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Abstract: Rare ginsenoside compound K (CK) is an intestinal microbial metabolite with a low natural
abundance that is primarily produced by physicochemical processing, side chain modification, or
metabolic transformation in the gut. Moreover, CK exhibits potent biological activity compared to
primary ginsenosides, which has raised concerns in the field of ginseng research and development,
as well as ginsenoside-related dietary supplements and natural products. Ginsenosides Rb1, Rb2,
and Rc are generally used as a substrate to generate CK via several bioconversion processes. Current
research shows that CK has a wide range of pharmacological actions, including boosting osteogenesis,
lipid and glucose metabolism, lipid oxidation, insulin resistance, and anti-inflammatory and anti-
apoptosis properties. Further research on the bioavailability and toxicology of CK can advance its
medicinal application. The purpose of this review is to lay the groundwork for future clinical studies
and the development of CK as a therapy for metabolic disorders. Furthermore, the toxicology and
pharmacology of CK are investigated as well in this review. The findings indicate that CK primarily
modulates signaling pathways associated with AMPK, SIRT1, PPARs, WNTs, and NF-kB. It also
demonstrates a positive therapeutic effect of CK on non-alcoholic fatty liver disease (NAFLD), obesity,
hyperlipidemia, diabetes, and its complications, as well as osteoporosis. Additionally, the analogues
of CK showed more bioavailability, less toxicity, and more efficacy against disease states. Enhancing
bioavailability and regulating hazardous variables are crucial for its use in clinical trials.
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1. Introduction

In recent years, metabolic disorders have become a global health concern because
of their rapidly increasing prevalence [1]. Global human health is severely challenged
by the increasing incidence of metabolic diseases, which include type 2 diabetes (T2D),
obesity, non-alcoholic fatty liver disease (NAFLD), gout, osteoporosis, hypothyroidism, and
hyperthyroidism [2]. The International Diabetes Federation (IDF) reports that 537 million
individuals worldwide had diabetes in 2021, with more than 90% of cases being type
2 diabetes [3]. By 2045, this figure is predicted to rise to 783 million. In addition, obesity
has emerged as the biggest global problem of concern for public health, with the inci-
dence of overweight and obesity rising sharply in recent years. In 2016, there were over
650 million and over 1.9 billion adults with obesity or adults who were overweight world-
wide, respectively, making up around 39% of the world’s population [4]. According to
estimations in 2019, the worldwide incidence of gout was 0.1–0.3% [5], and the prevalence
of NAFLD was 29.62% in Asia [5]. These findings demonstrate that metabolic disorders
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represent a substantial challenge in human society due to the associated high mortality and
morbidity; thus, understanding the pathophysiology and therapies of metabolic diseases
is critical.

The pharmacological properties of Korean ginseng (Panax ginseng Meyer), which has
been revered as one of the most renowned traditional Chinese herbal medicines for over
two hundred years, are largely attributed to its bioactive triterpenoid saponins. These
triterpenoid saponins, called ginsenosides, are divided into three categories: panaxadiol
(PPD), panaxatriol (PPT), and oleanic acid [6]. More than 218 ginsenosides have been
determined from multiple parts of the ginseng plant (roots, flowers, berries, and leaves), and
these byproducts have become popular for research [7]. However, ginsenoside compound
K (CK) is one of the most significant among these ginsenosides due to its high uptake
and absorption rate into the human gastrointestinal tract and, ultimately, the systemic
circulation [8]. Compared to other ginsenosides, CK has superior membrane permeability
and a lower molecular weight, which contribute to its increased bioavailability [9]. Major
ginsenosides undergo the transition to produce CK, which is rarely present in natural
ginseng. Human gut bacteria and endophytes have been reported to use deglycosylated
processes to bio-convert CK products. In the past year, yeasts have been metabolically
altered by enzymes has become a viable alternative for producing CK [10]. According to
current research, CK possesses pharmacological properties that include hepatoprotective,
anti-inflammatory, anti-carcinogenic, anti-diabetic, anti-allergic, neuro-protective, and
anti-aging activities [11].

CK is an active molecule that can reduce blood lipids and control glucose consump-
tion [12]. Notably, CK is a regulator of PPARγ [13] and AMPK [14]. It has been demonstrated
that AMPK increases glucose utilization, mobilizes lipid storage, and promotes autophagy
to turnover macromolecular routes, so promoting the breakdown of biomolecules for the
creation of energy [15]. Additionally, PPARγ influences lipid metabolism, which enhances
sensitivity to insulin and glucose metabolism [16]. AMPK and PPARγ are the fundamental
targets in metabolic disorders, including NAFLD, diabetes, osteoporosis, and obesity [17,18].
In addition, CK downregulates PPAR, leptin, aP2, and C/EBP adipogenic markers, which
cause obesity, diabetes, and other metabolic diseases [19]. Moreover, the deregulation of
metabolic processes associated with TP53 results in various human pathologies, such as
obesity, diabetes, liver, and cardiovascular illnesses [20]. CK significantly regulates the
TP53 expression in different disease states [21].

As a result, it is hypothesized that CK may be involved in metabolic illnesses by con-
trolling inflammation and energy. However, due to the shortage of adequate information
on CK regarding its use for the cure of metabolic illness, cytotoxicity is well documented,
which prevents further development of the drug. This study includes an in-depth assess-
ment of the use of CK to treat metabolic illnesses and the signaling pathways involved, as
well as an analysis of its usual negative effects and pharmacokinetics. To give direction and
evidence for CK research on metabolic conditions, we investigated the Google Scholar, Web
of Science, PubMed, and CNKI databases up to December 2023.

2. Physical and Chemical Properties

CK (20-O-β-D-glucopyranosyl-20(S)-protopanaxadiol) is a minor tetra-cyclic triter-
penoid that is rarely found in natural ginseng. Several approaches for CK synthesis have
been described in detail (Section 4). CK is a white crystalline powder with a molecular
weight of 622.9 g/mol, molecular formula C36H62O8 [22], and PubChem CID 9852086.
The physical and chemical properties of CK are shown in Table 1 (data collected from
https://www.chemicalbook.com/ (accessed on 20 December 2023)).

https://www.chemicalbook.com/
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Table 1. Physical and chemical properties of CK.

