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Abstract: The VILLIN (VLN) protein plays a crucial role in regulating the actin cytoskeleton, which
is involved in numerous developmental processes, and is crucial for plant responses to both biotic
and abiotic factors. Although various plants have been studied to understand the VLN gene family
and its potential functions, there has been limited exploration of VLN genes in Gossypium and fiber
crops. In the present study, we characterized 94 VLNs from Gossypium species and 101 VLNs from
related higher plants such as Oryza sativa and Zea mays and some fungal, algal, and animal species.
By combining these VLN sequences with other Gossypium spp., we classified the VLN gene family
into three distinct groups, based on their phylogenetic relationships. A more in-depth examination of
Gossypium hirsutum VLNs revealed that 14 GhVLNs were distributed across 12 of the 26 chromosomes.
These genes exhibit specific structures and protein motifs corresponding to their respective groups.
GhVLN promoters are enriched with cis-elements related to abiotic stress responses, hormonal signals,
and developmental processes. Notably, a significant number of cis-elements were associated with the
light responses. Additionally, our analysis of gene-expression patterns indicated that most GhVLNs
were expressed in various tissues, with certain members exhibiting particularly high expression
levels in sepals, stems, and tori, as well as in stress responses. The present study potentially provides
fundamental insights into the VLN gene family and could serve as a valuable reference for further
elucidating the diverse functions of VLN genes in cotton.

Keywords: VILLIN gene (VLN); Gossypium; genome-wide characterization; cis-elements; gene
expression; environmental stresses

1. Introduction

In plant cells, the actin cytoskeleton is a complex and dynamic network that actively
participates in several crucial activities, including signal transduction, vesicle traffick-
ing, cell expansion, cell division, organelle movement, stomatal opening, and cytoplas-
mic streaming [1]. The diverse gelsolin/villin/fragmin superfamily, as well as nucle-
ating proteins such as Formin and Arp2/3, monomer-binding protein profilin, sever-
ing/depolymerizing proteins ADF, and cofilin, are just a few actin-binding proteins (ABPs)
that regulate cellular and cytoskeletal dynamics [2,3]. At certain time points and sites,
ABPs control the assembly and disassembly of monomeric (G-actin) and filamentous actin
(F-actin). Functional investigation of several ABPs has been performed in Arabidopsis. For
instance, the loss of Actin-Depolymerizing Factor 5 (AtADF5) function has been shown to
decrease drought tolerance and disrupt stomata closure due to abnormal actin dynamics [4].
The knockdown of FORMIN3 (AtFH3) via RNA interference has been observed to reduce
actin-cable abundance and affects pollen-tube growth [5]. Profilins (PRFs) are cytosolic
proteins consisting of 129–133 amino acids with a molecular weight of 12–15 kDa and
play a crucial role in regulating the cell cytoskeleton architecture, primarily through the
modulation of actin polymerization [6–8]. These actin-binding proteins possess conserved
profilin–actin interacting regions (PAINRs), which are essential for actin polymerization
or depolymerization processes [7,8]. Recent studies have investigated their functional
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roles in root elongation, leaf morphology, epidermal expansion, flowering time, and seed
germination across various plant species [9–11]. Fimbrin, another well-known ABP, also
plays a role in the regulation of actin dynamics. In the atfim4/atfim5 double mutant, there
were significant changes in the morphology and length of root hair [12]. Collectively, these
studies indicated that ABPs are crucial for plant development and exert their effects by
regulating actin dynamics.

VLN, a member of the villin/gelsolin/fragmin actin-binding protein (ABP) super-
family, is a key regulator of both actin stability and dynamics [5,13–15]. The regulatory
functions of the VLN proteins are intricately linked to their structural characteristics. Six
gelsolin home domains (G1-G6) at the N-terminus and a headpiece domain (VHP) at the C-
terminus, each containing two conserved actin-binding domains, distinguish VLN proteins
from other actin-binding domains (ABDs). ABD2 in the VHP area bundles actin filaments
together, whereas ABD1, which spans G1 and G2, binds to two neighboring actin monomers
inside the filament [16–18]. Additionally, VLN proteins possess calcium ion (Ca2+)-binding
sites, which vary in type and number among different VLN variants. VLNs can bind to
F-actin either independently or in a Ca2+/calmodulin-dependent manner. These features
allow VLN proteins to alter the dynamics and organization of actin filaments, which helps
create highly fibrillar actin structures [19–22]. In plant biology, the first functionally char-
acterized VLN homologs were identified in Lilium brownii and were named 115-ABP and
135-ABP. These proteins bind to the F-actin [23–25]. Further investigations have revealed
that 135-ABP plays a critical role in regulating the arrangement of F-actin in pollen tubes as
well as the cytoplasmic architecture and actin-filament organization in root hairs [19,25].
There are five VLN genes in Arabidopsis, which is a model plant species. Although these
genes are widely expressed in various plant tissues [26–29], only a subset of them has
been functionally characterized. Specifically, the loss of AtVLN1 and AtVLN4 function has
been associated with longer and shorter root hairs, respectively, indicating their distinct
roles in the regulation of root-hair growth in Arabidopsis [30]. AtVLN2 and AtVLN3 have
been implicated in normal plant development and organ morphogenesis [31,32], while
AtVLN5 is essential for pollen-tube growth [33]. Collectively, these studies underscore
the vital role of VLNs in plant development through the regulation of various aspects of
actin cytoskeleton and actin dynamics. To date, there has been limited research on VLN
proteins in the Gossypium species. Several other actin-binding proteins (ABPs) and related
proteins that may play a role in cytoskeletal dynamics and stress response activities have
been investigated in Gossypium species, such as profilin, LIM, and DUF668 [3,34,35].

