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Abstract: Gliomas constitute a diverse and complex array of tumors within the central nervous
system (CNS), characterized by a wide range of prognostic outcomes and responses to therapeutic
interventions. This literature review endeavors to conduct a thorough investigation of gliomas, with
a particular emphasis on glioblastoma (GBM), beginning with their classification and epidemiological
characteristics, evaluating their relative importance within the CNS tumor spectrum. We examine the
immunological context of gliomas, unveiling the intricate immune environment and its ramifications
for disease progression and therapeutic strategies. Moreover, we accentuate critical developments in
understanding tumor behavior, focusing on recent research breakthroughs in treatment responses
and the elucidation of cellular signaling pathways. Analyzing the most novel transcriptomic studies,
we investigate the variations in gene expression patterns in glioma cells, assessing the prognostic and
therapeutic implications of these genetic alterations. Furthermore, the role of epigenetic modifications
in the pathogenesis of gliomas is underscored, suggesting that such changes are fundamental to
tumor evolution and possible therapeutic advancements. In the end, this comparative oncological
analysis situates GBM within the wider context of neoplasms, delineating both distinct and shared
characteristics with other types of tumors.

Keywords: gliomas; central nervous system tumors; epidemiology; immunological milieu; tumor
microenvironment; transcriptomics; epigenetic alterations; proteomics; metabolomics; comparative
oncology

1. Introduction

Gliomas are identified as primary CNS tumors thought to originate from neuroglial
stem or progenitor cells. These neoplasms have their malignancy graded from 1 to 4 by the
World Health Organization (WHO), grades which suggest a range from benign to highly
malignant forms [1]. Currently, astrocytoma (AS) IDH-mutant is ranked as grade 2, 3, or 4,
oligodendroglioma (ODG) is ranked as grade 2 or 3, and GBM, the malignancy with the
worst prognostic compared to the latter, as grade 4 [1].
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It is well-documented that the majority of low-grade gliomas (LGGs) will transform
into high-grade malignant forms over time [2]. The progression of these tumors is con-
ceptualized as a series of developmental stages, which include the initial transformation
from the progenitor cell, the acquisition of the capability to invade surrounding tissues,
the stimulation of cellular proliferation, the disruption of normal cell cycle regulation,
the enhancement of angiogenesis, and subsequent clonal evolution leading to further
heterogeneity within the tumor [3].

Gliomas predominantly appear within the cerebral lobes, according to a study per-
formed on 331 adults with a glioma diagnosis: frontal (40%), temporal (29%), parietal (14%),
and occipital (3%) [4]. However, a minority may develop in the brain stem, cerebellum, or
spinal cord [4]. Epidemiological data indicate a higher incidence of malignant brain tumors
in males, whereas females more frequently develop meningiomas and other nonmalignant
neoplasms. The median age for diagnosis across all brain and CNS tumors is 59 years [5,6].

Gliomas constitute 24% of adult brain tumors and are considered to be the second-
most prevalent CNS neoplasm in this demographic. Survival rates are histology-dependent,
with pilocytic AS patients experiencing 10-year survival rates of over 90%, in stark contrast
to GBM, where only 5% of patients reach the 5-year survival mark [7].

The occurrence of high-grade gliomas (HGG) in the brainstem is more frequent among
females and the non-Hispanic demographic [8]. A significant majority (69.8%) of these
neoplasms are identified through radiographic means. Nevertheless, the mortality risk
associated with these tumors is increased in Black individuals and those of other races
compared to White individuals. Survival rates do not demonstrate a significant variation
between sexes [9]. LGGs are categorized as grade 1 or grade 2 neoplasms under the WHO
Classification of Tumors of the CNS, a classification that is predicated on their benign
characteristics and indolent growth patterns, as evident in radiographic studies. Collec-
tively, these neoplasms constitute the predominant category of primary CNS tumors in the
pediatric and adolescent demographic, accounting for approximately 30% of such cases.
Within this category, Pilocytic Astrocytomas (PAs; WHO grade 1) are particularly prevalent,
comprising around 20% of brain tumors in individuals below the age of 20 years [10–12].

Within the context of the overall cancer statistics in the United States, primary brain
tumors comprise 1.4% of all cancer cases and account for 2.4% of cancer-related mortal-
ity. Annually, there are approximately 20,500 new cases diagnosed and 12,500 fatalities
attributed to primary malignant brain tumors [13].

The need for extensive exploration and research in the field comes from the fact that
GBM represents the majority of glioma cases, accounting for 57.3% of such diagnoses. The
five-year survival rate for patients diagnosed with GBM remains markedly low, standing
at a mere 6.8% [14,15].

The recent advancements in the understanding of glioma biomarkers and subtypes
have underscored a series of clinical conundrums. One primary challenge lies in the reinter-
pretation of past study outcomes and retrospective datasets in light of novel classification
systems, which is essential for refining prognostic evaluations and therapeutic guidance
for patients. Additionally, these new classifications necessitate a reconsideration of the
structure and patient stratification methods in upcoming clinical trials [14].

Magnetic resonance imaging (MRI) demonstrates a superior sensitivity in the identifi-
cation of gliomas; however, the distinction of gliomas from other cerebral pathologies and
the precise assessment of their malignancy grade present significant challenges, especially
in instances of recurrent gliomas subsequent to earlier therapeutic procedures [16].

2. Genetic Landscape of Gliomas

Gliomas have been implicated in association with uncommon genetic disorders that
involve germline mutations. Notably, Li-Fraumeni syndrome, linked with mutations in
the TP53 gene, and neurofibromatosis types 1 and 2, underscore the genetic predisposition
towards these neoplasms [17].
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ASs frequently exhibit mutations in several genes, including IDH1, IDH2, ATRX,
TP53, and CDKN2A/B. ODGs, characterized by IDH mutations and a distinctive 1p/19q-
codeletion, harbor mutations in IDH1, IDH2, TERT promoter, CIC, FUBP1, and NOTCH1,
among others. GBMs, generally IDH-wildtype, are identified by mutations in the TERT
promoter, chromosomal aberrations in chromosomes 7 and 10, and EGFR mutations [1].

Pediatric-type diffuse LGGs, specifically diffuse ASs with MYB or MYBL1 alterations,
involve mutations primarily in the MYB and MYBL1 genes. Angiocentric Glioma is similarly
associated with MYB mutations. Polymorphous Low-Grade Neuroepithelial Tumor of
the Young presents mutations in the BRAF and FGFR gene families. Moreover, diffuse
LGGs, showing alterations in the MAPK pathway, have mutations in FGFR1 and BRAF
(Figure 1). Pediatric-type diffuse HGGs, particularly Diffuse Midline Gliomas with H3
K27 alterations, display mutations in H3 K27, TP53, ACVR1, PDGFRA, EGFR, and EZHIP.
Conversely, Diffuse Hemispheric Glioma, a H3 G34-mutant, exhibits mutations in H3
G34, TP53, and ATRX. Diffuse Pediatric-Type HGGs, both H3-wildtype and IDH-wildtype,
are associated with mutations in PDGFRA, MYCN, and EGFR (methylome). Infant-Type
Hemispheric Glioma predominantly shows mutations in the NTRK family, ALK, ROS,
and MET genes. Among circumscribed astrocytic gliomas, Pilocytic AS is characterized
by mutations in KIAA1549-BRAF, BRAF, and NF1, while High-Grade Astrocytoma with
Piloid Features exhibits alterations in BRAF, NF1, ATRX, and CDKN2A/B (methylome).
Pleomorphic Xanthoastrocytoma is distinguished by mutations in BRAF and CDKN2A/B.
Lastly, mutations in TSC1, TSC2, and PRKCA define Subependymal Giant Cell AS and
Chordoid Glioma, respectively [1].
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The acceleration of biomedical progress has been considerably influenced by the
discovery of neomorphic enzymatic activity in the mutated isocitrate dehydrogenase 1
(IDH1), which generates elevated levels of (D)-2-hydroxyglutarate. This oncometabolite
is implicated in the initiation and progression of gliomas via epigenetic and metabolic
reprogramming. As a result, novel inhibitors targeting the mutant IDH1 enzyme have been
synthesized for therapeutic purposes [18].

Moreover, the use of immunohistochemistry (IHC) for IDH1-R132H, ATRX, and p53
has been employed as a surrogate for genetic status, indicating correlations between
histological observations, IHC results, and genetic profiles: (1) IHC for ATRX and p53
should augment morphological diagnosis, (2) consideration of IDH mutations beyond the
common IDH1 R132H variant is necessary, and (3) currently, there are no comprehensive
substitute assays to fully ascertain the molecular characteristics of GBM as per the 2021
WHO classification [1,19].

In GBMs, TERT promoter mutations are prevalent (83%), whereas they are rare in
IDH1-mutant infiltrating ASs. Given that IDH-mutated and IDH wildtype gliomas dis-
play distinct mutation profiles and clinical trajectories, they are considered to develop
through separate oncogenic mechanisms, thus representing distinct entities despite their
histopathological similarities [20]. A study by Vriend and Klonisch presents evidence
indicating that contributions from genes in the ubiquitin proteasome system (UPS) to the
Notch and Hippo pathway signatures are interconnected with stem cell pathways and
possess the capability to differentiate GBM from AS and ODG [21]. Their analysis revealed
that AURKA and TPX2 (two cell-cycle genes encoding for E3 ligases, as well as the cell-cycle
gene responsible for encoding the E3 adaptor CDC20) are upregulated in GBM. Further,
genes associated with E3 ligase adaptors, exhibiting differential expression, demonstrated
a significant overrepresentation in the Hippo pathway, contributing to the distinction of
classic, mesenchymal, and proneural subtypes of GBM [21].

Another comparative study wanted to trace the differences of two very similar gliomas,
ODG and AS IDH-mutant grade 2. Both of the glioma types showed chromosomal insta-
bility, with AS having more total copy number alterations than ODG. ODG specifically
exhibited chromosome 4 loss, with the chromosome 7 gain/chromosome 4 loss subtype cor-
relating with a poorer survival and progression-free interval. ODG had a higher subclonal
genome fraction and tumor purity, while AS had a greater aneuploidy score. Additionally,
AS showed inflamed immune cell infiltration and the potential for immune checkpoint
inhibitor response, contrasting with the more homogenous and less aggressive nature of
ODG [22] (Table 1).