Name Compound K

Alias 20-O-β-D-glucopyranosyl-20(S)-protopanaxadiol
CAS number 39262-14-1
Pubchem CID 9852086
Compound type tetra-cyclic tri-terpenoid
Molecular formula C36H62O8
Molecular weight 622.9 g/mol
Form powder
color White
Solubility DMF: 10 mg/mL; DMSO: 10 mg/mL; DMSO: PBS (pH 7.2) (1:1): 0.5 mg/mL
Density 1.19
pka 12.94 ± 0.70 (Predicted)
Melting point 181~183 ◦C
Boiling point 723.1 ± 60.0 ◦C
LogP 5.500
Stability Hygroscopic

3. Pharmacokinetics, Safety, and Toxicological Studies of CK and Its Derivatives

The bioavailability rate of ginsenosides without conversion or modification indicates
limited intestinal absorption [23]. According to research, some microorganisms and gut
bacteria or soil fungi around ginseng roots hydrolyze ginsenosides to produce CK. It is
essential to research the metabolic processes that control intestinal microbiota since it plays
a crucial role in the biological transformation and therapeutic effects of CK [23]. Based
on recent research on human metabolism, a high-fat diet greatly speeds up and increases
the digestion of CK, and women have higher concentrations of CK than men [24]. After
delivering Korean ginseng extract to ten healthy males for 36 h, the drug levels in their
blood samples were reported in additional pharmacokinetic investigation on CK [25]. The
mean time to achieve the Cmax (Tmax) of CK was greater compared to Rb1 (12.20 ± 1.81 vs.
8.70 ± 2.63 h), and the average highest plasma concentration (Cmax) of CK was substan-
tially greater than the mean concentration of Rb1 (8.35 ± 3.19 vs. 3.94 ± 1.97 ng/mL).
Intestinal microflora probably converts Rb1 to CK because of the delay in CK absorption.
Compared to Rb1, CK had a plasma half-life (t1/2) that was seven times shorter. The
findings of this study suggest that there is a notable distinction in the pharmacokinetics
of CK and Rb1. In a different study, 76 participants were given either a placebo or CK
in seven individual doses taken orally (25, 50, 100, 200, 400, 600, and 800 mg) while they
were fasting; the exposure to CK grew linearly between 100 and 400 mg, and the time
range to attain Tmax was 1.5–6.0 h. After the seventh administration, the steady state
was reached, and there were no serious adverse effects (AEs) reported. Watery stool (di-
arrhea) and stomachache were the most commonly reported AEs. All AEs were mild to
severe, and the majority of them were cured quickly without any intervention. These
findings demonstrated that CK was both safe and well tolerated for the course of the
treatment [24,26].

According to toxicity tests, CK was applied on 3T3L1 pre-adipocyte cells in a dose-
dependent manner. The maximum concentration of 40 µM did not affect the viability of the
cells [27]. Fang et al. examined ginsenoside CK for cytotoxicity at various concentrations
(0.2–10.0 µM). They observed that CK concentrations below 10 µM had no discernible
impact on the survival rate of HaCaT keratinocyte cells [28]. The osteoblastic cell line
MC3T3-E1 was exposed to CK at various concentrations (0.1–10 µM) and did not exhibit any
appreciable toxicity [8]. When ginsenoside CK was evaluated on HepG2 cells, substantial
cytotoxic effects were detected with increasing concentrations of ginsenoside CK up to
30 M compared to the control group [29]. Additionally, different CK doses (5–40 µM) were
applied to HepG2 cells for 24 h to assess the cellular toxicity of CK. Even at dosages of
40 µM, CK did not exhibit any cellular damage [30]. However, the administration of a
higher dose of CK (10 µM) significantly boosted the development of HT22 hippocampus
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neuron cells [31]. After the treatment with 1.25–10 µM of CK, the rate of survival of
the L02 cells climbed dramatically. CK showed no toxicity at any test concentration on
L02 cells [32]. Human fibroblast-like synoviocytes RA-FLS cells and murine macrophage
cells were treated at the same concentrations of 0.1–5 µM for the treatment of rheumatoid
arthritis. The results showed that these cells were not affected by CK at a concentration of
≤5 µM [33]. Gu et al. evaluated the possible cytotoxicity of CK on MIN6 mouse pancreatic
β-cell at various doses (2–32 µM). CK showed minimal effect at 16 µM and decreased the
cell viability at 32 µM [34]. CK has a time- and concentration-dependent mild to moderate
cytotoxic impact on cancer cells. The most susceptible to CK exposure were Hk-1 cells (a
cell line used to study nasopharyngeal carcinoma), as 41.1–88.0% of cell mortality was seen
at low levels (10–20 µM) [35]. Boopathi et al. reported that CK exhibits negligible cytotoxic
effect on A549 lung cancer cells, Caco-2 colorectal cancer cells, and MCF-7 breast cancer cells
at 12.5 µg/mL, whereas normal cell Raw 264.7 demonstrated less toxicity at 6.25 µg/mL [36].
At concentrations ranging from 8 to 64 µmol/L, compound K inhibited the growth of HT-
29 cells in a dose-dependent manner; the dosage that produced 50% inhibition of growth
(IC50) was 32 µmol/L [37]. Oral CK delivery to rats and mice in a toxicity trial did not
result in toxicity or death at the maximal doses of 8 and 10 g/kg, respectively [38]. During a
beagle toxicity investigation, dogs in the 36 mg/kg group experienced considerable weight
loss and reversible hepatotoxicity. There was no discernible toxicity in the animals in the
4 and 12 mg/kg groups [39]. Table 2 elucidated the cytotoxicity of CK on different cell lines.

The bioavailability and solubility of CK and its derivatives have been enhanced via the
application of modifications of structure and the use of nanocarriers. Igami et al. performed
research to increase the solubility, dissolution rate, and bioavailability of CK by forming a
complex with γ-cyclodextrin and improving oral bioavailability and water solubility [40].
In a different study, ginsenoside CK was used in conjunction with d-alpha-tocopheryl
polyethylene glycol (PEG) 1000 succinate-iposomes to enhance solubility, target tumor
cells, and reduce efflux [41]. In a different investigation, PCL (polycaprolactone), PEG, and
TPGS CK-micelles (CK-M) showed better bioactivities and solubility [42]. When water
solubility of CK-NPs/bovine serum albumin (BSA) and CK were evaluated, it was observed
that BSA increased the water solubility of CK. BSA is a desirable carrier molecule due to
its high biocompatibility, dispersive nature, and ability to conjugate with various target
molecules [43]. In another investigation, the efficacy of medication loading was assessed
when CK was loaded onto gold (G) NPs made with probiotic microbes (Lactobacillus
kimchicus DCY51T) [6]. A recent study showed that probiotic (Bifidobacterium animalis)-
mediated gold NPS of CK increases the capability of drug deliveries, biocompatibility, and
oral bioavailability [44].