In the present study, 14 VLN genes were identified in the Gossypium hirsutum genome.
Subsequent analyses encompassed the examination of gene structures, conserved domains,
phylogenetic relationships, chromosomal locations, cis-regulatory elements, gene synteny,
and expression patterns. The present study provides comprehensive and valuable system-
atic insights that might be useful for the extended exploration of the functional aspects of
GhVLN in cotton.

2. Materials and Methods
2.1. Sequence Retrieval and Identification of Villin Gene Family

The VLN sequence was retrieved from Arabidopsis thaliana using the NCBI Protein
Database (https://www.ncbi.nlm.nih.gov/protein) (accessed on 9 September 2023) [36]
with the accession number BAA96955.1, as the sequence structure was analyzed by Sato
et al. in the year 2000 [37]. To identify all the possible VLN Gossypium hirsutum, we used a
BLAST model consisting of six gelsolins and one VHP of Arabidopsis thaliana in the Gossypium
hirsutum protein database from the Phytozome 13 Web BLAST Search (Gossypium hirsutum
v2.1, https://phytozome-next.jgi.doe.gov/) (accessed on 13 September 2023) [38], with the
target type set as Proteome, Program—BLASTP. The Expect threshold was configured as
(−1), and a total of 100 set alignments were specified. We retrieved 14 protein sequences,
identified by their protein IDs, as hits. To predict the conserved domains within GhVLN,
we conducted a Batch Conserved Domain search using the NCBI platform (https://www.
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ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) (accessed on 16 September 2023) [39]. This
process also helped to eliminate redundant sequences, and we used the default settings
throughout. We used the SMART tool (http://smart.embl-heidelberg.de/) (accessed on
13 September 2023) [40] to confirm the existence of both gelsolin and VHP domains.

2.2. Analysis of Protein Physiochemical Properties, Amino Acid Alignment, and
Phylogenetic Investigation

We utilized the ExPASy online platform (https://web.expasy.org/protparam/) (ac-
cessed on 13 September 2023) [41] to estimate a range of physicochemical characteristics
of Gossypium hirsutum VLN, such as chromosome number, molecular weight (MW), iso-
electric point (pI), protein length (measured in amino acid count), and Grand Average
of hydropathy (GRAVY). BaCelLo (https://busca.biocomp.unibo.it/bacello/) (accessed
on 13 September 2023) [42] tool was used to predict the subcellular locations of the pro-
teins. Subsequently, a subcellular localization heatmap was generated using WoLF PSORT
(https://wolfpsort.hgc.jp/) (accessed on 16 September 2023) [43]. Amino acid alignment
was performed using DNAMAN Version 10 (Lynnon Biosoft, 2018). Phylogenetic tree was
generated by aligning sequences and applying the neighbor-joining (NJ) method within
MEGA11 software [44]. This analysis incorporated 1000 bootstrap replicates and employed
the Jones–Taylor–Thornton (JTT) model. The tree was further modified using Interac-
tive Tree Of Life (iTOL) Version 6.8.1 (https://itol.embl.de/) (accessed on 10 November
2023) [45].

2.3. Analysis of Gene Structure, Identification of Conserved Motifs, and Conducting Conserved
Domain Analysis

We obtained the gene sequences of the Gossypium hirsutum VLN family protein from
the Phytozome website (Gossypium hirsutum v2.1, https://phytozome-next.jgi.doe.gov/)
(accessed on 13 September 2023) [38], and these sequences were extracted using TBtools
(version 2.003). To illustrate gene structures, we utilized GFF3 files. Additionally, online
tool GSDS 2.0 (http://gsds.cbi.pku.edu.cn/) (accessed on 16 September 2023) [46] was
employed to visually represent the exon/intron structures of the GhVLN genes. NCBI Batch
Conserved Domain search (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)
(accessed on 16 September 2023) [39] was used to predict conserved domains. For motif
analysis, we used the MEME Suite (https://meme-suite.org/meme/tools/meme) (accessed
on 24 September 2023) [47] to identify 20 motifs. All data were visualized using TBtools.

2.4. Collinearity and Chromosomal Location Analysis of GhVLN Genes

We obtained complete genome data for Gossypium hirsutum and extracted Arabidopsis
thaliana genome sequences based on their transcript IDs using the FASTA Extract tool in
TBtools. A collinearity relationship was established between these two species using the
One-Step MCScanX feature of TBtools, with BlastP configured with eight CPU threads, an
E-value of 1 × 10−10, and a minimum of five blast hits. Subsequently, we combined the
CTL, GFF, and collinearity files using the Dual Synteny Plot within MCScanX in TBtools.
All the chromosome scaffolds were manually removed from the CTL file before using
the Dual Synteny Plot. Finally, we constructed and visualized the collinear relationship
between Gossypium hirsutum and Arabidopsis thaliana by using TBtools. Additionally, we
used MG2C_v2.1 Web Suite (http://mg2c.iask.in/mg2c_v2.1/) (accessed on 24 October
2023) [48] to visualize the chromosomal location of GhVLN. This analysis was based on the
transcript IDs, chromosome numbers, and chromosome lengths.

