’s second law.

The reliability of the MR results was supported by sensitivity analyses, including
heterogeneity testing, horizontal pleiotropy testing, and LOO analysis. Cochran’s
Q test showed p > 0.05 for BMP6 and SLC48A1 in the IVW heterogeneity test (Table 2).
Similarly, MR-Egger regression yielded p > 0.05 for both genes in the pleiotropy test
(Table 3). LOO analysis revealed no significant bias for BMP6 or SLC48A1 (Figure 2g,h),
indicating robust MR results. Furthermore, the Steiger test was TRUE for both genes,
demonstrating the absence of reverse causality between BMP6, SLC48A1, and en-
dometriosis (Table 4). The exposure levels of BMP6 and SLC48A1 were shown to affect
endometriosis, while endometriosis did not exert a reverse effect on the expression of
BMP6 and SLC48A1.

BMP6 and SLC48A1 were significantly upregulated in endometriosis samples com-
pared with controls in both the training and validation sets (p < 0.05) (Figure 3a). Therefore,
BMP6 and SLC48A1 were defined as biomarkers for subsequent analyses.

Table 2. Heterogeneity test of MR.

Symbol Exposure Method Q Q_df Q_p Value

SLC48A1 eqtl-a-ENSG00000211584 Inverse variance weighted 1.048 4.000 0.902
BMP6 eqtl-a-ENSG00000153162 Inverse variance weighted 10.915 9.000 0.282

Table 3. Horizontal pleiotropy test of MR.

Symbol Exposure Egger_Intercept se p Value

BMP6 eqtl-a-ENSG00000153162 0.000323385 0.000198411 0.141775357
SLC48A1 eqtl-a-ENSG00000211584 4.52 × 10−5 0.000131705 0.753939952
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Table 4. Steiger test analysis of MR.

Exposure Symbol snp_r2.exposure snp_r2.outcome Correct_Causal_Direction Steiger_p Value

eqtl-a-ENSG00000153162 BMP6 0.031483363 3.22 × 10−5 TRUE 1.63 × 10−194

eqtl-a-ENSG00000211584 SLC48A1 0.042311398 1.09 × 10−5 TRUE 1.11 × 10−268

Figure 2. The biomarkers associated with endometriosis. (a,b) The scatter plots of BMP6 and SLC48A1
with endometriosis. (c,d) Forest plots of BMP6 and SLC48A1. The label at the bottom of the figure,
“All—Inverse variance weighted (fixed effects)”, represents the overall Mendelian randomization
(MR) analysis result obtained by combining the effects of all single nucleotide polymorphisms (SNPs)
using the fixed - effect inverse variance - weighted (IVW) method. The red dot indicates the total IVW
result, and the line segment represents the 95% confidence interval. (e,f) The relationship between
SNPs and IVW. The red line represents the effect-size regression line, which visually illustrates the
overall trend of how effect sizes vary with their standard errors. (g,h) LOO analysis of BMP6 and
SLC48A1. 95% Confidence Interval for the total effect.
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Figure 3. GeneMANIA and GSEA for BMP6, SLC48A1, and a network of lncRNA–miRNA–mRNA.
(a) Expression of BMP6 and SLC48A1 in endometriosis and control samples from the training and
validation sets. * p < 0.05. (b) Biological pathways associated with biomarkers. (c,d) KEGG pathways
are significantly enriched for BMP6 and SLC48A1. ** p < 0.01, *** p < 0.001. (e) Molecular regulatory
network of BMP6 and SLC48A1.

3.3. GeneMANIA and GSEA for BMP6 and SLC48A1

To explore biological pathways associated with the biomarkers, the top 20 genes (e.g.,
AHSG, CHRDL2, BMP4) functionally similar to BMP6 and SLC48A1 were identified. These
genes were mainly involved in cellular response to BMP stimulus, response to BMP, and the
transmembrane receptor protein serine/threonine kinase signaling pathway (Figure 3b). To
further investigate pathways significantly related to the biomarkers, GSEA was performed.
BMP6 and SLC48A1 were significantly enriched in 79 and 112 KEGG pathways, respectively,
with the top five pathways displayed separately (Figure 3c,d). Among these, 65 KEGG
pathways were concurrently enriched by both BMP6 and SLC48A1, including medicus variant
mutation–inactivated PINK1 to electron transfer in complex I and medicus variant mutation–
induced aberrant abeta to electron transfer in complex I (Table S5). Enrichment results were
primarily associated with complex I–related electron transfer pathways, which are frequently
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linked to oxidative processes [47–50]. These findings suggested that BMP6 and SLC48A1 may
influence endometriosis through modulation of oxidation-related pathways.