It has been demonstrated that CK is safe and well tolerated in both human and animal
subjects. These preclinical findings imply that CK may be harmful to the liver. Although
the relative weight of the kidney was high, there was no histological change, but nephro-
toxicity should be noted. Abdominal pain and diarrhea were CK-related AEs observed
in clinical trials. Both clinical trials and data on AEs associated with CK are scarce. Thus,
more research is required to determine the processes underlying CK-induced gastroin-
testinal tract irritation and CK-induced damage, particularly hepatotoxicity. We studied
ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) analysis of CK by
using the SwissADME (http://www.swissadme.ch/index.php, (accessed on 25 December
2023)), ADMETlab2.0 (https://admetmesh.scbdd.com/, (accessed on 25 December 2023)),
and pkCSM (https://biosig.lab.uq.edu.au/pkcsm/, (accessed on 25 December 2023)) web
servers, while the predicted toxicology properties were analyzed using the Protox-II web-
server (https://tox-new.charite.de/protox_II/, (accessed on 25 December 2023)), where
the drug likeliness and toxicity of CK was mentioned (Table 3).

http://www.swissadme.ch/index.php
https://admetmesh.scbdd.com/
https://biosig.lab.uq.edu.au/pkcsm/
https://tox-new.charite.de/protox_II/
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Table 2. Cytotoxic studies of CK in several cell lines.

Study Model Concentrations Method of Detection Duration of
Experiment Result Ref.

3T3-L1 preadipocyte
cell lines (0, 10, 20, 30, and 40 µM) MTS assay 24 h A high dose of CK (40 µM) did

not affect cell viability. [27]

HaCaT keratinocytes cells 0.2, 0.4, 0.6, 0.8, 1.0,
and 10.0 µM MTT assay 24 h Below 10 µM showed safe

survival of HaCaT cells. [28]

MC3T3-E1 osteoblastic
cell line 0.01, 0.1, 1, and 10 µM MTT assay 48 h No cytotoxicity was observed. [8]

HepG2 1, 2, 5, 10, 15, 20, and
30 µM MTT assay 24 h Cell viability reduces with

increasing concentrations. [29]

HepG2 5−40 µM

CellTiter 96 AQueous
One Solution Cell
Proliferation
Assay kit

24 h CK did not exhibit any cellular
toxicity below 40 µM. [30]

HT22 mouse hippocampal
neuron cell 2.5, 5, and 10 µM MTT assay 24 h CK can increase the survival of

HT22 cells. [31]

L02 Human liver cell line 0.625, 1.25, 2.5, 5, 10, and
20 µM MTT assay 24 h The cell viability appeared at

the dosages of 1.25–10 µM. [32]

RA-FLS and Raw 264.7 0.1, 0.5, 2.5, and 5 µM MTT assay 48 h
The survival rate of both cells
was not impacted at doses of
≤5 µM.

[33]

MIN6 cell line 2, 4, 8, 16, and 32 µM MTT assay 24 h At 16 µM CK showed little
toxicity on MIN6 cell [34]

Hk-1 Nasopharyngeal
Carcinoma cells, 1–20 µM MTT assay 24 h The IC50 of CK was 11.5 on

HK-1 cells [35]

A549 lung cancer cells,
MCF7 breast cancer cells,
Caco-2 human colorectal
adenocarcinoma cells, and
normal RAW 264.7 cells

0, 3.125, 6.25, 12.5, and
25 µg/mL MTT assay 24 h

At 12.5 µg/mL concentration,
CK showed considerable
cytotoxic effect on A549 cells,
MCF-7 cells, and Caco-2 cells
growth. However, at 6.25
µg/mL, Raw 264.7 cells showed
less toxicity.

[36]

HT-29 Human colon
cancer cells 8, 16, 32, and 64 µmol/L MTT assay 24 h

CK inhibited the growth of
HT-29 cells in a dose-dependent
manner.

[37]

HL-60 human myeloid
leukemia cell line 10, 20, 30, and 50 µM MTT assay 72–96 h

24.3 µM was needed to achieve
50% growth inhibition (IC50) at
96 h.

[45]

U937, Jurkat, CEM-CM3,
Molt4, and H9 leukemia
cell lines

Did not mention MTT assay 96 h

The IC50 values of CK were as
follows: 20 µg/mL for U937, 26
µg/mL for Jurkat, 36 µg/mL
for CEM-CM3, 44 µg/mL for
Molt 4, and 64 µg/mL for H9.

[46]

Rat and mice 8 and 10 mg/kg,
respectively

Acute oral
repeated dose 26 weeks

No indications of clinical harm
or death after 14 days.
A few variations were observed
in this shift at weeks 9, 10, 12,
15, 17, 21–24, and 26. As a
result, CK had a minimally
negative impact on the animal’s
body weight.

[38]

Beagle dogs 4, 12, or 36 mg/kg Oral doses 26 weeks

No obvious toxicity was shown
by the animals in the 4 and
12 mg/kg groups.
The 36 mg/kg group showed
elevated plasma enzyme levels,
localized liver necrosis, and a
decrease in body weight.

[47]
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Table 3. ADMET properties analysis of CK.

Physicochemical Properties Compound K Standard Range

Molecular weight (g/mol) 622.9 <500
Num. rotatable bonds 7
Num. H-bond acceptors 8 ≤10
Hydrogen bond donor 6 ≤5
Molar Refractivity 172.26 40–130
TPSA (Å2) 139.84 <140 Å2

Lipinski Yes; 2 violations
Bioavailability Score 0.17 >0.1

ADME

Human Intestinal Absorption 54.344
GI absorption Low
Blood–Brain Barrier Permeability −1.038 0–1
Volume distribution 1.061 0.04–20 L/Kg
Plasma–protein binding 93.57% <90%
Total Clearance (log ml/min/kg) 0.46
CYP1A2 inhibitor No 0–1
CYP2C19 inhibitor No 0–1
CYP2C9 inhibitor No 0–1
CYP2D6 inhibitor No 0–1
CYP3A4 inhibitor No 0–1

Toxicity

Hepatotoxicity Active (0.69) 0–1
Carcinogenesis Inactive (0.62) 0–1
Immunotoxicity Active (0.96) 0–1
Mutagenicity Inactive (0.97) 0–1
Cytotoxicity Inactive (0.93) 0–1
Mitochondrial Membrane Potential Inactive (0.70) 0–1

4. Biotransformation of CK

It has been demonstrated that the naturally occurring ginseng plant does not pro-
vide significant amounts of the minor ginsenoside CK. Therefore, several studies have
concentrated on using various techniques, including hydrolysis, enzymatic biotransfor-
mation, microbial transformation, etc., to convert major ginsenosides to CK. Additionally,
endophyte biotransformation is an effective technique within microbial transformation
because of its low cost, excellent selectivity, accuracy, and environmental safety [10]. Chem-
ical hydrolysis conditions led to the nonspecific cleavage of glycone moieties at position
20, which in turn caused side reactions of hydroxylation, hydration, and epimerization.
Furthermore, these methods proved to increase environmental contamination [48,49]. In
contrast, owing to their notable selectivity, mild reaction conditions, and environmental
compatibility, enzymatic or microbial conversion modalities have emerged as the most
popular ones. Figure 1 demonstrates the biotransformation of major ginsenosides to CK
via several pathways using enzymatic and microbial conversion methods.