2.5. GhVLNs Structure Prediction and Protein–Protein Interation

The 3D structures of GhVLN proteins were predicted using the online tool ExPASy
SWISS-MODEL (https://swissmodel.expasy.org/) (accessed on 9 October 2023) [49]. When
predicting protein structures in three dimensions, several key parameters are essential to
assess the quality of the generated models. These parameters included global model quality
evaluation (GMQE), coverage, and sequence identity.
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GMQE is a value that ranges between 0 and 1, where a score closer to 1 indicates a
better-quality model. This reflected the overall reliability of the model used in the prediction
process. Coverage, on the other hand, measures the extent to which the target protein
sequence aligns with and is covered by the template protein sequence. Finally, the sequence
identity indicates how well the amino acid sequences align and match the target and
template proteins. A higher sequence identity signifies a more reliable model, contributing
to a greater accuracy in predicting the 3D structure of the protein.

In our quest to understand the function of GhVLNs, we built protein interaction net-
works by utilizing the online tool STRING (https://string-db.org/) (accessed on
9 October 2023) [50], where we configured the Required Score to a medium confidence
level of 0.4 and applied a medium FDR Stringency of 5 percent.

2.6. Measurement of Evolutionary Selection Pressure and Cis-Element Analysis

Pairs of genes with similar genetic relationships were chosen based on a phylogenetic
tree alignment of sequences using the neighbor-joining (NJ) method within the MEGA11
software [44] and Interactive Tree Of Life (iTOL) Version 6.8.1 (https://itol.embl.de/)
(accessed on 10 November 2023) [45]. Subsequently, the TBtools software was used to com-
pute the values for Ka (non-synonymous rate), Ks (synonymous substitution), and Ka/Ks
(evolutionary constraint). The divergence time (T) was determined using the formula
T = Ks/(2 × 9.1 × 10−9) × 10−6 million years [51]. In general, if Ka/Ks < 1.0, it in-
dicates purifying or negative selection, Ka/Ks = 1.0 represents neutral selection, and
Ka/Ks > 1.0 signifies positive selection [52]. We conducted GhVLN cis-element predic-
tion using Plant CARE (https://bioinformatics.psb.ugent.be/webtools/plantcare/html/)
(accessed on 19 November 2023) [53] by analyzing a 3.5 kb sequence upstream of the coding
region. The results were visualized using the BioSequence Structure Illustrator in the
graphics section of TBtools.

2.7. Expression Patterns of GhVLNs in Different Tissues and Stress Conditions

We obtained the expression levels of Gossypium hirsutum RNA-Seq data, measured in
Fragments Per Kilobase of transcript per million mapped reads (FPKM), for each GhVLN
gene under various stress conditions, including drought, salt, heat, and cold stress, at
different time points (0, 1, 3, 6, and 12 h). These data were extracted from the Cotton-
RNA Database (PRJNA490626) (http://ipf.sustech.edu.cn/pub/cottonrna/) (accessed on
25 November 2023), and TBtools was used to visualize and present the gene-expression
patterns based on the FPKM values.

3. Results
3.1. Sequence Retrieval of VLN Gene and Characterization of GhVLNs

To identify the Villin (VLN) proteins in cotton, we utilized protein sequences con-
taining gelsolin and villin-headpiece (VHP) domains as query sequences from the PFAM
database. These sequences comprised six gelsolin domains and a villin-headpiece domain
(Figure 1A).

We initiated a BLAST search against the Gossypium hirsutum protein database available
on the Phytozome 13 website, followed by an NCBI Batch Conserved Domain search to elim-
inate redundant sequences. A total of 14 VLN proteins were identified in Gossypium hirsutum.

To obtain a more profound understanding of GhVLNs, we extensively examined their
diverse physicochemical characteristics. These included chromosome number, amino acid
protein length, isoelectric point (pI), molecular weight (MW), subcellular distribution, and
grand average of hydropathy (GRAVY). GhVLN proteins are 902–980 amino acids in length.
Their estimated molecular masses varied from 100.72 to 107.37 kDa, with Gohir.D01G187300
having the longest protein length (980 A.A) and Gohir.D08G029300 having the highest
molecular mass (107.37 kDa) (Figure 1B). The predicted isoelectric points of the GhVLNs
ranged from 5.24 to 6.23, with all pI values greater than 5.25. Additionally, initial predictions
indicated that most GhVLNs were localized to the nucleus (Figure 2).
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Figure 1. Isolation and identification of GhVLNs: (A) Gelsolin domain (PF00626) and the Villin-
headpiece domain (PF02209)-conserved domains in GhVLNs. (B) Comprehensive assessment of 
physical and chemical attributes of GhVLNs. (C) Evolutionary linkage among between VLNs found 
in Gossypium hirsutum and Arabidopsis thaliana. 
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Interestingly, we observed that certain paralogous of GhVLNs sequences, such as Go-
hir.D01G187300 and Gohir.A01G197100, had identical protein lengths and isoelectric points
but differed in molecular weights. Similarly, Gohir.D03G069500 and Gohir.A02G107500
shared the same protein length but exhibited slight variations in molecular weight and
isoelectric point (Figure 1B).

Additionally, by employing the VLN protein sequence from Arabidopsis thaliana as a
model, we conducted a multiple-sequence-alignment analysis of Gossypium hirsutum. This
analysis revealed that all 14 GhVLNs featured six distinctive gelsolin domains and one
headpiece domain (Figures 3 and 4). These observations suggest that the existence of both
shared and distinct protein functions and characteristics within GhVLNs may contribute to
diversifying the Villin gene function in Gossypium hirsutum.