3.4. Network of lncRNA-miRNA-mRNA

To further elucidate the association of biomarkers with endometriosis, their molecular
regulatory mechanisms were investigated. Prediction analysis indicated that BMP6 and
SLC48A1 were targeted by 2 and 3 miRNAs, respectively. In total, 57 lncRNAs were
predicted for the five miRNAs, leading to the construction of an lncRNA–miRNA–mRNA
regulatory network comprising 37 nodes and 62 edges (Figure 3e). Notably, NEAT1
regulated BMP6 via hsa-mir-22-3p and hsa-mir-124-3p, while NEAT1 regulated SLC48A1
through hsa-mir-423-5p, hsa-mir-19a-3p, and hsa-mir-19b-3p.

3.5. The Roles of BMP6 and SLC48A1 in the Immune Microenvironment Might Be Consistent

To investigate the immunological mechanisms of endometriosis, immune infiltration
analysis was performed. The relative abundance of 19 immune cell types in endometriosis and
control samples was assessed after excluding three cell types with zero abundance across all
samples (Figure 4a). M2 macrophages and monocytes exhibited higher levels in endometriosis
samples, while activated NK cells were more abundant in control samples, with all differences
reaching statistical significance (p < 0.05) (Figure 4b). The correlations of BMP6 and SLC48A1
with these three differential immune cell types were consistent (Figure 4c). The strongest
negative correlation was observed between BMP6 and monocytes (cor = −0.81, p = 0.02),
whereas the strongest positive correlation was found between SLC48A1 and activated NK
cells (cor = −0.86, p = 0.01) (Table S6). These findings suggested that monocytes and NK
cells influence endometriosis progression, and BMP6 and SLC48A1 may contribute to disease
development by modulating these immune cell populations [51–54].

Figure 4. Association of BMP6 and SLC48A1 with immune microenvironment characteristics in
endometriosis. (a) Immune infiltration analysis in endometriosis and control samples. (b) Relative
abundance of immune cells in endometriosis and control samples. Ns not significant, * p > 0.05.
(c) Correlations of BMP6 and SLC48A1 with the three differential immune cell types.
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3.6. Macrophages and Stromal Stem Cells Were Designated as Key Cells

To identify additional cell populations associated with endometriosis, scRNA-seq analysis
was performed. After quality control, a total of 151,571 cells and 23,767 genes were retained
from the dataset (Figure S2), and the top 2000 highly variable genes were identified (Figure S3).
PCA revealed no significant outliers (Figure 5a), and 28 PCs were selected for subsequent
analysis based on the elbow plot (Figure 5b). Unsupervised clustering then defined 28 distinct
cell clusters (Figure 5c), and the expression profiles of marker genes across these clusters were
examined (Figure 5d). Based on these results, nine cell subpopulations, including fibroblasts,
T cells, and macrophages, were annotated (Figure 5e,f; Table 5). The proportions of the
nine cell subpopulations in endometriosis and control samples were compared (Figure 5g).
Macrophages and stromal stem cells showed significant differences between groups (p < 0.05)
(Figure 5h). Specifically, macrophages were more abundant in endometriosis samples, whereas
stromal stem cells were more prevalent in controls. Therefore, macrophages and stromal stem
cells were designated as key cells for further analyses.

Figure 5. scRNA-seq analysis of key cells associated with endometriosis. (a) Scatter plot of principal
component analysis (PCA) for single-cell transcriptome data, showing the distribution of cells after
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dimensionality reduction and the heterogeneity among samples. (b) This is a PCA scree plot,
which assists in determining the number of principal components (PCs) to retain for subsequent
dimensionality reduction analyses. The X-axis represents the number of principal components,
and the Y-axis represents the standard deviation corresponding to each PC. The scatter points in
the figure illustrate the trend of change between PCs and their corresponding standard deviations.
(c) Unsupervised clustering of 28 cell clusters. (d) Expression of marker genes in the 28 clusters.
(e,f) Annotation of nine cell subpopulations (fibroblasts, T cells, macrophages, etc.). (g) Proportion
of the nine subpopulations in the endometriosis and control samples. (h) Key immune cells differ
between endometriosis and control samples. Ns not significant, ** p < 0.01.

Table 5. Cell subpopulations annotated.