Recent studies have highlighted REST as an oncogenic gene and marker of a poor
prognosis in glioma, with its high expression potentially influencing the tumor microen-
viroment (TME). REST expression in glioma was positively correlated with immune cell
infiltration and the expression of immune checkpoints, including PD1/PD-L1 and CTLA-4.
Furthermore, the analysis identified histone deacetylase 1 (HDAC1) as a potential REST-
related gene in the context of glioma. An enrichment analysis of REST emphasized the
significance of chromatin organization and histone modification, suggesting a possible
involvement of the Hedgehog-Gli pathway in REST’s role in glioma pathogenesis [23,24].
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Table 1. Important genetic alterations in GBM.

Gene Physiologic Effect Mutation Pathogenicity Reference

IDH1

- Catalyses the
oxidative
decarboxylation of
isocitrate to α-KG
and CO2,

- Converts NAD(P)+
into NAD(P)H.

IDH1 R132H mutation is the
most common mutation in
gliomas

- Derailing of cell metabolism and
aiding tumorigenesis.

- Elevated 2-HG levels silence
tumor suppressors and activate
oncogenes.

- Inhibiting differentiation of
neural cells, promoting a
stem-like state and tumor
growth.

- Metabolic and epigenetic shifts
enhance genomic instability.

- Reconfiguring the tumor
microenvironment to diminish
immune responses and bolster
tumor viability.

- IDH1 mutations are linked to
improved outcomes.

[25–27]

EGFR

- Tissue development
- Cell proliferation
- Cellular

differentiation
- Cellular migration
- Celullar survival
- Angiogenesis

The EGFRvIII mutation and
EGFR gene amplification are
the most prevalent
alterations in gliomas

- Common in gliomas, especially
glioblastoma, leading to
aggressive tumor behavior.

- EGFRvIII mutation causes
continuous activation, driving
tumor growth and treatment
resistance.

- Mutated EGFR promotes tumor
cell proliferation and survival.

- EGFR alterations make gliomas
resistant to conventional
treatments.

[28–31]

CDKN2A

- Controlling cell
proliferation

- Preventing
tumorigenesis—
Inducing senescence
in response to
damage

- Maintaining genomic
stability

- Stem cell regulation

- Point Mutations
- Changes in the DNA

sequence of CDKN2A
that impair the
function of the
p16ˆINK4A protein and
its ability to inhibit cell
cycle progression

- Epigenetic Silencing:
methylation of the
CDKN2A promoter
region, leading to
decreased expression of
p16ˆINK4A and
p14ˆARF, and
promoting unchecked
cell division and tumor
development

- CDKN2A mutations lead to
p16ˆINK4A loss while
undermining CDK inhibition
and cell cycle control.

- CDKN2A mutations determine
disrupted cell cycle checkpoints
which are pivotal in glioma
onset and advancement.

- CDKN2A mutations underscore
the importance of cell cycle
governance in glioma
prevention and malignancy.

- CDKN2A mutation status could
predict glioma outcomes and
therapeutic responses.

[32–34]
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Table 1. Cont.

Gene Physiologic Effect Mutation Pathogenicity Reference

TP53
(tumor

protein 53)

- Progression of the
cellular cycle

- Regulates cellular
aging

Key hotspots for missense
mutations include codons
175, 248, and 273

- Mutations disrupt the DNA
damage response.

- Compromised p53 function
prevents cell cycle arrest in
response to DNA damage.

- Altered p53 fails to trigger
apoptosis in abnormal cells and
determines a higher survival
and proliferation rate of
malignant cells.

- TP53 mutations compromise
cellular senescence mechanisms.

- Mutant p53 aids in angiogenesis
and immune evasion while
supporting tumor progression
and dissemination.

- TP53 mutation impacts vary,
significantly affecting
lower-grade gliomas’ evolution
into more malignant states.

- TP53 mutations in gliomas
frequently lead to resistance
against conventional treatments.

[35–41]

ATRX

- Chromatin
Remodeling

- DNA Repair
- Telomere

Maintenance
- Gene Regulation
- Developmental

Processes
- Neuronal Function

Loss of ATRX function can
result from various genetic
alterations, including
mutations, deletions, or gene
fusions. This loss is
associated with a
constellation of molecular
changes, notably the ALT
phenotype, amplification of
PDGFRA, and mutations in
TP53

- ATRX dysfunction triggers
alternative lengthening of
telomeres, which determine
limitless division of cancer cells.

- ATRX mutations interfere with
chromatin remodeling while
altering gene expression, which
favors oncogenesis.

- ATRX loss undermines DNA
repair and chromosome
segregation, escalating genetic
variations conducive to tumor
advancement.

- Mutations in ATRX correlate
with particular glioma subtypes,
typically signifying an earlier
age at diagnosis and unique
molecular traits.

[42–45]
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Table 1. Cont.

Gene Physiologic Effect Mutation Pathogenicity Reference

NF1

- Cell Growth and
Proliferation
Regulation
Neurofibromin acts
as a
GTPase-activating
protein for RAS,
helping to convert
active RAS-GTP into
its inactive form,
RAS-GDP

- Cell Cycle Control by
regulating RAS
activity

- Neuronal
Development and
Function

A predisposing germline
mutation in the NF1 gene
often progresses to
homozygosity, with the
somatic mutation burden in
NF1-associated gliomas
being modulated by both age
and tumor grade.
High-grade tumors exhibit
genetic modifications in
TP53 and CDKN2A,
alongside prevalent
mutations in ATRX that are
associated with the ALT
phenotype. Furthermore,
these tumors demonstrate an
enrichment of genetic
alterations affecting
transcription/chromatin
regulation and the PI3K
pathways

- NF1 mutations diminish
neurofibromin function, which
leads to sustained RAS signaling.
This constant activation fosters
cell proliferation, survival, and
differentiation.

- NF1 mutations affect neural
stem and progenitor cell fate,
potentially causing atypical
cellular differentiation.

- NF1 functional loss reshapes the
tumor microenvironment,
enhancing conditions beneficial
for tumor growth and survival
such as increased angiogenesis
for nutrient and oxygen supply.

- NF1 mutations potentially
exacerbate genomic instability
by compromising DNA repair or
fostering a mutation-friendly
environment, leading to further
mutations that propel glioma
progression.

- NF1 mutations grant glioma cells
an ability to evade apoptosis.

[46–49]

PIK3CA
Cellular signaling
responsible for cellular
survival

The localization of PIK3CA
mutations predominantly to
exons 1, 9, and 20
substantiates the notion of
mutational hotspots within
this gene

- Mutations in PIK3CA amplify
phosphatidylinositol 3-kinase
(PI3K) pathway activity, which
boosts cell proliferation,
survival, and motility.

- The intensified PI3K signaling
due to PIK3CA mutations
disrupts normal cell cycle
control, which determines
unrestrained cell division.

- PIK3CA mutations can alter the
differentiation pathways of
neural stem cells and progenitor
cells.

- Mutations in PIK3CA can modify
the tumor microenvironment by
enchaning angiogenesis.

- PIK3CA mutations undermine
genomic integrity and facilitate
an environment prone to genetic
variations.

- PIK3CA mutations offer glioma
cells resistance to apoptosis.

[50–53]
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Table 1. Cont.

Gene Physiologic Effect Mutation Pathogenicity Reference

PDGFRA
Transmembrane receptor
that is involved in glial
proliferation

Two genomic
rearrangements,
encompassing the starting
instance of a gene fusion
between the KDR VEGFR2
and the PDGFRA gene, along
with six occurrences of
PDGFRA∆8,9, an intragenic
deletion rearrangement.
Notably, the PDGFRA∆8,9
variant was prevalent,
detected in 40% of GBM
cases exhibiting PDGFRA
amplification

- Almost exclusively in proneural
subtype

- Mutations in PDGFRA lead to
enhanced signaling through the
PDGFRα pathway, which
promotes glioma cell
proliferation, migration, and
angiogenesis.

[54–57]

PTEN Renowned tumor
suppresor gene

Deletions on 10q23. A
frequently observed
mutational locus resides
within exon 5, which is
responsible for encoding the
phosphatase catalytic core
motif. Additionally,
recurrent mutations at CpG
dinucleotides indicate the
likelihood of mutations
induced by deamination
processes

- Hyperactivation of the
PI3K/AKT pathway.

- Specific to HGG.
- Gene mutations correlate with

poor prognosis.

[58–60]

3. The Crucial Role of Glial Cells

Within the CNS, while neurons are primarily responsible for information processing
and transmission, glial cells are essential for supporting the neural network’s infrastruc-
ture and functionality [61]. Dysfunctions in glial cells can determine a wide spectrum
of pathologies, including gliomas. The challenge of treating malignant gliomas stems
from two distinct properties of tumor cells: their invasive nature, which precludes total
surgical removal even with advanced neurosurgical techniques, and their resistance to
standard chemotherapeutic and radiotherapeutic approaches, which allows them to evade
complete elimination [62,63]. Furthermore, gliomas initially classified as being low grade
frequently undergo malignant transformation within a span from five to ten years, under-
scoring the urgency for a deeper understanding of their underlying mechanisms to devise
effective treatments.

Neural stem cells (NSCs), glial progenitors (including oligodendrocyte progenitor
cells), and astrocytes are all potential origins for gliomas. It has been posited that the
cells harboring initial mutations may not directly transform; rather, their progeny may
undergo transformation, serving as the true cells of origin for these tumors [64]. Research
utilizing murine models has demonstrated that, following transduction by oncogenic
lentiviral vectors, even highly differentiated brain cells, such as astrocytes and neurons,
possess the capacity for dedifferentiation, culminating in the development of GBM [65].
On the other hand, the identification of proliferative cells in the adult brain has led to the
hypothesis that GBM may originate from NSCs. This hypothesis has been substantiated
through experimental evidence. Specifically, Lee et al. achieved the immortalization of
human fetal NSCs using v-myc, followed by the induction of malignant transformation
via H-ras to provide oncogenic stimulation. Notably, oligodendrocytes, which originated
from the v-myc-expressing progenitor NSCs, did not undergo malignant transformation
following oncogenic stimulation by H-ras. Consequently, the authors inferred that NSCs
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exhibit a higher propensity for neoplastic transformation compared to their differentiated
counterparts [66,67].

Extensive research has identified a subset of cells within GBM that exhibit stem cell
properties, termed glioma stem cells (GSCs). These cells are implicated in the self-renewal
and regeneration of the tumor, contributing to the resilience of the tumor against treatments
and its recurrence. Emerging evidence suggests that NSCs located in the subventricular
zone (SVZ) are the initial cells of GBM, acquiring the inaugural oncogenic mutations.
The involvement of SVZ-NSCs has also been linked to the progression and recurrence of
GBM [68]. The SVZ is an ecosystem of NSCs, oligodendrocyte progenitor cells (OPCs),
astrocytes, microglia, macrophages, neurons, vasculature, and extracellular matrix (ECM)
components. The profound resemblance between NSCs and GSCs lends credence to
the theory that SVZ NSCs assume the role of apex cells in the hierarchical organization
of gliomas.