4.1. Enzymatically Synthesis

One possible approach could be highly region-specific enzymatic transformation.
Enzymatic techniques have been employed to produce CK from ginseng root extract,
employing β-glucosidase (β-glu), β-glycosidase, and bi-composites of β-glucosidase.

The bioconversion of ginsenoside Rb1 to CK via β-glu is an effective production
method in industry [50]. Microbes isolated from the soils of ginseng farms, soybeans, tea,
the gastrointestinal tract of humans, kimchi, and other fermented items can be a source of
β-glu [51]. Heat-resistant β-glu yields the highest amount of CK from protopanaxadiol-type
ginsenosides [52]. Qin et al. used chromatography to purify a new ginsenoside-hydrolyzing
β-glu from Paecilomyces bainier sp. 229 to increase the conversion rate of Rb1 into CK. At
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45 ◦C and pH 3.5, the ginsenosides Rb1 and the enzyme exhibited the highest level of
activity. The pathway Rb1 → Rd → F2 → CK converted roughly 84.3% of the ginsenoside
Rb1 to CK one day after the incubation [53]. Furthermore, it has been observed that
recombinant β-glu enzymes found in Terrabacter ginsenosidimutans sp. [54] and Lactobacillus
brevis [55] can convert Rb1 into CK.
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Figure 1. Biotransformation of major ginsenosides to CK via different pathways using enzymatic
and microbial conversion methods. The numbers in the figure indicate the transformation-related
enzymes. (i. β-Glucosidase from Fusodobacterium K-60, ii. β-Glucosidase from Paecilomyces bainier,
iii. Recombinant β-glucosidase from Terrabacter ginsenosidimutans, iv. Recombinant β-glucosidase
from Microbacterium esteraromaticum, v. β-Glycosidase from Sulfolobus solfataricus, vi. β-Glycosidase
from Pyrococcus furiosus).

β-glycosidases are a substitute for β-glucosidases and are frequently employed in the
hydrolysis of ginsenosides [56]. Particularly, PPD-type ginsenosides are hydrolyzed by
β-glycosidases [57]. Noh et al. [58] documented synthesizing CK from ginseng root extract
by employing β-glycosidases derived from Sulfolobus solfataricus. Two transformation path-
ways were described by them to turn Rb1, Rb2, Rc, or Rd into CK: (1) Rb1 or Rb2 → Rd →
F2 → compound K, and (2) Rc → compound Mc → compound K. Despite the strong speci-
ficity of this approach, the ginsenoside to CK conversion rate was low. Thus, recombinant
β-glycosidase derived from Pyrococcus furiosus [59] and Microbacterium esteraromaticum [60]
has been created to convert significant ginsenosides into minor ginsenosides. Pyrococcus
furiosus was highly productive in turning Rd into CK, yielding an 83% conversion rate [59].

However, there was inadequate stability of free β-Glu, which hindered circulation
and recovery, unable to recycle β-Glu and snailase, self-digestion rate, and long reac-
tion time. This limitation can be overcome by enzymatic immobilization technology,
which will also make it easier to use β-Glu in commercial production β-Glu@Cu(PTA)
biocomposite reached a 49.15% conversion rate of Rb1 to CK [50]. Green synthesis of
Zn-BTC co-immobilized snailase and β-glucosidase (β-Glu) resulted in the formation of
β-Glu&SN@Zn-BTC biocomposite, which reached the CK conversion rate of 53.5% in 48 h
at pH 4.5. The CK concentration was 1.07 mg/mL, and 83% of all products were made up
of CK [61]. Using Sna&β-Glu@H-Cu-BDC (large-sized snailase&β-glucosidase@hollow-
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Cu-H2BDC) biocomposite for the synthesis of the CK. Cau et al. [62] reported that the total
amount of CK was about 0.94 mg mL−1, and the average conversion rate of CK was around
60.12% after growing the conversion system.

4.2. Biotransformation of CK by Human Gut Microbiota

Microbial transformation is generally regarded as a key technique for producing
CK [63]. It involves using crude enzymes from Fusarium sacchari [64], Lactobacillus paral-
imentarius [65], Microbacterium esteraromaticum [60], Caulobacter leidyia, and Acremonium
strictum [66]. For instance, Hasegawa et al. [67] thoroughly examined the metabolic con-
version of CK from ginsenosides Rb1, Rb2, and Rc by gut flora. Ginsenosides Rb1, Rb2,
and Rc were transformed into CK via anaerobic incubation with human gut microbiota.
Among them, bacterial strains obtained from human intestinal feces, including Bacteroides
sp., Bifidobacterium sp., and Eubacterium sp., successfully converted Rc into CK [68]. The
composition of the gut microbiota determined the primary metabolic pathway used by
intestinal bacteria to break down ginsenoside Rb1 into CK.

Compared to bacteria, fungi are easily cultured and can biotransform to replace human
intestinal bacteria as a source of CK [64]. Zho et al. [69] used fungal biotransformation to
efficiently manufacture CK from Panax notoginseng (PNG) saponins at a reasonable cost.
The same group also showed that the fungus Paecilomyces bainier sp. 229 could efficiently
convert PNG saponins into CK; this resulted in a substantially higher conversion rate of
PNG to CK (82.6% vs. 35.4%) than before [70]. Furthermore, fungi that were produced
from ginseng-cultivated soil, such as Fusarium moniliforme [71], A. strictum [72], A. niger [73],
and F. sacchari [64], demonstrated good biotransformation of major ginsenosides into minor
bioactive. Cumulative generation of bioactive CK from fermented black ginseng using a
novel Aspergillus niger KHNT-1 strain obtained from the Korean staple food kimchi [74].
Leuconostoc strains were also isolated from kimchi, which showed good conversion of
PPD-type ginsenosides to CK [75]. Microorganisms have frequently been used in the
biotransformation of major ginsenosides into minor bioactive. Furthermore, a synthetic
biology approach has been utilized for transformation. PPD ginsenosides could be easily
converted into CK by the metabolically modified yeast expressing the heterologous UGTPg1
gene [76].

5. Mechanism of CK against Metabolic Diseases

The pathophysiology of metabolic disease is highly complex and is caused by multiple
factors. Numerous studies have demonstrated the beneficial impacts of CK on metabolic
disorders. After reviewing the research, we concluded that CK is a useful medicinal sub-
stance for treating osteoporosis, hyperlipidemia, obesity, hepatocyte steatosis, NAFLD, and
diabetes and its consequences. Table 4 displays the pharmacological molecular pathways
of CK in the treatment of metabolic disorders.

Table 4. Pharmacological action of CK in treating metabolic disorders and its underlying molecu-
lar processes.

Disease Experimental Models Dosage Form Doses of
Administrations Mechanism Ref.

Obesity C57BL/6J mice Oral 15, 30, 60 mg/kg

• Inhibits TLR4/TRAF6/TAK1/NF-κB
activation in obese mice.

• Promotes IRS1/PI3K/AKT
expression against obesity.

[13]
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Table 4. Cont.