3.2. Phylogenetic Analysis of Gossypium Species and Their Orthologs from Other Model Species

To investigate the evolutionary connections between the GhVLN across various Gossyp-
ium species and their counterparts in some different species, we conducted a phylogenetic
analysis. To compile candidate VLN protein sequences, we examined protein databases
encompassing both lower and higher plants, including monocotyledons and dicotyledons
and also some fungal, algal, and animal species. Candidate sequences were identified by
querying the respective databases using the initial query sequences. We ensured that the
selected proteins included the conserved gelsolin domain and used the headpiece domain
for phylogenetic analysis.
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In total, we obtained 94 VLN protein sequences distributed across various Gossypium
species (Supplementary Table S1).

The phylogenetic analysis successfully classified the 94 VLN proteins into three dis-
cernible clades, designated as A, B, and C. Clade A was characterized by a solitary VLN
protein, whereas Clades B and C exhibited larger memberships, comprising 40 and 53 VLN
proteins, respectively (Figure 5). The phylogenetic tree revealed that Gotom.D02G199000,
derived from Gossypium tomentosum, is the sole member of Clade A, exhibiting a notable
divergence from the midroot point. Meanwhile, the remaining sequences displayed an
uneven distribution across Clades B and C, hinting at intriguing evolutionary relationships
(Figure 5).
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‘E.R’ for endoplasmic reticulum, ‘Pla’ for plasma membrane, ‘Gol’ for Golgi apparatus, ‘Per’ for
peroxisome, and ‘Ext’ for extracellular, are utilized to denote specific cellular locations.
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Figure 4. Conserved motifs identified within GhVLNs as G1–G6 and VHP are depicted. These
conserved motifs serve as key structural and functional elements within the GhVLN protein family,
potentially influencing various biological processes. The colors of amino acids correspond to their
chemical properties; polar, basic, acidic, and hydrophobic amino acids are represented by green, blue,
red, and black respectively.

The phylogenetic analysis of GhVLNs, alongside VLN proteins from diverse repre-
sentative species, resulted in the classification of 115 VLNs into four distinct clades: A,
B, C, and D. Clade A comprised 22 VLN proteins, while Clades B, C, and D contained
3, 44, and 46 VLN protein sequences, respectively. These clades were systematically dis-
tributed based on their evolutionary resemblances (Figure 6). Villin protein sequences were
sourced from various taxa, including Animalia (12 sequences), Fungi (3 sequences), Amoe-
bozoa (3 sequences), Algae (4 sequences), and Plantae, further categorized into monocots
(35 sequences) and dicots (58 sequences) (Supplementary Table S2). Interestingly, the num-
ber of VLN proteins varied among different species. Notably, a tree clade comprising Clades
B, C, and D, which share a common ancestral origin, exhibited the maximum diversity
in Villin gene evolution. This clade encompassed a range of species from lower to higher
plants, as well as lower to higher classes of animals and fungi, underscoring the ancient
origin of the Villin gene family. Clade B, the smallest clade with only three sequences,
included the algal species Chlamydomonas reinhardtii, alongside animalia species such as
Mus musculus and Danio rerio, suggesting a potential shared ancestry. Clade D emerged
as the largest, comprising 46 sequences, predominantly from dicot plants, particularly
within the Fabaceae family (16 species), and monocot plants, primarily within the Poaceae
family (11 species). Notably, Clade D excluded species from the Animalia, Fungal, Algal,
and Amoebozoa groups. Similarly, Clade C exhibited abundant representation from plant
species, spanning monocot and dicot families (Figure 6). Within Clade A, there was a
notable abundance of animalia species, including mammals (such as Homo sapiens, Mus
musculus, and Bos taurus), Aves (such as Gallus gallus, Coturnix japonica, and Meleagris
gallopavo), and aquatic species (such as Labeo rohita, Danio rerio, and Strongylocentrotus
purpuratus). These species are found in similar subclades, suggesting a potential common
ancestry with some Fungal and Amoebazoa species. Notably, only two plantae species
(Striga asiatica and Marchantia polymorpha) are present in Clade A, and they share similar
subclades with fungi, such as Aspergillus fishcheri, and certain algal species. Notably, it was
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found that sequences of Gossypium hirstusum were only found in Clades C and D (Figure 6),
where all the higher plant species were present, and the Gossypium hirstusum sequences
showed homology with its counterpart sequences only.
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viding valuable insights into the evolutionary trajectory of this gene.

These results from the evolutionary analysis suggest that the VLN gene underwent
divergence during the evolution of different species yet remained highly conserved in
higher plants consisting of monocotyledons and dicotyledons.

3.3. Gene Structure Analysis of GhVLNs and the Conserved Domain and Motif Analysis
of GhVLNs

To delve deeper into the structural characteristics of GhVLNs and the proteins they
encode, we conducted a comprehensive examination of their gene structures, conserved
motifs, and domains. Our analysis of GhVLN genes also involved investigating their
exon/intron structures and identifying conserved motifs (Figure 7A–D). Notably, these
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genes exhibit a significant number of exons and introns, indicating extensive genomic
sequences. The number of introns across the 14 GhVLNs varied from 21 to 24 (Figure 7D).
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We also investigated the motifs and domains present in the GhVLN proteins to enhance
our understanding of their conservation and diversification. Twenty distinct motifs were
identified and labeled as Motifs 1–20. Additionally, our analysis showed conservation of the
GhVLN domains, characterized by the presence of six gelsolin domains and a headpiece
domain (VHP) (Figure 7C). Gene structural analyses collectively suggest that GhVLNs
genes and their encoded proteins possess complementary structures, and these structures
may explain their functional distinctions. This knowledge may provide a foundational
structural framework for understanding the conversed gene functions.