The metabolic activity and proliferation rate of tumor cells are typically elevated
compared to their healthy counterparts, resulting in a markedly increased demand for
iron. This observation underscores the critical role of iron in the development and pro-
gression of tumors, and also in GBM [69]. The expression levels of iron-regulated genes
(for example, TfR1 and TfR2) are regulated in a different manner between neoplastic brain
tissues and normal human brain tissue, with either upregulation or downregulation being
observed [70]. Specifically, TfR2 expression is markedly elevated in GBM cell lines, con-
tributing to enhanced cellular proliferation, with elevated levels of TfR2 being correlated
with an increased sensitivity to temozolomide [71–73]. Moreover, STEAP3 plays a pivotal
role in iron homeostasis through the reduction of Fe3+ to Fe2+ [74]. In GBM cells, there
is a notable upregulation of STEAP3 expression in comparison to that in normal brain
tissues, an expression which consequently makes STEAP3 emerge as a potential prognostic
marker, with elevated STEAP3 levels being associated with diminished overall survival
(OS) rates [75,76]. Other central mechanisms of ferroptosis are represented by the cys-
teine/glutathione depletion pathway and polyunsaturated fatty acids (PUFAs). For the
cysteine/glutathione pathway, L-cystine is transported into cells via the xc− exchanger,
which interacts with glutamate through the SLC7A11 and SLC3A2 carrier proteins [77]. A
very recent study conducted by Noch et al. discovered that cysteine compounds, notably N-
acetylcysteine (NAC), induce cytotoxicity in GBM cells through promoting mitochondrial
hydrogen peroxide production, leading to the induction of reductive stress and diminution
of mitochondrial oxygen consumption and membrane potential, culminating in the disso-
lution of mitochondrial cristae [78]. These phenomena are intensified under conditions of
glucose deprivation and be mitigated by the administration of mitochondrial electron ac-
ceptors and the overexpression of mitochondrial redox enzymes [78]. For PUFAs to initiate
ferroptosis, they must first undergo esterification [79]. Primarily phosphatidylethanolamine
PUFAs (PE-PUFAs) are involved in ferroptosis-induced lipid oxygenation, because not
all PUFAs represent substrates for it [80]. These PE-PUFAs are synthesized by acyl-CoA
synthetase long-chain family member 4 (ACSL4) and lysophosphatidylcholine acyltrans-
ferase 3 [81,82]. Subsequently, through the catalytic action of 15-lipoxygenases (LOX)
and Fe2+, these PE-PUFAs are oxidized into lipid peroxides, facilitating the process of
ferroptosis [83,84].

Given the persistently low long-term survival rates exceeding two years, experimental
treatments are often integrated with standard care protocols or introduced upon tumor
recurrence, which is nearly inevitable [85,86].

Gliomas also exhibit infiltration characteristics similar to those of astrocytes. As-
trocytes extend projections to blood vessels and contribute to the blood–brain barrier
(BBB). Consequently, when astrocytes undergo oncogenic transformation into gliomas, the
resulting tumors can exploit the BBB to support their survival and proliferation [87,88].
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4. Immuno-Landscape of Gliomas: Understanding the Immunological Milieu

The immune system endeavors to combat glioma cells, yet T-cells exhibit insufficient
infiltration within tumor growth regions. Additionally, gliomas express Fas ligand (FasL),
a protein that induces apoptosis in immune cells upon interaction. It is anticipated that, by
curbing the expression of FasL in brain tumors, the immune system may be empowered to
mount an effective response to eradicate the tumor [89–91].

GBM is very well known for its heterogeneity, meaning that numerous subtypes reside
in the tumor [92]. This finding presents a clinical challenge, as the selective elimination
of treatment-susceptible clones often leads to the accelerated proliferation of resistant
ones. Initiating an immune response targeting a broad range of antigens raises significant
concerns due to the potential for antigenic overlap with normal tissue, particularly when
using a combination of tumor-associated antigens (TAAs). This dynamic is encapsulated in
the ‘Three Es Hypothesis’, an immune editing framework that delineates the continuous
interaction between immune cells and tumor cells, encompassing phases of elimination,
equilibrium, and escape [93] (Figure 2).

Curr. Issues Mol. Biol. 2024, 46, FOR PEER REVIEW 10 
 

 

ones. Initiating an immune response targeting a broad range of antigens raises significant 
concerns due to the potential for antigenic overlap with normal tissue, particularly when 
using a combination of tumor-associated antigens (TAAs). This dynamic is encapsulated 
in the ‘Three Es Hypothesis�, an immune editing framework that delineates the continu-
ous interaction between immune cells and tumor cells, encompassing phases of elimina-
tion, equilibrium, and escape [93] (Figure 2). 

 
Figure 2. Cancer immunoediting is characterized by three phases: elimination, equilibrium, and es-
cape. In the elimination phase, innate and adaptive immune systems work together to detect and 
destroy malignantly transformed tumor cells before they become clinically evident. The equilibrium 
phase represents a balanced state where the immune system keeps tumor cells in check without 
completely eradicating them, effectively preventing tumor escape. Lastly, the escape phase occurs 
when tumor growth and proliferation are no longer controlled by the immune system. This leads to 
a surge in rapidly dividing tumor cells and a shift towards an immunosuppressive environment, 
disrupting the balance and allowing the tumor to evade immune surveillance. 

Myeloid-Derived Suppressor Cells (MDSCs) utilize various mechanisms to suppress 
cytotoxic immune responses in GBM, highlighting their potential as targets in glioma ther-
apies. Studies focusing on microglia and macrophages have revealed their reactions to 
Glioma-derived Colony-Stimulating Factor-1 (CSF-1) through the use of mouse models, 
human GBM tumor spheres, and cell lines [94,95]. The role of Arginase 1 positive (Arg1+) 
exosomes has been investigated in cell culture systems specific to these immune cells [96]. 
Additionally, the Astrocyte elevated gene-1 (AEG1) has been identified as a critical mole-
cule, analyzed through bioinformatic studies of human samples from The Cancer Genome 
Atlas (TCGA), Genotype-Tissue Expression (GTEx), and the Chinese Glioma Genome At-
las (CGGA), complemented by in vitro cell lines and co-culture methods [97]. 

Research on MDSCs has been expanded to include analyses of blood samples and 
tumor tissues derived from patients with GBM, as well as murine models [98]. Macro-
phage migration inhibitory factor (MIF) has been identified as being influential, with in-
vestigations incorporating co-culture assays, GBM patient samples, and syngeneic mouse 
models [99]. The regulation of Cytotoxic T cells by Programmed cell death protein 1 (PD-

Figure 2. Cancer immunoediting is characterized by three phases: elimination, equilibrium, and
escape. In the elimination phase, innate and adaptive immune systems work together to detect and
destroy malignantly transformed tumor cells before they become clinically evident. The equilibrium
phase represents a balanced state where the immune system keeps tumor cells in check without
completely eradicating them, effectively preventing tumor escape. Lastly, the escape phase occurs
when tumor growth and proliferation are no longer controlled by the immune system. This leads
to a surge in rapidly dividing tumor cells and a shift towards an immunosuppressive environment,
disrupting the balance and allowing the tumor to evade immune surveillance.

Myeloid-Derived Suppressor Cells (MDSCs) utilize various mechanisms to suppress
cytotoxic immune responses in GBM, highlighting their potential as targets in glioma
therapies. Studies focusing on microglia and macrophages have revealed their reactions to
Glioma-derived Colony-Stimulating Factor-1 (CSF-1) through the use of mouse models,
human GBM tumor spheres, and cell lines [94,95]. The role of Arginase 1 positive (Arg1+)
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exosomes has been investigated in cell culture systems specific to these immune cells [96].
Additionally, the Astrocyte elevated gene-1 (AEG1) has been identified as a critical molecule,
analyzed through bioinformatic studies of human samples from The Cancer Genome Atlas
(TCGA), Genotype-Tissue Expression (GTEx), and the Chinese Glioma Genome Atlas
(CGGA), complemented by in vitro cell lines and co-culture methods [97].

Research on MDSCs has been expanded to include analyses of blood samples and
tumor tissues derived from patients with GBM, as well as murine models [98]. Macrophage
migration inhibitory factor (MIF) has been identified as being influential, with inves-
tigations incorporating co-culture assays, GBM patient samples, and syngeneic mouse
models [99]. The regulation of Cytotoxic T cells by Programmed cell death protein 1 (PD-1)
has been examined through a metadata analysis of glioma samples [100]. Regulatory T
cells (Tregs) and T follicular regulatory (Tfr) cells have been studied in relation to PD-1
and Cytotoxic T-Lymphocyte Associated protein 4 (CTLA-4), using human tumor sam-
ples, syngeneic mouse models, and tumor cell lines [101]. Tfr cells have been specifically
assessed through the analysis of patient-resected glioma samples [102]. The interaction
of B lymphocytes with glioma-derived Permeability Factor G (PFG) has been explored in
primary cell cultures [103]. The dynamics between Natural Killer (NK) cells, Transforming
Growth Factor Beta (TGF-β), and Natural-killer group 2, member D (NKG2D) have been
researched using blood samples from glioma patients [104], and the effects of Interferon
Gamma (IFN-γ) on NK cells have been explored through human GBM tissue samples [105].
The development of glioma vaccines aims to target tumor-specific antigens similar to
those recognized by Chimeric Antigen Receptor T (CAR-T) cells, such as EGFR variant III
(EGFRvIII) and Interleukin-13 Receptor Alpha 2 (IL-13Rα2). Considering the heterogeneity
of gliomas and the potential for antigenic variance following treatment, multi-antigen
vaccine strategies are being considered, though research to confirm their effectiveness is
ongoing [106].