Disease Experimental Models Dosage Form Doses of
Administrations Mechanism Ref.

Obesity

Male C57BL/6J and
ob/ob (B6/JGpt-
Lepem1Cd25/Gpt) mice

i.p. injection 20 mg/kg

• Initiates autophagy via the
AMPK/ULK1 pathway activation.

• Boosts autophagy and lipase
activity to promote lipolysis.

• Promotes lipolysis via interacting
with the GR.

[77]

3T3-L1 cell lines Cell treatment 0.05, 0.5, 5 µM

• Inhibits adipocyte-specific genes
(C/EBPα, leptin, aP2, and PPARγ).

• Decreases angiogenic factors
(VEGF-A and FGF-2) and MMPs
(MMP-2 and MMP-9).

• Enhances the mRNA expressions
of angiogenic blockers (TSP-1,
TIMP-1, and TIMP-2).

[19]

3T3-L1 cell lines Cell treatment 20, 50 µM

• Inhibits MCP-1 and TNF-α in
adipocytes.

• Promotes IL-10 expression to
alleviate obesity-induced
inflammation and insulin
resistance.

[78]

3T3-L1 cell lines Cell treatment 10–40 µM

• Activates the AMPK signaling
pathway.

• Inhibits ERK/P38 and AKT
signaling pathways.

[79]

Diabetes

male ICR mice Oral 30 mg/kg/day • Downregulates PEPCK and
G6Pase expression in the liver.

[80]

Male Wistar rats
(200–250 g) Oral 30, 100, 300 mg/kg

BW

• The levels of InsR, IRS1, PI3Kp85,
pAkt, and Glut4 in the skeletal
muscle of diabetic rats may be
enhanced by CK.

[81]

MIN6 cell line Cell treatment 2–32 µM
• CK significantly stimulates insulin

release by upregulating GLUT2
expression.

[34]

male C57BL/KsJ
db/db mice Oral CK: Metformin

1:15

• Insulin and plasma glucose levels
were raised when CK and MET
were combined.

[82]

DN

HFD (high-fat
diet)/STZ
(streptozotocin)-
induced DN mice
model

Intragastrically 10, 20,
40 mg/kg/day

• Suppresses NADPH oxidase
expression and blocks
ROS-mediated NLRP3
inflammasome and NF-κB/p38
signaling pathway activation.

[83]
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Table 4. Cont.

Disease Experimental Models Dosage Form Doses of
Administrations Mechanism Ref.

DT human tenocytes cell Cell treatment 3, 10 µM

• Inhibits high glucose-induced
apoptosis, inflammation, and
oxidative stress.

• Normalizes the MMP-9, MMP-13,
and TIMP-1 expressions.

• Boosts PPARγ and antioxidant
enzymes.

[84]

OP

Raw264.7 cells
Balb/C female mice

Cell treatment,
i.p. injection

10 µM
10 mg/kg

• Inhibits RANKL-induced
osteoclast differentiation.

• Inhibits ROS production by
triggering NF-κB/p65 and
oxidative stress in Raw264.7 cells.

• Inhibit bone resorption with
macrophages generated from
bone marrow.

[85]

bone marrow
mesenchymal stem
cells
male Sprague Dawley
(SD) rats

Cell treatment,
i.p. injection

2.5–40 µM
10 µM

• Elevates Runx2 and β-catenin to
promote osteogenic differentiation
via the Wnt/ β-catenin pathway.

[86]

OA MC3T3E1 cell lines Cell treatment 0.01–10 µM
• Increases ALP, Col-1, and Runx2

expression in preosteoblastic cells
against osteoarthritis.

[8]

NAFLD

SD rats,
HSC-T6 cells

i.p. injection
Cell treatment 3 mg/kg/day • CK has anti-fibrotic and

hepatoprotective effects.
[87]

HepG2 cells Cell treatment 20 µM • Suppresses SREBP1c and activates
PPAR-α.

[30]

HuH7 cells Cell treatment 1 µM

• Inhibits lipid droplet and
triglyceride accumulation via
upregulating the AMPK/PPAR-α
signaling pathway.

[88]

HCC HepG2 cells Cell treatment 0, 5, 10 µmol

• Enhances P21 and P27
expressions.

• Inhibits cyclin D1, cyclin-dependent
kinase 4, and cell cycle progression
to induce apoptosis.

[89]

Abbreviations: DN: diabetes nephropathy, DT: diabetic tendinopathy, OP: osteoporosis, OA: osteoarthritis,
NAFLD: non-alcoholic fatty liver disease, HCC: hepatocellular carcinoma, TLR4: Toll-like receptor 4, TRAF6:
tumor necrosis factor receptor associated factor 6, TAK1: transforming growth factor-β-activated kinase 1,
NF-kB: nuclear factor kappa B, IRS1: insulin receptor substrate 1, PI3K: Phosphoinositide 3-kinase, AMPK:
AMP-activated protein kinase, ULK1: unc-51-like kinase 1, GR: glucocorticoid Receptor, aP2: activator protein 2,
PPARγ: peroxisome proliferator-activated receptor gamma, VEGF-A: vascular endothelial growth factor A, FGF-2:
fibroblast growth factor-2, MMP: matrix metalloproteinases, TSP-1: Thrombospondin 1, TIMP: tissue inhibitor
of metalloproteinase, MCP-1: Monocyte chemo attractant protein 1, TNF-α: tumor necrosis factor-α, PEPCK:
Phosphoenolpyruvate carboxykinase, NADPH: Nicotinamide adenine dinucleotide phosphate, RANKL: receptor
activator of nuclear factor kappa-B ligand, ROS: reactive oxygen species, RUNX2: runt-related transcription factor
2, ALP: Alkaline Phosphatase, Col-1: Collagen 1.

5.1. Obesity

Obesity is a prevalent metabolic disease defined by adipocyte hypertrophy, which
results from an imbalance between energy expenditure and food intake. Obesity has been
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related to additional metabolic diseases such as insulin resistance, NAFLD, T2D, dyslipi-
demia, cardiovascular diseases, hypertension, and cancer [90]. Adipose tissue growth
results in fat storage in pre-existing adipocytes and the transformation of preadipocytes
into mature adipocytes, a process called adipogenesis [91]. Under adipogenic conditions,
more amount of free fatty acids will be produced by hypertrophic adipocytes [92]. It
shows that obesity is linked to a lipid metabolism issue; there is an indication that 43.2% of
people with obesity have hyperlipidemia [93]. An important function of adipose tissue is
to regulate energy metabolism [94]. It has been proposed that one of the key strategies for
treating obesity is to activate brown adipose tissue (BAT) and produce browning in white
adipose tissue (WAT) [95].