Cell Clusters Cell Subpopulations

0, 1, 2, 4, 9, 10, 13, 16, 17, 27 fibroblasts
3, 5, 7, 12, 15 T cells

8, 20, 23 endothelial cells
6, 22 epithelial cells
11, 26 NK cells

14, 21, 24 macrophages
18 B cells
19 stromal stem cell
25 MAST cells

3.7. Functional Analysis of Key Cells

To elucidate the functions of key cells, cellular communication and pseudo-time
analyses were conducted. Cellular communication analysis revealed that macrophages
exhibited reduced self-communication in endometriosis samples, while stromal stem cells
displayed no self-communication compared with control samples (Figure 6a,b). Moreover,
macrophage interactions with endothelial cells were weakened in endometriosis samples,
and stromal stem cells showed no interactions with fibroblasts or endothelial cells in
endometriosis compared with those in controls (Figure 6c,d).

Pseudo-time analysis demonstrated that both macrophages (Figure 7a,b) and stromal
stem cells (Figure 7c,d) progressed through three differentiation stages, with stage 1 repre-
senting the initiation stage. Macrophages (Figure 7e,f) and stromal stem cells (Figure 7g,h)
were subsequently classified into 13 and 10 cell subtypes, respectively. GSVA showed that
macrophage subtypes were enriched in glycolysis (subtype 7), G2M checkpoint (subtype
9), and allograft rejection (subtype 12) (Figure 7i). Subtypes of stromal stem cells were
enriched in MYC targets V2 (subtype 0), DNA repair (subtype 3), UV response up (subtype
5), protein secretion (subtype 7), and angiogenesis (subtype 9) (Figure 7j). Several pathways
enriched in these subtypes, such as glycolysis and protein secretion, were associated with
endometriosis. These findings suggested that key cells may contribute to endometriosis
development through the regulation of such pathways.

3.8. BMP6 and SLC48A1 Were Verified by RT-qPCR

To validate the findings from bioinformatics analyses, RT-qPCR was performed for
BMP6 and SLC48A1 in all endometriosis and control samples. The RT-qPCR results were
consistent with the bioinformatics analyses, confirming that BMP6 and SLC48A1 were dif-
ferentially expressed between the endometriosis and control groups. Both genes exhibited
significantly higher expression in endometriosis samples (Figure 8a,b).
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Figure 6. Cellular communication analysis of key cells. (a,b) Cellular communication analysis
of macrophages and stromal stem cells. Lines of different colors represent the interaction pairs
between different cells involved in cell–cell communication strength or count; the thicker the line,
the stronger the communication strength or the greater the communication count. Points of different
colors represent cell types; the larger the circle, the greater the number of cells. (c,d) Interactions of
macrophages with endothelial cells and stromal stem cells with fibroblasts and endothelial cells in
endometriosis samples. A line of one color corresponds to the interactions between one cell type
and all other cell types—for example, red represents the interactions between fibroblasts and all
other cells.
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Figure 7. Pseudo-time analysis of key cells. (a,b) 3 stages of differentiation of macrophages. (c,d) 3 stages
of differentiation of stromal stem cells. (e,f) 13 subtypes of macrophages. (g,h) 10 subtypes of stromal
stem cells. (i) Heat maps of GSVA for pathways of macrophages. (j) Heat maps of GSVA for pathways
of stromal stem cells.

Figure 8. RT-qPCR validation of BMP6 and SLC48A1. * p < 0.05. (a) Expression of BMP6 in endometrio-
sis and control samples. (b) Expression of SLC48A1 in endometriosis and control samples. ** p < 0.01.
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4. Discussion
The role of ferroptosis in endometriosis affects the survival and clearance of ec-

topic tissues. However, its underlying mechanisms remain controversial [55]. Iron
metabolism, a key metabolic pathway linked to ferroptosis in endometriosis pathogene-
sis, has been widely recognized [56]. Iron metabolites, particularly iron and ferritin in
cyst fluids and endometriotic tissues, act as biomarkers associated with the pathophysio-
logical and pathogenic processes of ovarian endometriosis [57]. Abnormalities in iron
metabolism, as revealed in endometriosis peritoneal fluid, are correlated with increased
red blood cell counts and elevated hemoglobin levels. Iron homeostasis contributes to
endometriosis pathogenesis primarily through hemoglobin by-products and inflamma-
tory or oxidative stress [58]. The investigation of iron metabolism–related biomarkers in
endometriosis offers potential for early diagnosis and therapeutic prediction. Through
differential expression analysis, MR analysis, receiver operating characteristic curve
analysis, and expression level assessment, two IM-RGs were identified as potential
biomarkers for endometriosis. Moreover, single-gene GSEA, GeneMANIA, ceRNA net-
work, immune infiltration, and single-cell analyses revealed the biological pathways,
molecular mechanisms, regulatory networks, and expression patterns of BMP6 and
SLC48A1 in macrophages and stromal cells, thereby providing valuable insights into
endometriosis diagnosis and treatment strategies.