Specifically in glioma, the PD-1/PD-L1 axis is a critical element of immunosuppression
within the TME, inhibiting T-cell activation and promoting Treg survival, while glioma cells
enhance PD-L1 expression in myeloid cells and Tregs. Additionally, CTLA-4 expression
by naive T cells and Tregs serves to limit T-cell proliferation and augment Treg-mediated
immunosuppression. Other checkpoints, such as TIM-3 and LAG-3, are also upregulated in
GBM, contributing to T-cell exhaustion. Monoclonal antibodies targeting these checkpoints
have the potential to revive T-cell functionality and reinstate antitumor immunity [107,108].
The suppression of TIM-3 is bringing new hope in the field of oncology: currently, Saba-
tolimab represents an innovative immunotherapeutic agent exhibiting immuno-myeloid
activity, primarily by targeting the T-cell immunoglobulin domain and mucin domain-3
(TIM-3) on both immune cells and leukemic blasts. This agent is currently under investiga-
tion within the ambit of the STIMULUS clinical trial program, specifically for its potential
efficacy in the treatment of various myeloid malignancies [109,110]. In the context of glioma,
targeting TIM-3 has shown great results. Concomitant administration of an anti-TIM-3
antibody in combination with either Stereotactic Radiosurgery (SRS) or an anti-PD-1 agent
demonstrated enhanced survival rates compared to monotherapy with the anti-TIM-3
antibody alone. Notably, the integration of these treatments into a triple therapy regimen
culminated in a 100% OS rate (p < 0.05), a statistically significant enhancement relative to
other treatment arms. This improved survival was concomitant with augmented immune
cell infiltration and activity, as well as the establishment of immune memory in long-term
survivors, indicating a robust immunotherapeutic response [111]. Ausejo-Mauleon et al.
elucidate that TIM-3 is markedly overexpressed in both the tumor cells and immune mi-
croenvironment of Diffuse Intrinsic Pontine Glioma (DIPG). Their research indicates that
the inhibition of TIM-3 catalyzes a robust immune response, primarily by transforming the
DIPG TME into a proinflammatory phenotype. This transformation is mediated through
the activation of microglia and CD8+ T cells, thereby fostering an anti-glioma response and
facilitating the establishment of durable immunological memory [112]. Ausejo-Mauleon
et al.’s results represent a potential therapeutic breakthrough in this domain.
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Another different therapeutical approach in oncology is the CCL2-CCR2 axis. CCR2,
primarily serving as the receptor for CCL2, exhibits a broad expression profile across a
diverse range of cell types, encompassing dendritic cells (DCs), endothelial cells, monocytes,
and a variety of cancer cells [113–115]. Additionally, findings reveal that CCR2 is also
present, albeit at reduced levels, in both neutrophils and lymphocytes [116]. In all these
cells, this axis interferes in cellular signaling through the MAPK, JAK/STAT3, or PI3K/AKT
pathway [117–119]. CCL2 is usually utilized in oncology to determine OS in patients,
being, in general, associated with very bad prognostics in gastric cancer, colorectal cancer,
pancreatic cancer, and hepatic cancer [120–123]. Also, this axis is used as a potential avenue
of treatment in GBM cell lines. In a study, exosomes derived from irradiated GBM cells
substantially facilitated M2 microglial polarization, thereby augmenting the proliferation
of these cancer cells. Elevated levels of circ_0012381 in GBM cells, transferred to microglia
through exosomes, promote M2 polarization by modulating miR-340-5p and upregulating
ARG1 expression. This polarization diminishes phagocytosis and fosters tumor growth via
the CCL2/CCR2 axis, with the suppression of these exosomes proving more efficacious in
hindering tumor progression than radiotherapy alone in a zebrafish model [124]. Another
study demonstrated that targeting MDSCs through CCR2 inhibition can potentiate the
effectiveness of checkpoint blockade therapy in GBM. Employing murine models resistant
to checkpoint inhibitors revealed that a combination treatment not only diminishes MDSCs,
but also amplifies the presence of functional T cells within tumor sites, thereby significantly
prolonging OS. These outcomes provide a compelling rationale for the strategic targeting
of CCR2-expressing myeloid cells as a means of enhancing immunotherapy efficacy in
GBM [125].

5. The Importance of Cell Crosstalk in Gliomas

Cellular heterogeneity within a tumor and an immunosuppressive TME act as distinct
yet interrelated forces that promote tumor progression and contribute to resistance against
therapies. Contemporary research has cast light on the intricate interplay between these
intrinsic cellular and extrinsic microenvironmental mechanisms. A prime example of such
interactions is the bidirectional communication between cancer stem cells (CSCs) and the
infiltrating immune cells within the TME (Figure 3).

GSCs are situated within specialized niches inside the tumor that mirror the critical fea-
tures of malignant gliomas, such as vascular proliferations and regions of hypoxia/necrosis,
and these niches share similarities with the natural microenvironments of physiological
brain stem cells. Evidence is accumulating that suggests that complex interactions occur
between these niches and glioma cells, with hypoxia being a pivotal factor in the induction
of angiogenesis, triggering the upregulation of factors like vascular endothelial growth
factor (VEGF), stromal cell-derived factor 1 (SDF1), platelet-derived growth factor (PDGF),
and angiopoietins [126].

Additionally, studies have identified a dual role of microglia in high-grade gliomas
(HGG). Microglia can exhibit a scavenger-tumoricidal function when activated in an M1
phenotype, whereas M2 phenotype activation is associated with promoting tumor growth
and facilitating tumor cell infiltration and migration [127]. The polarization of microglia
is influenced by intricate signaling pathways that involve interactions with glioma cells,
where extracellular vesicles (EVs) and their microRNA (miRNA) contents appear to be
key players. The shift towards a particular microglial phenotype is linked to prognostic
outcomes, and the pathological identification of specific microglial states may offer pre-
dictive value regarding patient prognosis [128]. Research has demonstrated that human
GBM harbors a heterogeneous population of M1/M2 macrophages, with the M1:M2 ratio
being linked to an improved prognosis in IDH1 R132H wildtype GB [128,129]. Employing
automated quantitative immunofluorescence techniques, it was observed that M2-like
tumor-associated macrophages (TAMs) are associated with poorer outcomes in HGG,
contributing to a microenvironment that supports tumor growth and progression [127,130].
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In the context of GBM and other malignancies, EVs facilitate the transport of com-
ponents between GBM cells and those within the TME, capable of traversing even the
blood–brain barrier (BBB), a process facilitated by the presence of Semaphorin3A on their
surface. This molecule interacts with neuropilin1 receptors, leading to the disruption of the
blood–brain barrier BBB [131,132]. Additionally, gap junctions serve as a crucial communi-
cation pathway between astrocytes and GBM cells. In glioma-associated astrocytes, the gap
junction protein connexin-43 (CX-43) plays a significant role in enhancing chemotherapy
resistance, as well as promoting the proliferation and migration of GBM cells [133,134].

The escalation of c-Jun N-terminal kinase (JNK) pathway signaling in GBM is at-
tributed to the interaction between the receptor Grindelwald (Grnd) and the ligand Eiger
(Egr)/TNFα, which is produced by the surrounding non-cancerous brain tissue, according
to a study by Portela et al. This study suggests that interactions between GBM cells and
adjacent healthy brain tissue may instigate TME expansion, and that such extrinsic signals
are instrumental in advancing GBM [135].

Certain brain malignancies establish interactions with neurons, facilitating their ad-
vancement. There is emerging evidence indicating a significant function for neuronal cell
promoters in the tissue migration of gliomas. Notably, an increased expression of brain-
derived neurotrophic factor (BDNF) has been linked to the pathological advancement of
gliomas [136]. BDNF, a recognized synaptic modulator, is involved in various neurological
functions, including the enhancement of memory and neuronal plasticity. Research by
Wang et al. has demonstrated that an interaction between GBM cells and the BDNF receptor,
NTRK2, forms a complex that is crucial to the tumor progression process [137]. Paracrine



Curr. Issues Mol. Biol. 2024, 46 2415

signaling is the neuronal activity that propels tumor progression, in the context of gliomas,
via neuroligin-3 and BDNF [138–140], as well as through neuron-glioma synapses mediated
by AMPA receptors, synapses which are modulated by BDNF [141–143]. Signaling through
the receptor TrkB to CAMKII, BDNF facilitates the trafficking of AMPA receptors to the
glioma cell membrane [144]. This process enhances the amplitude of glutamate-evoked
currents within malignant cells, thereby contributing to glioma progression [144].

Lately, estrogens have garnered a lot of attention due to the possibility of contribut-
ing to the development of GBM. Estrogens support cell proliferation and tumor growth
through the presence of G protein-coupled estrogen receptor (GPER), which has been
identified in C6 GBM cells [145], as well as in AS cell lines U251 [146]. Moreover, estrogen
has been identified in the TME [147]. In GBM, the functions of two estrogen receptors,
ERα and ERβ, diverge significantly [148,149]. ERα-36, a splice variant of estrogen re-
ceptor alpha (ERα-66), has been implicated in mediating cell proliferation through both
estrogenic and anti-estrogenic signaling pathways across various cancer types. ERα-36
expression is elevated in GBM cells [150,151]. Among ERβ isoforms, ERβ5 emerges as
the predominant variant identified in gliomas [152,153]. The expression of ERβ5 is upreg-
ulated under hypoxic conditions within the glioma microenvironment, functioning as a
self-protective mechanism to curb tumor proliferation. Selective ERβ agonists, such as
MF101 and liquiritigenin, together with histone deacetylase inhibitors, suppress glioma cell
proliferation and inhibit tumor growth, highlighting their therapeutic efficacy in glioma
treatment strategies [154–156].

To date, therapeutic strategies targeting specific cellular elements or intracellular
metabolic pathways have not yielded improvements in patient survival rates for GBM.
GBM has the capacity to co-opt healthy brain cells, manipulating their functions to foster a
conducive microenvironment that augments tumor progression. This microenvironment
forms an intricate network where malignant cells not only interact among themselves, but
also with normal and immune cells, fostering tumor growth, angiogenesis, metastasis,
immune evasion, and resistance to therapy. The modes of communication within this
network range from direct cell-to-cell contact via adhesion molecules, tunneling nanotubes,
and gap junctions to indirect interactions through paracrine signaling, utilizing cytokines,
neurotransmitters, and EVs [157,158].

A study by Jeon et al. establishes that the PDGF–NOS–ID4–miR129 regulatory axis
stimulates the JAGGED1–NOTCH signaling pathway in glioma-initiating cells (GICs) and
endothelial cells [159]. The activation of JAGGED1–NOTCH signaling is implicated in
promoting tumor advancement, characterized by an enhanced proliferation of GICs and
increased angiogenesis. These observations also offer a therapeutic premise for targeting
NOTCH signaling pathways, which are essential for the sustenance of tumor perivascular
microenvironments comprising GICs and endothelial cells [159].

Targeting CX43 presents a substantial challenge due to the obscurity of the mechanisms
through which CX43 mediates resistance. Notably, CX43 is expressed at high levels in GBM,
a condition which correlates strongly with poor prognoses and resistance to chemotherapy.
The suppression of CX43 expression via miR-1 has been shown to impede the infiltration
and proliferation of glioma cells. Additionally, this downregulation of CX43 expression
facilitates the induction of apoptosis in glioma cells, further elucidating the regulatory role
of CX43 in these processes [160].