Compound K (CK) might be the potential therapeutic agent against obesity via sev-
eral signaling pathways (Figure 2). A study showed that C5BL/6J mice consumed a
high-fat diet to induce obesity, whereas the administration of CK (15, 30, and 60 mg/kg)
might successfully enhance the resistance to insulin and glucose tolerance, downregulate
PPARγ expression, inhibit TLR4/TRAF6/TAK1/NF-κB stimulation in obese mice, and lower
macrophage M1-type inflammatory cytokine levels in serum and adipose tissue in a dose-
dependent manner. Furthermore, CK increased IRS1/PI3K/AKT expression, which proved
CK is an effective compound against obesity and early diabetes [13]. CK is a novel agonist
of the glucocorticoid receptor (GR) used to treat obesity. In mice, CK was more effective
than Orlistat in reducing blood lipids and weight [77]. CK treatment of 3T3-L1 adipocytes
prevented lipid formation and the expression of genes particular to adipocytes (C/EBPα,
leptin, aP2, and PPARγ), decreased angiogenic factors (VEGF-A and FGF-2) and MMPs
(MMP-2 and MMP-9), whereas enhanced the mRNA expressions of angiogenic blockers
(TSP-1, TIMP-1, and TIMP-2) [19]. CK had strong inhibitory effects on the rise of MCP-1 and
TNF-α caused by the hypertrophic adipocyte supernatant. Additionally, it facilitated the
expression of IL-10, prevented the induction of inflammatory macrophages, and enhanced
the development of anti-inflammatory macrophages [78]. In early-stage adipogenesis,
CK reduced the phosphorylation of protein kinase B (AKT), p38, and extracellular signal-
regulated kinase [96]. Moreover, CK markedly elevated AMPK (AMP-activated protein
kinase) and ACC (acetyl-CoA carboxylase) to suppress adipogenesis. In differentiated
3T3-L1 cells, the effect of CK on reducing PPAR-γ expression was restricted by AMPK
pharmacological inhibition with dorsomorphin [79].

5.2. Diabetes and Related Complications

Diabetes mellitus (DM) is an emerging epidemic that can be linked to hereditary
and environmental factors. Diabetes has complications that require treatment, including
diabetic retinopathy, nephropathy, neuropathy, infertility, and cardiovascular disease. Type
I diabetes, or T1D, and type II diabetes, or T2D, are the two primary subtypes of DM.
An autoimmune condition called T1D kills beta cells in the pancreas and stops insulin
from being released. On the other hand, T2D is characterized by high insulin levels and
cell insulin resistance. According to epidemiological studies, there will be 629 million
people with diabetes worldwide by 2045, up from a total of 425 million in 2017. Due to the
potential harm that diabetes mellitus (DM) can inflict on an individual’s quality of life, the
condition needs to be controlled and managed as soon as possible [97]. To investigate anti-
diabetic activity, ICR mice were fed CK (30 mg/kg/day) for 4 weeks. Phosphoenolpyruvate
carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase), two glucose-producing genes,
were downregulated after CK treatment. The results showed that CK can reduce blood
sugar levels and increase insulin sensitivity in type 2 diabetes caused by a high-fat diet
and fasting. This is achieved by suppressing the expression of PEPCK and G6Pase in the
liver [80]. Jiang et al. studied CK (30, 100, and 300 mg/kg/BW) on male Wistar rats
to improve insulin sensitivity. They found that CK may improve insulin resistance and
hyperglycemia in diabetic rats. Additionally, studies indicated that CK could increase
the expression of Glut4, PI3Kp85, InsR, IRS1, and pAkt in the skeletal muscle of diabetic
rats. These findings suggest that increased insulin sensitivity, which is directly linked to
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the PI3K/Akt signaling pathway, mediates the hypoglycemic action of CK [81]. Another
study reveals that CK has strong stimulatory effects on insulin production in MIN6 cells by
upregulating GLUT2 expression (Figure 3) [34].
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Despite extensive research on the antidiabetic effects of CK, Song et al. studied CK
on diabetic nephropathy (DN). DN mice models induced by HFD (high-fat diet) and STZ
(streptozotocin) were administered CK intragastrically. The results demonstrated that CK
dramatically reduced the growth of the glomerular mesangial matrix and considerably
decreased the increased fasting blood glucose, serum creatinine, blood urea nitrogen, and
24 h urine protein of the DN mice [83]. Additionally, it was observed that the expression
of G6Pase and PEPCK in the liver and HepG2 was suppressed by CK. In the meantime,
AMPK activation was markedly boosted upon CK administration, but FOXO1, HNF-4α, and
PGC-1α expressions were significantly decreased [98]. It has been noted that individuals
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with diabetes with tendinopathy have a higher apoptotic tendency. Tendinopathy is a
chronic illness that affects the tendons and causes a great deal of discomfort. It has a major
negative influence on quality of life [99]. However, CK can effectively reduce the MMP
system, inflammation, tenocyte apoptosis, and oxidative stress under hyperglycemia [84].
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5.3. Osteoporosis

Osteoporosis (OP) represents an alarming clinical condition that typically manifests as
rapid bone loss during menopause. It increases the possibility of a brittle fracture, which
puts a great deal of strain on society. A growing number of people are experiencing OP as
society ages. Hip fractures are expected to become more common worldwide by 2050 as
population demographics change. OP occurs when the bone resorption (osteoclast) rate is
greater than the bone formation (osteoblast) rate, leading to lowered bone density [100].
Osteoblasts are bone-decomposed cells that play a crucial role in maintaining bone home-
ostasis. During postmenopausal osteoporosis, the receptor activator for nuclear factor-κB
ligand (RANKL) increases osteoclastogenesis, which results in bone loss [101]. Nowadays,
many medications, including calcitonin and bisphosphonates, are used to treat and prevent
OP. On the other hand, documented accounts of the adverse effects of these medications in
medical settings exist. As a result, to lower fracture rates and enhance patient quality of
life, improved therapies for OP must be investigated [102].

Herbal supplementations have been extensively researched as potential sources for
drug development because of their lesser toxicities. As an herbal product, CK showed
an anti-osteoporotic effect by suppressing RANKL-induced osteoclast differentiation and
ROS production by triggering the NF-κB/P65 signaling pathway [85]. Additionally, CK
elevated the Runx2 (master transcription factor) and β-catenin to promote osteogenic differ-
entiation via the Wnt/β-catenin pathway [86]. Furthermore, CK has a preventive effect on
osteoarthritis via upregulating ALP, Col-1, and Runx2 in pre-osteoblastic MC3T3-E1 cell
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lines [8]. Osteoprotegerin (OPG) on AA-FLS may be increased in vitro by CK, which can
also lower RANKL levels and stop bone deterioration in AA rats [103]. Furthermore, pre-
treatment with CK may prevent human CD4+ monocytes and murine RAW264.7 cells from
proliferating into TRAP+ osteoclast-like cells in response to soluble RANKL (sRANKL)
in a dose-dependent way. Moreover, CK inhibited the nuclear transcription factor of ac-
tivated T cells (NFATc1) and RANK-associated NF-κB pathways in osteoclast progenitors.
These suggest that GCK blocked osteoclastogenesis caused by RANKL via two different
pathways [33]. Based on all of these data, CK appears to be a promising treatment for
preventing dietary induction of OP (Figure 4).
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5.4. Non-Alcoholic Fatty Liver Disease (NAFLD)