The sequences corresponding to the 20 identified motifs vary in length and span from
21 to 50 amino acids (Table 1). Notably, the counts of these conserved motifs differed
among GhVLN proteins, ranging from 16 to 19 motifs per protein (Figure 7B). Proteins
identified by the transcript IDs Gohir.D08G029300, Gohir.A08G018700, Gohir.A05G089000,
Gohir.A13G212400, Gohir.D13G216500, and Gohir.D05G090000 were found to be without
motifs 10 and 18. However, these proteins exclusively contained motif 19. Addition-
ally, Gohir.A13G212400 and Gohir.D13G216500 lacked motifs 9 and 15. Furthermore,
Gohir.A05G089000 and Gohir.D05G090000 lacked motif 20, and Gohir.D11G329100 and
Gohir.A11G312600 were devoid of motif 11. The DUF4045 superfamily domain was found
in proteins Gohir.A02G107500 and Gohir.D03G069500 (Figure 7C). Most GhVLN proteins
consist of six gelsolin homology domains (gelsolin s1 to s6-like) and a villin-headpiece
domain (VHP), consistently, as mentioned elsewhere. However, it is important to note that
exceptions exist, as Gohir.A13G212400 and Gohir.D13G216500 lacks the (G1) and (G1-2) ho-



Curr. Issues Mol. Biol. 2024, 46 2289

mology domains, respectively, and two proteins, Gohir.D11G329100 and Gohir.A11G312600,
do not possess the headpiece domain (VHP) (Figure 7C).

Table 1. Characteristics of the 20 conserved motifs in GhVLNs.

Motif Motif Sequences Length (A.A) Domain

1 VPFARSSLNHDDVFILDTQNKIYQFNGANSNIQERAKALEVVQFJKEKYH 50 ADF_gelsolin super family
2 YDIHFWJGKDTSQDEAGAAAIKTVELDAVLGGRAVQHRELQGHESDKFLS 50 ADF_gelsolin super family
3 FKVEEVYNFSQDDLLTEDILILDTHAEVFVWVGQCVDTKEK 41 ADF_gelsolin super family
4 SLEGLSPEVPJYKVTEGNEPCFFTTFFSWDSTKATVHGNSFQKKLALLFG 50 ADF_gelsolin super family
5 KGLLENNKCYLLDCGAEVFVWVGRNTQVEERKAASQAAEDF 41 ADF_gelsolin super family
6 LFRISGTSPHNMKAJQVDAVATSLNSSECFJLQSGSS 37 ADF_gelsolin super family
7 DYFLCCWIGKDSIEEDQKTAVRLANKMVN 29 Not identified
8 KGRPVQGRVFEGKEPPQFIAJFQPMVVLKGGLSAGYKKSIAEKGJTDETY 50 ADF_gelsolin super family
9 KVLDPAFQGAGQKPGTEIWRIENFQPVPLPKSDYGKFYMGDSYIVLQTTP 50 ADF_gelsolin super family
10 PPLLEGGGKMEVWCINGSAKTPLPKEDIGKFYSGDCYIVLYTYHSGERKE 50 ADF_gelsolin super family
11 YERLKASSTBPVTGIDVKRREAYLSDEEFKEKFGMEKEAFYKLPKWKQBK 50 Villin-headpiece domain
12 GTCEVAIVEDGKLDTESDSGEFWVLFGGFAPJPKKTASEDD 41 Not identified
13 WHGNQSTYEQQQLVARVAEFJKPGVQLKHAKEGSESNAFWSALGGKTEYT 50 ADF_gelsolin super family
14 RITRVIZGYETNSFKSKFDSWPQGSNAPGGEEGRGKVAALL 41 Not identified
15 YFKPCIIPLEGGVASGFKKPEEEEFETRLYVCRGKRVVKLK 41 Not identified
16 GPRQRAPALAALASAFNPSSASKTSAPKPVSRKQGSQRAAA 41 Not identified
17 EKESSEIVRDPHLFTFSFNKG 21 Not identified
18 TAEKKKQSPDGSPIKSTSSTPAVTSPPTEAKS 32 Not identified
19 KEEPQPYIDCTGNLQVWRVNGQEKVLLPA 29 ADF_gelsolin super family
20 TPAKLYSITDGEVKPVEGELS 21 Not identified

Hence, the gelsolin homology domains exhibited a remarkable degree of conservation
within cotton VLNs. Furthermore, GhVLN orthologs that shared close evolutionary rela-
tionships displayed analogous motif architectures and GhVLNs exon/intron distribution
patterns, highlighting similarities in their structural characteristics.

3.4. Collinearity and Chromosomal Location Analysis of GhVLNs Gene

To delve deeper into the functional mechanisms of Gossypium hirsutum VLNs, we
conducted a collinearity analysis using the genomes of Arabidopsis thaliana and Gossypium
hirsutum. This analysis revealed 12 orthologous pairs of VLNs between the two genomes
(Figure 8A). Importantly, it was observed that several VLN genes in Gossypium hirsutum
displayed synteny with the same VLN gene in Arabidopsis thaliana, suggesting a scenario
where GhVLNs may have originated from a common ancestor through duplication events
during evolution. These results suggest that VLNs were relatively conserved between
Arabidopsis thaliana and Gossypium hirsutum during the evolution of higher plants.