Aquaporins (AQPs) constitute a family of membrane channel proteins, which are re-
sponsive to variations in osmotic or hydrostatic pressure, thereby enabling the transcellular
movement of water across biological membranes. To date, over ten functional isoforms
of human AQPs have been identified, each uniquely expressed in various bodily regions
and possessing distinct characteristics and functional roles [161]. AQPs represent potential
targets in cancer therapy. For example, a study aimed to find out if tumor motility could
be suppressed by inhibiting AQP-1 and subsequent ionic channels. The results showed
that natural compounds like xanthurenic acid and caelestine C or semi-synthetic amides
decreased glioma infiltration in the 251-MG and U87-MG GBM cellular lines [162]. The
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functions of AQP1 in regulating cell volume have been suggested to facilitate morpholog-
ical adaptations in glioma cells, transforming them into elongated spindle shapes. This
alteration enables glioma cells to navigate through the constricted extracellular spaces in the
brain [163]. Additionally, a separate study identified a strong association between AQP4 ex-
pression and the expressions of epidermal growth factor receptor (EGFR), 4-aminobutyrate
aminotransferase (ABAT), and platelet-derived growth factor receptor alpha (PDGFRA)
in the classification of GBM. These factors have been proposed as potential targets for
AQP4-related immunotherapy strategies [164]. Tan et al. documented a negative correla-
tion between the apparent diffusion coefficient and the expression of Aquaporin 4 (AQP4)
mRNA in AS [165].

6. Transcriptomics of Gliomas

Recent advancements in RNA sequencing technologies and sophisticated data analysis
have facilitated the characterization of comprehensive transcriptomic landscapes. These
include profiling protein-coding and non-coding gene expressions, discerning alternative
splicing events, and detecting fusion genes, thereby advancing disease detection and the
understanding of altered phenotypes [166]. Differentially spliced cancer drivers encompass
elements of the RAS/MAPK pathway. Specifically, neurofibromin 1, a suppressor of RAS,
undergoes alternative splicing, resulting in a less active isoform in over 80% of HGGs. This
splicing variant emerges downstream from REST upregulation, leading to the activation of
the RAS/MAPK pathway and consequently diminishing survival rates in patients with
GBM [167].

The formation of neurospheres (NS) is marked by the activation of five transcrip-
tion factors (TFs) commonly associated with gliomas: SOX2, UBTF, NFE2L2, TCF3, and
STAT3. Concurrently, the transcriptional activity of the TFs MYC and MAX is diminished
in NS [168]. Genes that are upregulated are implicated in processes such as epithelial–
mesenchymal transition, cancer stemness, and the invasive and migratory behaviors of
glioma cells [168]. Conversely, genes downregulated by MYC/MAX are involved in trans-
lation, focal adhesion, and apical junctions. Additionally, the study by Vasileva et al.
identified three regulators—SPRY4, ERRFI1, and RAB31—that are common feedback ele-
ments in EGFR and FGFR signaling across the gliomas analyzed, offering potential targets
for developing therapeutic strategies to inhibit glioma infiltration and progression [168].

The long non-coding RNA (lncRNA) CRNDE exhibits pronounced upregulation
in glioma tissues and has been implicated in enhancing proliferation, migration, and
infiltration processes [169]. CCDC26, another lncRNA, is newly identified and demonstrates
increased expression in glioma tissues, exerting its influence by directly targeting miR-
203, as demonstrated in both in vitro and in vivo studies [170]. Furthermore, the in vivo
downregulation of ATB has been shown to inhibit tumor growth. Additionally, miR-
152, an miRNA, is down-regulated by H19 [171], leading to the stimulation of tumor
proliferation and infiltration, as observed in vitro and in vivo [172]. Moreover, limited
information is available regarding ADAMTS9-AS2, a gene whose expression is observed
to be downregulated in glioma, correlating with the grade of the glioma. Studies have
demonstrated that the overexpression of ADAMTS9-AS2 results in the inhibition of cellular
migration and infiltration processes [173].

Another study also indicated that most transcriptional changes in tumor samples
are not dependent on deoxyribonucleic acid (DNA) methylation. Instead, altered histone
H3 trimethylation at lysine 27 (H3K27me3) emerged as the primary molecular anomaly in
deregulated genes. It is proposed that the presence of a bivalent chromatin signature at CpG
island promoters in stem cells is predisposed not only to hypermethylation, but to a broader
spectrum of transcriptional disturbances in transformed cells. Furthermore, it was observed
that the level of gene expression in normal brain cells significantly impacts the mechanism of
transcriptional repression utilized in glioma, with genes that are highly expressed in healthy
cells being more susceptible to silencing through H3K27me3 modification rather than DNA
methylation. These findings underpin a theoretical framework wherein altered H3K27me3



Curr. Issues Mol. Biol. 2024, 46 2417

dynamics, particularly through the interaction between polycomb protein complexes and
the brain-specific transcriptional apparatus, are primarily responsible for the transcriptional
deregulation evident in glioma cells [174].

Diffuse lower-grade LGGs are marked by extensive genetic and transcriptional diver-
sity. However, the variability within their DNA methylation profiles, their functional role
in tumor biology, their integration with the transcriptome and the TME, and their influence
on tumor evolution remain underexplored. The study uncovered parallels between AS-like
LGGs and grade 4 IDH-wildtype gliomas in terms of the potential exacerbation of treatment
resistance progressing along a proneural-to-mesenchymal trajectory. Through the use of
gene-signature-based analysis, the influence of the cellular composition of tumors was also
delineated, including the role of immune cell bystanders like macrophages [175].

Additionally, methylation of the MGMT promoter serves as a predictive marker for
the efficacy of alkylating chemotherapy in patients with GBM. Predictive biomarkers
for targeted therapies are also gaining prominence, including mutations in IDH1 and
BRAF [176].

Gliomagenesis and tumor progression are critically dependent on the dysregulation of
TFs reviewed herein. These central regulators govern processes such as glial differentiation,
stress response adaptation, cell cycle regulation, and angiogenesis, all contributing to the
malignancy and recurrent nature of gliomas. They have become increasingly recognized
for their potential as therapeutic targets and as prognostic indicators [177,178].

7. Emphasizing Epigenomics in Glioma Research

Epigenetic modifications exert a profound influence on gene expression and, conse-
quently, on the development and behavior of glioma cells. Previous research has extensively
documented that changes in DNA methylation represent one of the most well-characterized
epigenetic alterations in human pathology. Global DNA methylation patterns in gliomas
interact with histone modifications, which may influence TFs, affect global gene expression,
and alter chromatin structure [179,180].

Additionally, histone posttranslational modifications (PTMs) are integral in regulating
chromatin structure and gene expression, significantly impacting malignant transformation,
tumor growth, and progression. Variations in the expressions of the genes responsible for
encoding enzymes involved in methylation (such as G9a, SUV39H1, and SETDB1) and
acetylation/deacetylation (including KAT6A, SIRT2, SIRT7, and HDAC4, 6, and 9) are impli-
cated in the pathogenesis of GBM. Moreover, SUMOylation pathway proteins are notably
upregulated in GBM cell lines, encompassing E1 (SAE1), E2 (Ubc9) components, and a
SUMO-specific protease (SENP1) [181]. It is interesting to note that GSCs, when cultured in
immunocompetent hosts, undergo an epigenetic adaptation process, culminating in the
secretion of immunosuppressive cytokines [182], additionally exhibiting an upregulation
of IRF8, a cytokine typically confined to myeloid cells, given its regulatory role in myeloid
lineage control and macrophage differentiation.

Furthermore, miRNAs, small non-coding RNA molecules, are recognized for their
critical roles in a variety of biological processes, including cell growth, proliferation, tumor
infiltration and metastasis, apoptosis, angiogenesis, and immune responses. Significant
strides have been made in researching the miRNA pathways associated with GBM patho-
genesis. miRNAs have been identified as potential diagnostic and prognostic biomarkers
and are increasingly being considered as therapeutic targets and agents [183–185].

Epigenetic reconfiguration is a defining characteristic of gliomas, playing a pivotal
role in their progression. This dysregulation is central to the initiation of gliomas, their
evolutionary trajectory, their interaction with immunotherapies, and is also indicative of
clinical outcomes (Figure 4) [186–189].

Kanamori et al. indicated that Notch activation could enhance the aggressive traits of
GBMs. The expression levels of Notch 1 correlate with GBM patient survival and Notch 4
expression is linked to GBM [190–193].
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Figure 4. A diagrammatic overview of the relationship between various epigenetic mechanisms and
the development of therapeutic resistance in glioblastoma would illustrate that DNA methylation,
histone modifications, chromatin remodeling, and long non-coding RNAs are integral in conferring
resistance. These epigenetic factors contribute through diverse pathways: they enhance cell prolifera-
tion, inhibit apoptosis, foster stem-like characteristics, reduce the efficacy of DNA damage repair,
stimulate autophagy, and facilitate the epithelial–mesenchymal transition.

The Notch signaling pathway is characterized by four types of cytoplasmic receptors,
specifically the homologous proteins Notch 1–4, which are situated on cells to receive
signals. These are complemented by their ligands, encompassing the Delta-like family
(DII1–4) and the Jagged family (Jagged 1 and 2), located on signaling cells. The distribution
of these receptors is extensive throughout the adult brain. Notch 1 is found in neurons,
astrocytes, precursor cells, ependymal cells, and endothelial cells. The expressions of Notch
2 and 3 are primarily in precursor cells. DII1 is present in intermediate neuronal progenitors
and neurons, and DII3 in intermediate neuronal progenitors [194–198]

8. Proteomics and Metabolomics

Recent technological advancements have catalyzed the discovery of novel molecular
mechanisms that drive the altered metabolism characteristic of gliomas [199–201].

Proteomics, which encompasses the study of proteins, their structures, functions,
interactions, and cellular activities, offers a more detailed understanding of an organism’s
biological processes compared to genomics. The complexity of proteomics surpasses that of
genomics because protein expression varies with time and environmental factors [201,202].

Gliomas form as a result of cellular mutations that disrupt normal metabolism, leading
to uncontrolled cell growth. Specific mutations in genes such as EGFR, PDGFRα, and PTEN
activate the protein kinase B (PKB/Akt) pathway, which then stimulates the mTORC-1
pathway, crucial for protein metabolism and thus cell proliferation. Additionally, glioma
proliferation is influenced by other mechanisms, including RTK/Ras/ERK signaling and
alterations in telomerase activity [203].
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The S100 protein family, with 25 members, is characterized by the Ca2+ binding EF-
hand motif and has been associated with disease progression, diagnosis, and prognosis,
particularly in tumors. These proteins have diverse roles both inside and outside the
cell, affecting processes like cell proliferation, differentiation, motility, enzyme function,
immune response, cytoskeletal dynamics, calcium homeostasis, and angiogenesis [204].