Non-alcoholic fatty liver disease (NAFLD), also known as hepatic steatosis, or the
formation of triglyceride in the liver, is not induced by consuming alcohol [104]. NAFLD
is a broad term for a range of pathologies that include non-alcoholic fatty liver (NAFL),
which is the first stage of NAFLD, non-alcoholic steatohepatitis (NASH), which is defined
by the beginning of inflammation brought on by lipotoxicity, and severe NASH symptoms
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that include fibrosis. According to reports, the overall incidence of NAFLD might reach
15% to 18% among Asian nations and 30% in Western nations. Obesity is closely linked
to this fatty liver disease. The prevalence of NAFLD is predicted to increase globally in
light of the present obesity pandemic [87]. A growing amount of clinical data indicates that
NAFLD is a major risk factor for the emergence of liver cirrhosis, liver fibrosis, and liver
cancer [105]. However, it is still unclear how NAFLD develops and how it leads to fibrosis
and chronic liver disease. The “two-hit” theory first came forward in 1998: First, there is an
initial metabolic change that results in insulin resistance, hyperglycemia, and hepatocyte
triglyceride formation, which causes hepatic steatosis. The second hit causes the injury to
worsen and progress, leading to cirrhosis, inflammation, fibrosis, and steatohepatitis [106].
On the other hand, the “multiple parallel hits” theory postulates that several parallel factors,
including adipokines and cytokines secreted abnormally, dysfunctional mitochondria,
stress to the endoplasmic reticulum, gut endogenous endotoxin, metabolism of lipids,
lipotoxicity, oxidative stress, and genetic susceptibility cause NAFLD [107]. Still, the FDA
has not approved any particular medications for NAFLD. Medicines such as atorvastatin
calcium tablets and fenofibrate are commonly used to manage blood lipid levels [108].
However, using lipid-lowering medications can lead to certain negative side effects [109].
Therefore, finding novel medications that treat NAFLD with great efficacy and few adverse
effects is urgent.

Various research has shown a significant potency of CK against NAFLD (Figure 5).
Chen et al. demonstrated that CK is beneficial for treating NAFLD via hepato-protective
and anti-fibrotic effects [87]. Another study depicted that CK activates AMPK and increases
ACC and mononyl CoA levels in the AMPK signaling pathway to stimulate fatty acid
oxidation. CK can suppress triglyceride accumulation in the liver by inhibiting lipogenic
markers such as SREBP1c, SDC1, and FAS and enhancing lipolytic markers including
PPAR- α and CD36 [30]. AMPK also inhibits the formation of free fatty acids by reducing
TG hydrolysis via direct phosphorylation and inactivation of hormone-sensitive lipase.
Additionally, the activation of AMPK is related to elevated expression of PPAR- α and
subsequent decrease of SREBP1c and PPAR-γ activity in adipocytes and hepatocytes. More-
over, CK might be directly mediating its beneficial impacts by activating AMPK [88]. To
minimize the toxicity of CK, Yue et al. [110] developed a natural nano-CK that acts as
an mTOR inhibitor to change lipid metabolism. In steatosis hepatocytes, nano-CK can
alleviate lipotoxicity and restore lipid homeostasis by encouraging lipid export and block-
ing DNL and lipid absorption, all of which create a feedback loop regulated by mTOR.
Furthermore, CK has a definite hepatoprotective impact on sodium valproate-induced
hepatotoxicity, as shown by Zhou et al. [111]. These beneficial effects were mediated by
reducing oxidative stress via the suppression of lipid peroxidation and the upregulation of
the protective antioxidant system, controlling the peroxisome pathway via the downregula-
tion of soluble epoxide hydrolase, and controlling iron homeostasis via the upregulation
of hepcidin. In the case of hepatocellular carcinoma, CK caused a G0/G1 phase arrest,
blocked cell cycle progression, and induced apoptosis via the upregulation of p21Cip1 and
p27Kip1 and downregulation of cyclin D1 and cyclin-dependent kinase 4 in HepG2 cells. This
was accomplished by the mitochondrial system via a modulation of the ratio of Bcl-2 to
Bax [89].

Thus, as monotherapy, in conjunction with other medications, or nanoformulation of
CK may prove to be a promising therapeutic for alleviating hepatic problems associated
with other metabolic diseases or diminishing fatty liver.
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Sterol regulatory element-binding protein 1, FAS: fas cell surface death receptor, ACC: acetyl CoA
carboxylase, SDC1: Syndecan 1, PPAR: Peroxisome proliferator-activated receptor, CD36: cluster
of differentiation.

6. Synthesis of CK Analogues and Their Pharmacological Activity

Numerous biological actions of CK have been reported in the above sections. However,
its use in medicine is limited by the lower membrane permeability, poor bioavailability,
and water solubility of CK after oral administration, which is thought to be a limiting
factor. Researchers are concerned with increasing the intestinal absorption of CK by
modifying the structure. In the early stages of treating asthma, CK was found to exhibit
strong action against IgE. In 2019, Ren et al. [112] reported couples of CK analogues were
synthesized via straight forwarded methods. The produced compounds were assessed on
the anti-IgE activities utilizing an in vivo airway hyper responsiveness experiment and
an ovalbumin-induced asthmatic mouse model. They found that compounds T1, T2, T3,
T8, and T12 (the analogues of CK) showed either superior or comparable anti-asthmatic
effects compared to CK. Furthermore, Huang et al. [113] reported six derivatives of CK;
among them, structures 1 and 2 were highly potent to activate the LXRα (Liver X Receptor
α) expression and showed lower toxicity than CK. They also demonstrated that structures
1, 2, and 4 enhanced the expression of ABCA1 (ATP-binding cassette transporter) mRNA
levels. It has been documented that CK preferentially accumulates in the liver, where it
converts to fatty acid esters.
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Because the ester of CK was not removed by bile acid-like CK, it remained in the
liver for a longer time. CK-octyl ester showed moderate detoxification and showed anti-
liver cancer activity in murine-H22 cells and in vivo [114]. In addition, the novel ester
prodrugs of CK (CK-butyl, and CK-octyl) have shown higher bioavailability due to their
highly lipophilic properties than the CK. Furthermore, the findings indicated that the
permeability coefficient of CK was lower than the esters [115]. Another CK-derived M1 and
its analogues 1c, 2c, and 3c were documented by Li et al. as antitumor agents [116].
The findings suggested that M1 derivatives 2c and 3c had more potential to suppress
the growth of triple-positive breast cancer and have opened up a new avenue for the
production of possible anti-breast cancer medications. Different drug delivery technologies,
including liposomes, nanoparticles, and micelles, have been created to increase the efficacy
of the active components. For example, Yang et al. demonstrated that CK-loaded liposomes
increase water solubility and cellular uptake than CK [117]. Mesoporous silica nanoparticles
of CK showed the best biocompatibility in HaCat cells and anti-inflammatory activity
compared to standard CK [118]. A54 peptide has recently been utilized to create CK-
loaded micelles (APD-CK) intended for liver targeting. The findings demonstrated that
APD-CK micelles increased the absorption of micelles by cells and stimulated cell death in
HepG2 and Huh-7 cells in vitro [119]. These findings establish a groundwork for further
alterations of CK and apply the new structures to metabolic diseases.