In the analysis of collinearity of GhVLNs with Arabidopsis, we observed that the VLN
genes were unevenly distributed across 12 of the 26 chromosomes in Gossypium hirsutum
(Figure 8A). GhVLNs are located at the chromosomal termini of A01, D01, A02, A05, D05,
A08, D08, A11, D11, A13, and D13. However, on chromosomes A01, D02, and D03, VLN
locations were near the centromeres of the chromosomes (Figure 8B).

3.5. Three-Dimensional Structure Prediction and Protein–Protein Interaction Network

In the analysis of 3D-structure prediction, three key parameters—Global Model Quality
Evaluation (GMQE), coverage, and sequence identity—were employed to assess and select
templates. A higher value for these parameters signifies greater accuracy, and the template
with the highest score was chosen. In our study, GMQE values consistently fell within the
range of 0.73 to 0.79, with a 100% coverage rate and sequence identity ranging from 70.12
to 99.38. These values indicate a high level of reliability for the selected templates.
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Furthermore, in the same subgroup, the prediction templates remained consistent,
highlighting their evolutionary conservation, except in Groups 1 and 4. This under-
scores the reliability of the selected prediction templates. Overall, these results suggest
that GhVLN proteins within the same subgroup exhibit highly similar spatial structures
(Figure 9). Villin belongs to the gelsolin superfamily and functions as a protein involved in
F-actin nucleation, crosslinking, severing, and capping. The villin headpiece is crucial for
anchoring villin to F-actin, facilitating the process of crosslinking [16]. Detailed information
regarding protein structure predictions, including metrics like Coverage, GMQE (Global
Model Quality Estimation), and identity scores, are presented in (Supplementary Table S3).

To gain a deeper understanding of the role of the GhVLN protein family in plant
development, we predicted protein-interaction networks and three-dimensional structures
of all GhVLN proteins.

Our analysis revealed that GhVLN proteins primarily interact with various cytoskele-
tal proteins and Golgi function-related proteins and play roles in stress responses, including
interactions with arabinogalactan proteins (AGPs), the conserved oligomeric Golgi complex
(COG), and leucine-rich repeat extensin proteins (LRXs) (Figure 10). Additionally, GhVLN
proteins engage with proteins related to development, stress responses, and hormones,
suggesting their involvement in signaling response pathways. Detailed information regard-
ing these protein interactions is listed in (Supplementary Table S4). Moreover, there were
several other proteins, including LOC107907026, whose protein families have not yet been
identified. Initial functional predictions suggest that these proteins also play crucial roles
in various cellular physiological processes (Figure 10).
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3.6. Analysis of Evolutionary Selection Pressure

Calculating Ka (non-synonymous substitution), Ks (synonymous substitution), and
Ka/Ks (evolutionary selection pressure) is of significant importance in determining phylo-
genetic relationships and gaining insights into evolutionary dynamics within and among
species [7]. The Ka/Ks ratio serves as a valuable indicator for assessing the selection
pressure in recurrent events. When Ka/Ks is less than one, it signifies purifying selection;
when it equals one, it indicates neutral selection; and when it exceeds one, it suggests a
positive selection [7].
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Therefore, we computed Ka/Ks values for collinear gene pairs within Gossypium
hirsutum (Table 2). The Ka/Ks ratios for GhVLN gene pairs ranged from 0.096 to 0.305,
with an average of 0.201. Notably, all Ka/Ks values for GhVLN gene pairs were less than
one, implying that these genes evolved predominantly under the influence of purifying
selection (Table 2).
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Table 2. Ka/Ks values for GhVLN collinear gene pairs.

Locus_1 Locus_2 Ka Ks Ka/Ks Time (MYA) Synteny Selection

Gohir.D01G187300 Gohir.A01G197100 0.006674869 0.028485622 0.234324135 1.56514409 D01/A01 Purifying
Gohir.D03G069500 Gohir.A02G107500 0.008274678 0.054163656 0.152771775 2.976025047 D03/A02 Purifying
Gohir.D01G120500 Gohir.A01G131200 0.005862153 0.046331088 0.126527414 2.545664167 D01/A01 Purifying
Gohir.D11G329100 Gohir.A11G312600 0.013325515 0.043621315 0.305481738 2.396775561 D11/A11 Purifying
Gohir.A05G089000 Gohir.D05G090000 0.010134474 0.03314541 0.305757995 1.821176385 A05/D05 Purifying
Gohir.D08G029300 Gohir.A08G018700 0.004066581 0.042012538 0.096794467 2.308381209 D08/A08 Purifying
Gohir.A13G212400 Gohir.D13G216500 0.011020325 0.057520859 0.191588331 3.160486746 A13/D13 Purifying

The estimated divergence time for these seven gene pairs ranged from 1.565 mil-
lion years ago (MYA) for Gohir.D01G187300-Gohir. A01G197100 to 3.160 (MYA) for
Gohir.A13G212400-Gohir.D13G216500 with an average divergence time of approximately
2.396 (MYA) (Table 2).

3.7. Cis-Element and Expression Analysis of GhVLNs

To further explore the potential biological roles of GhVLNs, we conducted a compre-
hensive analysis of cis-elements present in the predicted promoter regions of these genes.
We focused on a 3.5 kb segment located upstream of the GhVLN start codon, using it as
the promoter region for our investigation. The identification of cis-elements in the GhVLNs
promoter region was carried out using the online Plant CARE tool, and sequence illustrative
plots were generated using TBtools (Figure 11A–C).