Furthermore, the transcript levels of S100A8/S100A9 are recognized as independent
indicators of a poor prognosis in GBM. Elevated pre-operative and three-month post-
operative serum levels of S100A8 predict a less favorable prognosis in GBM patients who
surpass the median survival rate. Laboratory studies have demonstrated that recombi-
nant S100A8/S100A9 proteins can enhance glioma cell migration and infiltration through
integrin signaling up to certain concentration thresholds [205].

The pursuit of personalized medicine continues, with researchers focusing on targeted
therapies that are tailored to the unique attributes of each patient’s condition. Metabolic and
lipidomic studies are among the most promising avenues for this endeavor, as they provide
granular analyses of alterations in the small molecule composition within a biological
system or sample [206].

The metabolic profile of cancer cells is shaped by various factors, including elevated
glucose uptake, hypoxic conditions, and the presence of infiltrating immune cells, all of
which must be taken into account to optimize treatment strategies [207,208].

GBM, along with many other cancers, is characterized by a distinct bioenergetic
profile known as the Warburg effect, where cells preferentially utilize aerobic glycolysis
for energy [209]. In certain pre-clinical breast cancer models, ketones have been shown to
support tumor growth through a reverse Warburg effect and metabolic coupling between
stromal and cancer cells [210–212]. Therefore, the metabolic pathways underpinning
rapid tumor growth are increasingly being recognized as viable targets for cancer therapy.
Moreover, the Warburg effect can be used to assess the prognosis and microenvironment of
the glioma [213].

The PI3 kinase (PI3K) family is intricately involved in cellular processes and metabolism.
Many cancers, including GBM, frequently exhibit activated PI3K signaling due to mutations
that activate PIK3CA or inactivate PTEN [214]. Insights into the roles of PI3K’s regulatory
and catalytic subunits in metabolism and oncogenesis have been gained through the use of
genetic mouse models and small molecule inhibitors [215,216]. The cascades from receptor
tyrosine kinases through PI3K to Akt and mTOR are particularly significant in GBM and
serve as potential therapeutic targets. The clinical introduction of small molecule inhibitors
targeting these kinases offers a hopeful treatment modality [217].

Additionally, a phenomenon known as glutamine addiction reflects a metabolic ad-
justment that complements oxidative glycolysis, providing neoplastic cells with nutrients
and energy, particularly under hypoxic conditions. Various clinical approaches are being
explored to disrupt glutamine metabolic pathways in gliomas [218–220].

As mentioned before, the Warburg effect promotes that cancer cells consume glucose at
high rates and produce substantial amounts of lactate, even in aerobic conditions [221,222].
GBM exhibits a pronounced dependency on glycolysis within the TME [223–225]. Stimula-
tion of the glycolytic pathway in GBM is directly proportional to its progression [226].
Consequently, numerous therapeutic strategies are under development to counteract
the Warburg effect. Research has indicated that the silencing of PDIA4 can impede the
PI3K/AKT/mTOR pathway-dependent cell proliferation and induce apoptosis, coupled
with a reduction in the Warburg effect [227]. Furthermore, Poteet et al. illustrated the
potential of methylene blue to reverse the Warburg effect in GBM by facilitating the transfer
of electrons from NADH to cytochrome c in mitochondrial complex I, thereby diverting
pyruvate into the citric acid cycle [228].

Acetyl-CoA synthetase 2 (ACSS2) facilitates the conversion of cytosolic acetate into
acetyl-CoA, serving as a precursor for the de novo biosynthesis of fatty acids and cholesterol,
thereby supporting tumoral proliferation [229,230]. Notably, ACSS2 expression is elevated
in GBM, as well as in other malignancies, including hepatocellular carcinoma, bladder,
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and prostate cancers [231]. Additionally, acetyl-CoA plays a crucial role in epigenetic
modulation, as it translocates into the nucleus to effectuate histone protein modification
through direct acetylation [232]. In GBM, there is a significant upregulation of fatty acid
synthesis, in a mechanism that facilitates accelerated tumor proliferation [233–235]. The
oncogenic EGFR/PI3K/AKT signaling cascade augments fatty acid biosynthesis through
the stimulation of sterol regulatory element-binding protein-1 (SREBP-1) activation.

9. Surgical Treatment

Findings from multiple studies have significantly highlighted the criticality of achiev-
ing complete resection in the treatment of LGGs. The extent of resection (EOR) not only
impacts OS in patients with LGGs, but also plays a role in influencing the rate of malignant
transformation and the likelihood of achieving seizure-free status [236]. A retrospective
analysis involving 153 glioma patients, comparing outcomes between those who followed a
“watch and wait” approach and those who underwent early surgical resection, revealed that
patients with LGGs who had early surgery exhibited higher survival rates. This suggests the
critical importance of the timing of the resection [237]. In patients with HGG, retrospective
analyses have established a significant correlation between the extent of tumor resection
and both OS and progression-free survival. Moreover, the observation that incomplete
resections lead to more rapid neurological decline further underscores the pivotal role of
complete tumor resection in enhancing progression-free survival outcomes [238]. Awake
craniotomy for the surgical excision of gliomas in eloquent brain regions has been shown
to positively impact the EOR, survival rates, postoperative neurofunctional outcomes, and
length of hospital stay (LOS). Given these benefits, awake craniotomy is a preferred surgical
approach, when applicable, for resecting gliomas [239]. Local recurrence is a principal fac-
tor contributing to the malignant progression of GBM in clinical settings, with the majority
of recurrences occurring within a limited margin (2 to 3 cm) surrounding the tumor cavity.
To enhance the rate of complete surgical resection (CSR), numerous advanced therapeutic
techniques have been developed, such as multimodal MRI, intraoperative MRI (IoMRI),
intraoperative ultrasound, and fluorescence-guided surgery [240–242]

Despite extensive post-surgical management, the complete eradication of disseminated
tumor cells around the tumor cavity remains unachievable under microscopic observation.
Intraoperative radiation therapy (IORT) represents a strategic approach involving the
application of high-dose radiation directly to the residual tumor bed during surgery. This
method minimizes damage to the surrounding healthy brain tissues and is advantageous for
eliminating residual tumor cells at the surgical resection margins [243]. IoMRI significantly
revolutionizes the approach to glioma treatment. This technology not only addresses the
issue of brain shift during surgery, but also aids neurosurgeons in identifying residual
tumor tissue, thereby facilitating a higher EOR. In a prospective study of 100 adult patients
undergoing glioma surgery with IoMRI and neuronavigation, Leroy found that the median
EOR was consistently 100% across different types of gliomas and their locations, with the
exception of increased residue in the insular area. The study also noted no variance in
the median Karnofsky Performance Status (KPS) between patients with LGG gliomas and
HGG at various postoperative follow-up periods. Leroy introduced the concept of “staged
volume” surgery, aiming to maximize safety for surgeons and minimize morbidity for
patients [244].

10. The Tumor Microenvironment in Gliomas: A Focal Point

The TME niche encompasses a diverse array of cellular constituents, including en-
dothelial cells, various neural cells, and resident and infiltrating immune cells, as well
as noncellular elements like signaling molecules, exosomes, and ECM components. The
glioma TM constitutes a dynamic and heterogenous system involving direct and indirect
cellular communication, with factors such as pH and oxygen concentration also playing
pivotal roles in its modulation [245,246].
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Critical to the functioning of the immune system is intercellular communication
among immune cells, facilitated by direct cell contact or through soluble mediators like
cytokines and chemokines. Cytokines exhibit a range of activities—autocrine, paracrine,
and endocrine—while chemokines additionally influence T cell differentiation and leuko-
cyte extravasation, contributing to tumor progression [247,248]. Tumor cells also utilize
various methods such as exosomes, gap junctions, and horizontal DNA transfer to interact
within the TME. Recognizing the significance of the TME and the intricate network of
communication between tumors and normal cells has led to new therapeutic strategies
targeting GBM [249].

Moreover, the dense and highly interconnected ECM presents both direct and indi-
rect challenges to treatment efficacy. Its rigidity can act as a physical barrier, hindering
drug delivery to tumor cells and effectively shielding the tumor from therapeutic agents.
Additionally, this ECM density can restrict the diffusion of nutrients and oxygen, further
complicating treatment strategies [250]. Venkatesh et al. discovered that OPC-like glioma
cells express synaptic genes [251]. They identified two types of synapses between glioma
cells and neurons: one resembling neuron-OPC synapses mediated by AMPA receptors
and another akin to neuron-astrocyte synapses mediated by potassium currents. GluA2,
an AMPA receptor component, was found to enhance glioma growth and reduce survival
in vivo; thus, neuron-glioma synaptic connections were shown to be crucial for glioma
progression, infiltration, and proliferation [200]. TREM2 (triggering receptor expressed on
myeloid cells 2), which is normally expressed on the brain’s immune cells, is associated
with a poor prognosis in glioma if overexpressed in macrophages and microglia [252].

The involvement of cancer-associated fibroblasts (CAFs) in tumor progression is com-
plex and multifaceted. Analogous to immune cells that initially inhibit malignant growth,
CAFs constrain early tumor progression, predominantly through the establishment of gap
junctions between activated fibroblasts. However, as the tumor evolves, CAFs become
activated by various tumor-secreted factors, subsequently facilitating tumor growth and
advancement. This dynamic is characterized by two interrelated pathways in the interac-
tion between cancer and stromal cells: firstly, the “efferent” pathway, where cancer cells
elicit a reactive response from the stroma, and secondly, the “afferent” pathway, wherein
the altered stromal cells within the TME modulate the responses of cancer cells [253–256].
Until quite recently, CAFs were thought to be absent in GBM, one key argument being that
fibroblasts are not present inside the brain parenchyma. However, a series of studies set
out to determine this supposition, which was, in the end, true; CAFs are attracted by GBM
stem cells [257,258]. Galbo Jr. et al.’s research delineated a significant correlation between
the abundance of CAFs and a higher tumor grading, adverse clinical outcomes, and the ac-
tivation of ECM remodeling processes. Analyzing the secretome of these CAFs, fibronectin
(FN1) emerged as a potent mediator of CAF functions. These findings were derived from
comprehensive analyses conducted in both in vitro and in vivo model systems [259].