7. Discussion and Future Perspective

According to reviewed databases involving numerous studies, we summarized that
CK is mostly associated with metabolic disorders, such as obesity, NAFLD, OP, diabetes
mellitus, its complications, and the related pathways. It demonstrates the variety of ways
in which CK can contribute to metabolic diseases such as enhancing IR, inhibiting glucose
uptake, boosting glucose tolerance and insulin sensitivity, inhibiting bone resorption,
increasing bone formation, triggering lipid synthesis, lipid uptake, boosting lipid oxidation,
and blocking the inflammatory cytokines.

In this study, we demonstrated, firstly, that CK enhances AMPK and inhibits adi-
pogenic genes (C/EBPα, PPARγ, Ap2, leptin, and SREBP1c) and lipogenic genes (FAS,
FABP4, and SCD1). CK also inhibits the IKKs/NF-kB pathway to trigger obesity mediated-
inflammation. Furthermore, CK increases the expression of Glut4, PI3Kp85, InsR, IRS1, and
pAkt to block the IR and increases GLUT2/PPCK/G6Phase pathway to reduce gluconeogene-
sis, inhibits ROS/INS and apoptosis to increase insulin sensitivity. Moreover, inactivated
GR inhibits osteoclast differentiations and bone resorption and increases osteoblastic dif-
ferentiation. Osteoclast production is inhibited, and osteoblast development is promoted
by the stimulation of the activity of genes associated with osteogenesis, such as Runx2,
osterix and the suppression of the expression of genes related to osteoclasts, such as C-Fos
and NFAC1. Meanwhile, CK is a novel agonist of the GR to treat obesity and OP. Lastly,
CK ameliorates lipid accumulation by activating the AMPK/SIRT1 pathway in the case of
NAFLD. Research on CK in the future may focus on atherosclerosis, cardiovascular disease,
fatty liver, hyperlipidemia, and other conditions.

Although numerous studies have established the toxicity of CK, our review revealed
that the toxicity of CK is mostly dependent on the dosage and timing of administrations,
and the sex of subjects also affects hepatotoxicity. The two animal species that should
be included in medication safety test screenings are rodents and non-rodents (typically
dogs), according to the most recent clinical guidelines [120]. Oral administration of CK in
mice (10 g/kg) and rats (8 g/kg) did not exhibit any toxicity or death. Another study was
performed to evaluate 26-week toxicity (food consumption, body weight, hematological
parameters, and histopathology of rats) at different dosages ranging from 13 to 120 mg/kg
of CK. The results suggested that 40 and 120 mg/kg doses had no observed adverse effect
levels for females and males, respectively. However, in the male test group receiving
120 mg/kg, there was a brief fall in body weight, fur loss, decreased activity, and a shortage
of energy. Beagle dogs were administered 4, 12, and 36 mg/kg oral doses for 26 weeks and



Curr. Issues Mol. Biol. 2024, 46 2337

did not exhibit any visible toxicity in the 4–12 mg/kg groups. Groups treated with 36 mg/kg
showed decreased body weight, elevated plasma enzymes, and nephrotoxicity [47].

Studies showed that the dose of CK administrations did not exceed 100 mg/mL
body weight ranging from for treating metabolic diseases. Additionally, in the cell lines
treatments, the range of administration was 0.1–64 µg/mL showed more than 80% cell
viability. However, several cells showed cell cytotoxicity in different concentrations. Thus,
it can be suggested that it is difficult for CK to cause bio-toxicity at normal doses. The
development of bio-toxicity is more closely linked to an increase in CK dose than it is to an
extension in administration time. Generally, doses of CK used to treat metabolic disorders
in mice and rats are less than 100 mg/kg. However, doses up to 120 mg/kg in mice and
rats can cause hepatotoxicity and nephrotoxicity [38]. It has been proposed that additional
assessments are required to confirm the safety of administering CK to humans.

It is well recognized that the potential for the treatment of CK is usually limited
because of poor water solubility, bioavailability, and membrane permeability [121]. When it
comes to medications that are poorly soluble in water, co-crystals (a supernatural delivery
system) can increase the bioavailability of drugs without altering their pharmacological
action. The goal of cocrystallization research has been to maximize the physicochemical
characteristics of pharmaceuticals, including their mechanical qualities, stability, solubility,
permeability, and bioavailability. Enhanced solubility of cocrystals has been linked to
increased gastrointestinal absorption of cocrystals in animal experiments. Enhancing oral
bioavailability via the cocrystallization of medicines with suitable conformers is a potential
strategy. Interests and Suglat are co-crystal drugs available in the market that improved
bioavailability than the parent drugs [122]. Furthermore, some studies have attempted to
create more CK or change the structure via different methods. For example, combining CK
with targeted carriers improved water solubility, which increased bioavailability and low
cytotoxicity [121,123].

Thus, it is recommended that co-crystals of CK undergo research as an antimetabolite
to increase oral bioavailability. Another recommendation is to change the chemical struc-
ture of CK or modify its dosage forms such that it dissolves better in intestinal fluids and
has a higher oral bioavailability. Research on anti-metabolic disorders and other CK-related
pharmacological effects should focus on comparing and examining the safety and phar-
macological effects of injectable and oral CK metabolites in vivo. In addition, researchers
are interested more in CK analogues due to their less cytotoxicity, more bioavailability,
better membrane permeability, and higher efficacy compared to CK in various diseases.
CK analogues could be drug candidates because of their physiochemical properties and
pharmacological action.

The review sought to present up-to-date data on the safety, pharmacokinetics, and
health-promoting properties of CK and its analogues in the management and prevention of
disease. It is commonly recognized that CK has several health advantages and is more per-
meable than its parent saponins. Despite being more bioavailable than other ginsenosides,
the therapeutic application of CK is limited by a few issues. It has been demonstrated that
using CK derivatives as nanocarriers improves their permeability, solubility, and efflux,
as well as their capacity to promote health. To sum up, there are few pharmacokinetic
investigations on monomer CK and the experimental and clinical safety data associated
with it. To evaluate the effectiveness and safety of CK and its derivatives, particularly in
clinical trials, more research is necessary.
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