The biomarkers BMP6 and SLC48A1 demonstrated significantly elevated expression
in endometriosis samples, a finding consistently validated through both bioinformatics
and RT-qPCR analyses. The novelty of this study lies in the integration of single-cell
transcriptomics with MR to identify iron metabolism–related genes, an approach not
previously reported. Moreover, BMP6 and SLC48A1 represent newly identified target
genes, as they have not been documented in prior studies.

BMP6, a member of the transforming growth factor-β (TGF-β) superfamily, is a
multifunctional cytokine involved in diverse biological processes, including the reg-
ulation of cell proliferation, differentiation, apoptosis, immune responses, and iron
homeostasis [59,60]. Its potential mechanisms of action in endometriosis are likely mul-
tifaceted. Firstly, as a key regulator of iron metabolism, BMP6 may respond to iron
overload caused by recurrent bleeding within ectopic lesions, upregulating hepcidin
expression via the canonical SMAD signaling pathway and thereby disrupting both
systemic and local iron homeostasis [60,61]. This abnormal accumulation of iron can
catalyze excessive production of reactive oxygen species (ROS), leading to oxidative
stress that promotes inflammation, cell proliferation, and tissue fibrosis, collectively cre-
ating a microenvironment favorable for the survival and growth of ectopic endometrial
tissue [62,63]. Moreover, as a member of the TGF-β superfamily, BMP6 may directly
influence endometrial cells through autocrine or paracrine signaling by engaging BMP
receptors on the cell surface, thereby activating downstream pathways that enhance
proliferation, invasiveness, and resistance to apoptosis [59]. Previous studies also sug-
gest that BMP6 modulates granulosa cell function, affects steroid hormone synthesis,
and participates in neutrophil accumulation and regulation within the ovary, potentially
promoting endometriosis progression through crosstalk with estrogen signaling [64,65].
Collectively, these observations suggest that BMP6 contributes to endometriosis de-
velopment and progression through multiple interconnected mechanisms, including
regulation of iron metabolism, direct cellular signaling, and interactions with hormonal
pathways, underscoring its potential as a therapeutic target.

In addition, this study found that SLC48A1 is upregulated in endometriosis and may
drive disease progression by modulating iron metabolism. SLC48A1 encodes the heme
transporter HRG-1, responsible for transferring heme iron from lysosomes to the cytoplasm
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for reutilization [66]. In ectopic lesions, cyclical bleeding results in massive red blood cell
extravasation, releasing heme as a substantial iron source [67]. Upregulation of SLC48A1
likely enhances the capacity of endometrial cells to recycle heme iron, causing intracellular
iron overload [68]. Excess free iron catalyzes the generation of ROS, leading to oxidative
stress that not only directly promotes cell proliferation, invasion, and resistance to apoptosis
but also activates inflammatory signaling and fibrotic processes, thereby establishing a
microenvironment favorable for ectopic endometrial survival and growth [69–71]. There-
fore, SLC48A1 may act as a critical molecular link connecting lesion hemorrhage to disease
progression via the heme iron recycling–iron overload–oxidative stress axis, representing a
potential therapeutic target in endometriosis.

The impaired immune system, characterized by abnormal activities of neutrophils,
macrophages, NK cells, and dendritic cells that secrete cytokines and defensins, has
been recognized as a major factor in the initiation of endometrial lesions, primar-
ily through angiogenesis, growth, and invasion of endometriosis cells [72]. In this
study, M2 macrophages and monocytes were significantly elevated in endometriosis
samples. BMP6 exhibited the strongest negative correlation with monocytes, whereas
SLC48A1 demonstrated the strongest positive correlation with activated NK cells, sug-
gesting their involvement in endometriosis through immune cell regulation. Peritoneal
macrophages represent the predominant immune cell population within peritoneal
fluid and play a central role in establishing endometriotic lesions, thereby contributing
substantially to disease progression [73]. Macrophages located in close proximity to
endometriotic cells regulate homeostasis within the immune microenvironment of en-
dometriosis. Notably, macrophage polarization is essential for controlling the initiation
and progression of ectopic endometrial cells, with M2 macrophages being strongly
implicated in promoting endometriosis development [74]. Moreover, macrophage-
derived IL-33/ST2 has been shown to inhibit ferroptosis in endometriosis through the
ATF3/SLC7A11 axis [75], indicating that macrophages may influence endometriosis
ferroptosis via SLC regulation.