The initial phase of tumor–immune interaction, known as the elimination phase, in-
volves the immune system’s recognition and eradication of transformed cells. Should these
cells circumvent immune detection during the elimination phase, they may proliferate
into tumors. As the tumor and its stroma evolve, the mechanisms of immunosuppres-
sion become more pronounced. Despite the immune system’s capacity to recognize and
destroy tumor cells, the tumor may continue to expand during what is referred to as the
equilibrium phase, eventually progressing to the escape phase, where it evades immune
surveillance altogether [260]. Molecules released by the tumor sculpt the TME, fostering an
immunosuppressive state that undermines effective antitumor immune responses. Within
the TME, MDSCs represent significant barriers to cancer immunotherapy, diminishing the
efficacy of antitumor actions and conferring increased resistance to immunotherapeutic
approaches on tumor cells. Consequently, strategies aimed at targeting MDSCs have gained
prominence in research, presenting new avenues for cancer immunotherapy [261].

A glioma’s blood supply, which translates into aggression, infiltration, and metabolism,
is based on two pillars: vessel co-option and angiogenesis [262]. VEGF signaling constitutes
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a crucial mechanism underpinning tumor angiogenesis, and the attenuation of this pathway
has demonstrated the potential to impede tumor proliferation in various preclinical tumor
models [263]. Vessel co-option, delineated as the migration of neoplastic cells towards
and alongside pre-existing vascular structures, emerges as an alternative strategy to an-
giogenesis for neoplasms to acquire the necessary nutrients. Upon the ex vivo cultivation
of GBM stem cells (GSCs) under endothelium-conducive conditions, these cells exhibited
the expression of canonical endothelial markers, including CD31, von Willebrand factor
(vWF), and Tie-2. Endothelial cells facilitate the manifestation of the GSC phenotype within
the perivascular niche, primarily through direct cellular interactions. This facilitation is
achieved by the activation of the Notch signaling pathway in GSCs, attributed to the en-
dothelial expression of Notch ligands and the subsequent release of nitric oxide [264–268].
The majority of patients with GBM inevitably encounter tumor recurrence, predominantly
manifesting within 1 to 2 cm of the initial tumor margin. This phenomenon is attributed, in
part, to the process of vessel co-option [269,270]. Several molecular pathways have been
identified to contribute to this: 1. the EGFRvIII Pathway, 2. the CXCR4/SDF1α Pathway, 3.
the Ang-2 Pathway, 4. the IRE-1α Pathway, 5. the CDC42 Pathway, 6. the Olig2/Wnt7a
Pathway, 7. the MDGI/FABP3 Pathway, 8. the IL-8 Pathway, 9. the EphrinB2 Pathway,
and 10. the Bradykinin Pathway [271–284]. Bradykinin, an endogenous constituent of the
cerebral milieu, exhibits augmented concentrations concurrent with tumor progression.
Furthermore, GBM cells, particularly those engaging in vessel co-option, demonstrate a
pronounced upregulation of the bradykinin receptor-2 (B2R) [285]. Additionally, CXCR4
has been identified as a pivotal chemotactic cue within neoplastic contexts, with a noted
overexpression in infiltration GBM cell populations [286]. Moreover, according to the find-
ings of Voutouri et al., who utilized a glioma model to determine the tumor’s response to
antiangiogenic therapy, it is better to administer an alternative treatment of antiangiogenic
and anti-cooption drugs, not simultaneously [262].

The expanding understanding of tumor immunology has spurred the development
of innovative therapeutic modalities and immunotherapies, such as immune checkpoint
inhibition (ICI), which has transformed the treatment landscape for a variety of cancers.
Novel immunotherapeutic strategies, including chimeric antigen receptor (CAR) T cells,
vaccine-based treatments, and oncolytic virus therapies, are undergoing intensive research.
However, for patients with GBM, these new therapies have yet to demonstrate a significant
survival advantage over the established standard of care [287].

Conversely, CAR-T therapy involves the ex vivo genetic modification of a patient’s
T cells to express receptors that target specific tumor antigens. While CAR-T therapy has
yielded promising results in preclinical trials, it has not yet proven effective in clinical
settings for GBM [288–290]. Multifunctional CAR T cells, co-expressing IL12 and IFNα2
in addition to the CAR, exhibited enhanced antiglioma activity both in vitro and in vivo
in three orthotopic immunocompetent mouse glioma models, without any observable
toxicity. The synergistic action of IL12 and IFNα2 with the CAR was found to foster a
proinflammatory TME and mitigate T-cell exhaustion, as evidenced by ex vivo immune
phenotyping, cytokine profiling, and RNA sequencing. These multifunctional NKG2D
CAR T cells demonstrated potent antiglioma activity, surpassing the efficacy of T cells
expressing either the CAR or cytokines alone [291].

Additionally, another study explored the augmentation of CAR-T cell efficacy through
the use of an oncolytic adenovirus (oAds) armed with the chemokine CXCL11. This strategy
aimed to enhance CAR-T cell infiltration and reprogram the immunosuppressive TME,
thereby boosting therapeutic effectiveness. In both immunodeficient and immunocompe-
tent orthotopic GBM mouse models, B7H3-targeted CAR-T cells alone were insufficient to
inhibit GBM growth. However, the intratumoral administration of CXCL11-armed oAd in
conjunction with CAR-T cells resulted in a durable antitumor response. The oAd-CXCL11
also exhibited a strong antitumor effect and reprogrammed the immunosuppressive TME
in GL261 GBM models, characterized by increased infiltration of CD8+ T lymphocytes, NK
cells, and M1-polarized macrophages and reduced populations of MDSCs, Tregs, and M2-
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polarized macrophages. Importantly, the antitumor effect of oAd-CXCL11 was found to be
CD8+ T-cell-dependent [292]. Lp2-CAR-T cells were also effective against patient-derived
GSCs, indicating potential clinical applicability against GBM. The systemic administration
of Lp2-CAR-T cells curbed the growth of a subcutaneous glioma xenograft model in im-
munodeficient mice. The combined use of Lp2-CAR-T cells and the oncolytic virus G47∆,
a third-generation recombinant herpes simplex virus (HSV)-1, further suppressed tumor
growth and improved survival, suggesting the promise of this combination therapy for
GBM treatment [293].

Furthermore, αvβ3 CAR-T cells demonstrated efficient antigen-specific tumor cell
eradication in cytotoxicity assays and in vivo models with orthotopically and stereotacti-
cally implanted DIPG and GBM tumors in the brains of NOD scid gamma (NSG) mice. The
tumor responses were swift and pronounced, marked by systemic CAR-T cell proliferation,
enduring persistence, and long-term survival. Notably, TCF-1+αvβ3 CAR-T cells were
detectable post-tumor clearance, highlighting their potential for self-renewal and sustained
presence [294].

CAFs represent an important type of cell inside LGGs. A study by Dong et al. show-
cased that, by methylating some expressed genes of CAFs, the sensitivities to immune check-
point blockade treatment varied when chemotherapeutic agents were administered [183].
Moreover, the general assumption about the immunological standpoint of CAFs was that
of an immunosuppressive cell; however, this statement is debated, with recent evidence
supporting the contrary [295]. Therapeutic strategies are based on the classic assumption
that CAFs act as immunosuppressive agents [296,297]. Subsequently, a study performed in
2019 aimed to demonstrate that, through the utilization of Angiotensin receptor blockers,
myofibroblasts that developed from CAFs were able to be reversed back to the immuno-
supportive state [298]. Moreover, CAFs expression inside the solid tumor can be utilized as
a prognostic tool for the overall evolution and treatment response of the cancer, according
to a 2021 analysis [299].

Drugs often used in the field of psychiatry have demonstrated anti-tumoral effects, and
represent a viable treatment option in GBM, not only because of their high BBB permeability,
but also because of their peculiar interactions with GBM. The administration of chlorpro-
mazine led to a reduction in the expression of cell-cycle-associated proteins, including
cyclin D1, cyclin A, and cyclin B1, concurrently with an elevation in the expression of tumor
suppressor genes such as early growth response (EGR)-1 and P21 [300–303]. This regulatory
shift precipitated cell cycle arrest. Furthermore, evidence supports that chlorpromazine
induces autophagic cell death in GBM cells derived from patients. This phenomenon is
attributed to the involvement of reactive oxidative stress (ROS), endoplasmatic reticulum
(ER) stress, and the unfolded protein response in this process [302,304].

Trifluoperazine is posited to exert its effects through modulation of the inositol triphos-
phate receptor (IP3R), facilitating the release of Ca2+ from the ER. This action results in an
elevated intracellular concentration of Ca2+, disrupting calcium homeostasis and inhibiting
glioma cell invasion and proliferation [305]. Additionally, trifluoperazine interferes with
the interaction between IDH and calmodulin, thereby impeding the survival and migration
of GBM cells harboring wildtype IDH1 [306,307].

Tumor Treating Fields (TTFields) are electric fields that interfere with key cellular
mechanisms necessary for the survival and growth of cancer cells, ultimately inducing cell
death. TTFields therapy has been authorized for the treatment of newly diagnosed GBM in
conjunction with maintenance temozolomide. Recent evidence has shown the efficacy of
TMZ when combined with lomustine (CCNU) in patients with O6-methylguanine DNA
methyltransferase (MGMT) promoter methylation, findings which reinforce the clinical
advantage of using TTFields in combination with both temozolomide and lomustine [308].

Another study investigated the efficacy of adding Autologous tumor lysate-loaded DC
vaccination (DCVax-L) to standard-of-care temozolomide in treating GBM. Patients with
newly diagnosed glioblastoma (nGBM) in the active treatment group received DCVax-L
plus SOC temozolomide, while external control patients with nGBM were administered
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SOC temozolomide and a placebo. Recurrent glioblastoma (rGBM) external controls
received approved rGBM therapies. The primary and secondary outcomes focused on
comparing the overall survival (OS) in both the nGBM and rGBM patient groups with
matched external control populations from other formal randomized clinical trials. The
results indicated that the addition of DCVax-L to SOC significantly prolonged survival in
patients with both nGBM and rGBM, compared to matched external controls who received
only SOC [309]. Currently, another clinical trial of DCVax-L is ongoing (NCT00045968).

11. Comparative Studies: Gliomas vs. Other Tumor Entities

Comparative oncology clinical trials, particularly those conducted in pet dogs, are
increasingly integral to cancer research and the development of new anticancer drugs.
These trials enable the evaluation of novel agents and therapy combinations within a
veterinary clinical framework conducive to repeated biological sample collections and the
study of dosage, timing, and their pharmacokinetic/pharmacodynamic outcomes [310].

This interdisciplinary approach is dedicated to the betterment of both human and
veterinary medicine, with significant strides evident in the comparative analysis of canine
and human tumors. Canine cancers occurring naturally offer a valuable model that can
enhance the understanding, diagnosis, and treatment of human cancers [311,312].