Our analysis revealed that the promoter region of GhVLNs contains a variety of
cis-elements that are associated with key hormonal biological processes. These include
elements linked to Abscisic Acid (ABRE), MeJA (TGACG-motif, TATC-box, and CGTCA-
motif), Gibberellin (GARE-motif and P-box), Ethylene (ERE), Salicylic Acid (TCA-elements),
and Auxin (TGA-elements) responsiveness (Figure 11A). Moreover, we observed the pres-
ence of cis-elements related to environmental stress responses, such as Anaerobic Induction
(ARE), elicitation (box S), wound (WUN-motif), pathogen (W box), low temperature (LTR),
drought inducibility (MBS), and light, defense, and stress (TC-rich repeats) responsiveness
(Figure 11B).

It is worth noting that some motifs, such as Heat stress (HSE), Fungal Elicitor (Box-W1,
W3), Dehydration, and Salt stress (DRE)-responsive elements, were absent in the GhVLNs’
promoter region. Notably, the most prominent elements were related to the light response.
Furthermore, the promoter region contained cis-elements associated with meristem expres-
sion, circadian control, endosperm expression, and the regulation of flavonoid biosynthetic
genes (Figure 11C).

This comprehensive cis-element analysis suggests that GhVLNs may be involved in
a range of signaling pathways and biological processes. However, it is important to em-
phasize that, while these findings are intriguing, further research is needed to substantiate
these speculations. Analyzing the gene function of GhVLNs in the context of their responses
to external- and internal-environmental signals holds great promise for advancing our
understanding in this area.

3.8. Gene-Expression Pattern Analysis in Different Organs of GhVLNs

To investigate the potential functions of GhVLNs in various tissues of Gossypium
hirsutum, we obtained tissue-specific expression data from the CottonRNA Database (PR-
JNA490626). The tissues examined included anthers, bracts, filaments, leaves, petals, pistils,
roots, sepals, stems, ovules on different days post-anthesis (dpa), and fibers at different
dpa stages (10, 15, 20, and 25 dpa). An analysis of the expression profiles of the 14 GhVLN
genes revealed distinct spatial-expression patterns. For instance, Gohir.A05G089000 exhib-
ited notably high expression levels in sepals, stems, and tori, whereas Gohir.D03G069500
showed elevated expression levels in filaments, petals, and roots (Figure 12C).
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In ovule samples at different developmental stages, Gohir.A05G089000 showed the
most prominent expression. In the case of fiber samples at various developmental stages,
Gohir.A08G018700 had the highest expression at 10, 15, and 20 dpa, followed by Go-
hir.A05G089000, indicating its potential role in cell-wall thickening during fiber develop-
ment. Gohir.A05G089000 was particularly expressed in 3-dpa ovules (Figure 12B).

Furthermore, Gohir.A02G107500, followed by Gohir.D03G069500, was found to be
associated with stress responses, including cold, drought, heat, and salt environments
(Figure 13). These genes could be considered candidates for future transformation experi-
ments aimed at understanding their roles in cotton-fiber development.
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4. Discussion

The VLN gene family plays a crucial role in various aspects of plant growth and
development, and possesses an actin-binding domain. It acts as a group of regulators
that control actin dynamics by polymerizing and depolymerizing actin filaments [54]. In
different developmental stages and under the influence of environmental stress, VLN can
modify actin filaments by either severing or bundling them [31,54]. Despite this, prior to
our study, there has very limited investigation made for the VLN gene family in Gossypium
hirsutum, a significant and widely cultivated fiber and cash crop. This genome-wide
identification and characterization of the Gossypium hirsutum VLN gene family represents a
vital initial step towards a deeper understanding of the functions of this gene family.

Several studies have investigated the functions of VLN genes in the regulation of plant
architecture, which directly affects crop yields. These VLN genes control the development
of various plant tissues by orchestrating the arrangement of actin filaments in Arabidopsis
thaliana [5,31]. Notably, functional redundancies exist in AtVLN2 and AtVLN3, both of
which jointly influence the plant architecture. The simultaneous mutation of VLN2 and
VLN3 results in distorted roots, stems, leaves, pods, and inflorescences [31,31]. In agricul-
tural settings, twisted organs can adversely affect photosynthesis, biomass, and harvest.
Moreover, AtVLN5 plays a pivotal role in regulating pollen germination and pollen tube
growth during the reproductive phase [31]. In light of these findings, it is evident that
VLNs play a crucial role in the regulation of crop yield, offering insights into the genetic
foundations of crop improvement.

In our investigation, we identified and characterized 14 Villin protein sequences
in Gossypium hirsutum (Figure 1B). These genes have varying lengths, ranging from 902
to 980 amino acids, with molecular weights exceeding 100 kDa (Figure 1B). Subcellular
localization analysis indicated their presence in the nucleus (Figure 2), which is consistent
with the findings of previous studies on AtVLNs [55]. The amino acid alignment of
the GhVLNs proteins represents the highly conserved nature of the protein sequences
represented through distinct colors and through WebLogo (Figures 3 and 4), respectively.
The phylogenetic analysis of different species of Gossypium demonstrated that all VLNs
could be grouped into three subcategories, A, B, and C (Figure 5), according to the clades
dividing from the midroot point, which were unevenly spread across the tree.