Monocytes and NK cells influence the progression of endometriosis by participating
in inflammatory networks that further drive disease development [76]. NK cells present in
peritoneal fluid, characterized by CD16 and CD56 expression together with inhibitory and
activating receptors, normally function to eliminate endometrial cells during retrograde
menstruation. However, in women with endometriosis, alterations in these receptors
and cytokine secretion by NK cells contribute to the initiation and progression of the dis-
ease [77]. Therefore, endometrial lesions that persist outside the uterus provoke sustained
inflammatory responses by continuously recruiting immune cells to ectopic sites. Therefore,
endometriosis may be regarded as an autoimmune disorder.

Genetic and epidemiological evidence indicate that endometriosis affects both
physical and mental health, with its associations with depression, anxiety, and eating
disorders persisting independently of chronic pain, suggesting that additional biological
mechanisms may contribute to these relationships [78]. Clinicians should be aware of the
high prevalence of anxiety, depression, and sexual dysfunction in endometriosis patients,
as early diagnosis and appropriate management may mitigate related psychological
comorbidities [2]. Dysregulated iron metabolism, particularly abnormalities in iron
regulatory proteins, has been considered a key pathophysiological mechanism under-
lying multidimensional psychiatric disorders [79]. For example, astrocytes regulate
brain iron homeostasis by modulating ferritin heavy chain (Fth1) and ferritin light chain
(Ftl1) mRNA distribution. With aging, the Fth1/Ftl1 ratio increases, accompanied by
a shift of Fth1 to fine processes, whereas in Alzheimer’s disease, this ratio decreases,
redistributing Fth1 to the soma and Ftl1 to large processes near amyloid beta (Aβ) de-
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posits [80]. This study identified iron metabolism–related genes as potential biomarkers
for endometriosis. Given the established association between iron metabolism and
psychiatric disorders, further investigation is warranted to determine whether these
genes may provide mechanistic insights into the psychiatric comorbidities observed
in endometriosis.

Although this study is primarily exploratory at the basic research level, our findings
may provide meaningful implications for the clinical management of endometriosis. First,
the detection of BMP6 and SLC48A1 expression holds promise as a laboratory-based
auxiliary diagnostic tool. Monitoring alterations in these genes could help to assess disease
activity or therapeutic responsiveness in affected patients. Second, both genes may serve as
potential molecular targets for the development of novel therapeutic strategies. For instance,
designing small-molecule inhibitors against SLC48A1 could disrupt the iron recycling
pathway within ectopic lesions, thereby restraining their growth. Future investigations
should aim to validate the diagnostic relevance of these genes in larger clinical cohorts and
to evaluate the feasibility of targeting them for therapeutic intervention.

In summary, this study identified two iron metabolism–related biomarkers in en-
dometriosis through bioinformatics analysis, providing a novel theoretical basis for further
mechanistic research. Nevertheless, several limitations should be acknowledged. First, the
analyses were primarily dependent on publicly available databases, which may restrict
the generalizability of the findings. Second, experimental validation was limited to RT-
qPCR, and the reliance on a single technique may compromise accuracy. To address these
issues, we plan to collect multicenter, prospective clinical cohorts encompassing a broader
range of populations and disease subtypes, in order to validate the robustness of our
observations and construct a more reliable diagnostic model. Moreover, to strengthen the
rigor of validation, we intend to incorporate multiple technical platforms, such as Western
blotting and immunohistochemistry, to confirm biomarker expression at the protein level.
In addition, functional gain- and loss-of-function studies in cellular and animal models will
be performed to elucidate the underlying molecular mechanisms, thereby enhancing both
the reliability and the scientific value of our conclusions.

5. Conclusions
This study integrated MR and transcriptome data analyses to investigate ferroptosis-

related biomarkers in endometriosis, preliminarily revealing the potential functions of these
biomarkers in the disease and their associations with immune cells. These findings provided
a foundation for further exploration of the molecular mechanisms of iron metabolism–
related genes in endometriosis and also offered new insights for the early diagnosis and
development of therapeutic strategies for the disease.
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