However, the progress in treating HGG like GBM has been minimal. The formidable
challenges include the highly proliferative and invasive nature of GBM, which hinders
complete surgical removal and diminishes the effectiveness of traditional therapies, and
the extensive intra- and inter-tumoral heterogeneity, which complicates the identification
of consistent therapeutic targets [313].

Malignant gliomas are characterized by their uncontrolled proliferation, aggressive
infiltration into adjacent brain tissue, robust neovascularization, necrotic regions, and a
notable resistance to programmed cell death. Their propensity to diffusely infiltrate the
brain parenchyma, intertwining with healthy cells, renders complete surgical removal in-
feasible [314]. Currently, the marginally effective approach to extending life expectancy in
glioma patients involves surgical resection, complemented by radiation and chemotherapy
using temozolomide. Despite these interventions, tumor recurrence is common, typi-
cally within 6.9 months, leading to a median survival time of only 12 to 15 months post-
diagnosis [315]. Moreover, associating temozolomide with alfa interferon increases the
overall survival in patients [316].

Dexamethasone, a potent glucocorticoid, has showed great antitumoral properties in
different cell lines specific to cancers like colon or breast cancer [317,318]. In the case of
GBM, however, the use of dexamethasone is debated. Brain edema is one of the factors that
renders neurological disability in patients with brain tumors, for which dexamethasone
was commonly utilized in this kind of situation in standard treatment [319]. It appears
that dexamethasone is a therapeutic agent that might be detrimental in GBM treatment,
decreasing T lymphocyte and natural killer cell numbers. A study conducted by Iorgulescu
et al. showed that dexamethasone administration was correlated with a low survival rate
in patients with GBM [320]. Moreover, dexamethasone was shown to increase malignancy
in GBM cell lines due to an overall increase in glucose levels [321]. On the other hand, other
studies testify in favor of dexamethasone’s use in GBM therapies, studies that showcase
the benefic effects of inhibiting the GBM cell infiltration of subsequent tissues [322]. Even
though dexamethasone is used with great results in numerous therapies, we must keep in
mind that still unknown interactions may exist between cancerous cells and dexamethasone,
and, as a result, further research must be performed regarding dexamethasone–GBM
interactions in order to reach a consensus.

Targeting immune checkpoints has been a great strategy in the treatment of cancers.
One immune checkpoint of potential interest in cancers is represented by PD-1 and its
co-inhibitory factor programmed cell death protein ligand 1 (PD-L1) and PD-L2 [323,324].
PD-1/PD-L1 is an axis that is present in numerous types of cancers and utilizes different
signaling pathways to elude the body’s immune response. Exploiting these signaling
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pathways has showed promising results in cancer therapy: for example, PD-L1 increases
PI3K/AKT expression in colorectal cancer cells [325]; as a result, PD-L1 targeted therapy
has been developed in the form of Nivolumab [326–328]. Moreover, a blockade of the
MAPK signaling cascade effectively thwarted the upregulation of CD274 mRNA and PD-L1
protein and membrane expression, instigated by EGFR and IFN-γ in lung adenocarcinoma
cells [329]. Nivolumab and pembrolizumab, through their targeted inhibition of the PD1
receptor and subsequent blockade of its interaction with PDL1 and PDL2, have received
authorization for the treatment of advanced non-small lung cancer [330,331]. Additionally,
the employment of selective WNT pathway modulators, either inhibitors or activators,
to decrease or augment PD-L1 expression, respectively, is used in the treatment of triple-
negative breast cancer [332]. Regarding GBM, it is interesting to note the antithetic results of
nivolumab treatment: nivolumab alone or in combination with radiotherapy or ipilimumab
has not been as successful in the treatment of gliomas, according to numerous clinical trials
conducted recently [333–335]. However, on the other hand, other clinical studies and case
reports have yielded a greater survivability of patients treated with pembrolizumab [336]
or with a combination of nivolumab and pembrolizumab [337].

12. Future Directions in Glioma Research and Conclusions

The integration of genomics and molecular profiling into personalized treatment
strategies for gliomas has been a significant development. A study identified a prog-
nostically relevant signature comprising 17 lncRNAs associated with genomic instability,
offering potential therapeutic implications for GBM. These lncRNAs (including LINC01579,
AL022344.1, and CRNDE, among others) were linked to different survival outcomes, with
the lower-risk group exhibiting better survival rates. This lncRNA signature also stood
out as an independent risk factor across various clinical stratifications, with most patients
in the lower-risk group exhibiting mutations in IDH1. Furthermore, these lncRNAs were
expressed at higher levels in GBM cell lines compared to normal cells, indicating their
potential role in tumor pathology [338].

In the realm of immunotherapy, checkpoint inhibitors and chimeric antigen receptor
(CAR) T cell therapies have generated optimism through their preclinical successes. Clinical
trials continue to progress, aiming to identify optimal treatment approaches [339–342].

Additionally, the advent of artificial intelligence (AI) in medicine, particularly its
application in analyzing complex, high-dimensional images of brain tumors, presents new
frontiers in understanding and treating brain tumors. AI’s capacity to enhance the accuracy
of tumor genotyping, delineate tumor volumes precisely, and improve clinical outcome
predictions exemplifies the convergence of AI with precision medicine, setting the stage for
transformative changes in healthcare [343,344].

In concluding this comprehensive exploration of gliomas, we traversed the complex
landscape of these relentless brain tumors, illuminating the various facets that constitute
our current understanding. Proteomics, epigenetics, and genetics play key roles in gliomas,
with particular focus on the critical role of glial cells and the significance of cellular commu-
nication within the tumor milieu. We proceeded to unravel the genetic factors contributing
to these malignancies, and how advances in proteomics and metabolomics have elucidated
the modifications in protein expression and metabolic shifts, opening up avenues for thera-
peutic interventions. The discourse also encompassed the influence of the TME in gliomas
and the promise held by targeted therapies and comparative oncology.

Moving forward, the future of glioma research will pivot towards evaluating emerging
breakthroughs and innovative strategies on the horizon. The upcoming focus will be on
what the medical community must achieve to mitigate the devastating impact of gliomas,
with the ultimate goal of eradicating this formidable disease. It is important to keep in mind
that no single mechanism is responsible for the development of these dreaded neoplasms.
A plethora of intricate factors, co-stimulating mechanisms, and much more hold the key to
understanding such a complex pathology. In our search for an answer for this disease, we
must always keep in mind the bigger picture while continuing our research endeavors.
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Abbreviations

WHO World Health Organization
CNS Central nervous system
HGG high-grade gliomas
LGGs Low-Grade Gliomas
MRI Magnetic resonance imaging
GBM Glioblastom
IDH1 Isocitrate dehydrogenase 1
IHC Immunohistochemistry
UPS Ubiquitin proteasome system
AS Astrocytoma
ODG Oligodendroglioma
HDAC1 Histone deacetylase 1
NSCs Neural stem cells
GSCs Glioma stem cells
SVZ Subventricular zone
OPCs Oligodendrocyte progenitor cells
PUFAs Polyunsaturated fatty acids
NAC N-acetylcysteine
PE-PUFAs Phosphatidylethanolamine PUFA
BBB Blood-brain barrier
FasL Fas ligand
TAAs Tumor-associated antigens
MDSCs Myeloid-Derived Suppressor Cells
CSF-1 Colony Stimulating Factor-1
Arg1+ Arginase 1 positive
AEG1 Astrocyte elevated gene-1
TCGA The Cancer Genome Atlas
GTEx Genotype-Tissue Expression
CGGA Chinese Glioma Genome Atlas
MIF Macrophage migration inhibitory factor
PD-1 Programmed cell death protein 1
Tregs Regulatory T cells
Tfr T follicular regulatory
CTLA-4 Cytotoxic T-Lymphocyte Associated protein 4
PFG Permeability Factor G
NK Natural Killer
TGF-β Transforming Growth Factor Beta
NKG2D Natural-killer group 2, member D
IFN-γ Interferon Gamma
CAR-T Chimeric Antigen Receptor T
EGFRvIII EGFR variant III
IL-13Rα Interleukin-13 Receptor Alpha 2
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TME Tumor microenviroment
Treg Regulatory T cell
TIM-3 T-cell immunoglobulin domain and mucin domain-3
DCs Dendritic cells
DIPG Diffuse Intrinsic Pontine Glioma
SRS Stereotactic Radiosurgery
CSCs Cancer stem cells
TAMs Tumor-associated macrophages
EVs Extracellular vesicles
CX-43 Connexin-43
JNK C-Jun N-terminal kinase
Grnd Grindelwald
Egr Eiger
BDNF Brain-derived neurotrophic factor
GPER G protein-coupled estrogen receptor
GICs Glioma-initiating cells
AQPs Aquaporins
EGFR Epidermal growth factor receptor
ABAT Aminobutyrate aminotransferase
PDGFRA Platelet-derived growth factor receptor alpha
RNA Ribonucleic acid
TFs Transcription factors
lncRNA Long non-coding RNA
DNA Deoxyribonucleic acid
PTMS Posttranslational modifications
SENP1 SUMO-specific protease
miRNA MicroRNA
DII1-4 Delta-like family
PKB Protein kinase B
PI3K PI3 kinase
ACSS2 Acetyl-CoA synthetase 2
SREBP Sterol regulatory element-binding protein-1
EOR Extent of resection
LOS Length of hospital day
CSR Complete surgical resection
IORT Intraoperative radiation therapy
IoMRI Intraoperative MRI
ECM Extracellular matrix
TREM2 Triggering receptor expressed on myeloid cells 2
CAFs Cancer-associated fibroblasts
FN1 Fibronectin
MDSCs Myeloid-Derived Suppressor Cells
VEGF Vascular endothelial growth factor
vWF Von Willebrand factor
B2R Bradykinin receptor-2
ICI Immune checkpoint inhibition
CAR Chimeric antigen receptor
oAds Oncolytic adenovirus
DIPG Diffuse Intrinsic Pontine Glioma
NSG NOD scid gamma
EGR Early growth response
ROS Reactive oxidative stress
ER Endoplasmic reticulum
IP3R Inositol triphosphate receptor
TTFields Tumor Treating Fields
CCNU Lomustine
MGMT Methyltransferase



Curr. Issues Mol. Biol. 2024, 46 2428

DCVax-L Dendritic cell vaccination
nGBM Newly diagnosed glioblastoma
rGBM Recurrent glioblastoma
OS Overall survival
PD-1 Programmed cell death protein
PD-L1 Programmed cell death protein ligand 1
ncRNAs Non-coding RNAs
AI Artificial intelligence
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