In our analysis of phylogenetic relationships across various model species and families,
there were five distinct subcategories, A, B, C, and D, divided according to the midroot point
(Figure 6). It was observed that the majority of GhVLNs were clustered within subgroups
C and D (Figure 6). This trend was consistent not only within Gossypium hirsutum but
also among other higher plants, including Arabidopsis thaliana, Zea mays, and Oryza sativa.
Interestingly, VLNs from the lower plant Chlamydomonas reinhardtii, although fewer in
number, were predominantly distributed in subgroup B. Remarkably, animalia species
were consistently grouped in subgroup A (Figure 6). This pattern suggests a certain level
of functional conservation in the gene family across higher plants, encompassing both
monocots and dicots, as well as animalia species, which share some common ancestry
with fungal and algal species. Our investigation further revealed that the majority of
Gossypium hirsutum VLNs contained six gelsolin domains (G1–G6) and a villin-headpiece
domain (VHP) (Figure 1A) which was verified by the conserved domains of the GhVLNs
(Figure 7C). Additionally, 20 sequences were identified, the majority of which belong to the
ADF and gelsolin superfamily (Table 1) (Figure 7B). These structural configurations align
with the findings of previous studies [56,57].

The collinearity analysis using the Arabidopsis genome suggested that the synteny be-
tween the GhVLN gene and Arabidopsis may share a common ancestor during its evolution
(Figure 8A). The 3D-structure prediction suggested that the GhVLNs exhibit similar spatial
structures which were consisted with previous studies on Glycine max [57]. Furthermore,
we employed protein–protein interaction and cis-element analysis to assess the gene ex-
pression pattern within the promoter region [58]. This analysis revealed the existence of
diverse hormone- and stress-responsive elements in the promoter regions of GhVLN genes
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(Figure 11). The protein–protein interaction revealed that GhVLN proteins interact with
various cytoskeletal proteins, hence playing a crucial role in stress responses (Figure 10).
This observation implies that these genes likely play crucial roles in response to stress, align-
ing with similar findings in other species [56,57]. This outcome is in line with findings from
other studies, where AtVLNs exhibited distinct expression patterns featuring elevated ex-
pression levels and a preference for specific tissues [59]. Furthermore, GhVLNs are broadly
expressed in various tissues and organs. This widespread expression implies a significant
role in regulating the stress tolerance, growth, and development of Gossypium hirsutum.
Enhancing stress responses is a pivotal strategy for enhancing crop agronomic traits and
increasing yield. This includes bolstering resistance to high temperatures, cold, salt, and
drought, and responsiveness to hormones. Notably, Gohir.A02G107500, Gohir.D03G069500,
Gohir.A05G089000, and Gohir.D03G069500 were primarily linked to stress responses and
were expressed during different developmental stages (Figures 12 and 13). Our analysis
of cis-elements indicated that GhVLNs may participate in various processes, including
hormone signaling and responses to light, drought, and defense mechanisms (Figure 11).
Furthermore, a particularly intriguing observation captured our attention: specifically,
the presence of pathogen-related cis-elements (W box) and wound-response elements
(WUN-motif) within the promoter regions of certain GhVLNs (Figure 11), all of which were
significantly induced under various biotic and abiotic stress treatments. Moreover, previous
research has documented their involvement in the response to salt and drought stress, as
well as their essential role in conferring tolerance to Verticillium infection in cotton. [60].
Notably, the high expression of Gohir.A025G089000 in sepals, stems, and torus suggests its
potential involvement in the regulation of growth and elongation traits, which are crucial
factors for Gossypium hirsutum yield regulation (Figure 12). The roles of the five Villins
in Arabidopsis have been thoroughly characterized, and the GhVLNs investigated in this
study are phylogenetically related to Arabidopsis VLN4, which is known to be involved
in root-hair growth through the regulation of actin organization [5]. GhVLN4 exhibits
ubiquitous expression in cotton tissues, with its predominant presence in elongating young
fibers. Previous reports have highlighted the crucial roles of GhVLN4 in both tip and
diffuse growth through the regulation of actin organization [27]. It has also been shown
that VLN is directly involved in the developmental regulation of root hairs in plants under
osmotic stress [30,61]. Our study revealed a high expression of Gohir.A08G018700 during
fiber development from 15DPA to 25DPA (Figure 12A), indicating its involvement in the
fiber-elongation phase, which is also consistent with some existing studies [56]. Given that
cotton is primarily cultivated for its fiber yield, Villin genes play a crucial role in fiber elon-
gation and development. To breed high-quality, high-yield Gossypium hirsutum varieties
in the future, it is imperative to explore the function of the VLN gene family in shaping
plant architecture and crop yield. Despite numerous studies on plant VLNs related to their
role in regulating plant growth, development, and response to environmental stresses, our
understanding of Gossypium hirsutum VLNs remains at an early stage.

Therefore, more investigations are required to assess and validate the effect of VLNs on
the growth and development of Gossypium hirsutum. The present study of a genome-wide
analysis may lay the groundwork for further exploration into the functions of Gossyp-
ium hirsutum VLNs, potentially offering valuable insights that could contribute to cotton
breeding efforts.

5. Conclusions

The present study investigated the phylogeny and characteristics of the VLN genes
in Gossypium hirsutum from various perspectives. All 14 GhVLN protein sequences were
categorized into three distinct groups within the Gossypium species. Sequences within the
same group exhibit comparable evolutionary features, such as three-dimensional structure,
gene structure, motifs, and conserved domains, suggesting similar potential functions.
Moreover, these GhVLN genes were distributed across 12 of the 26 chromosomes in the
Gossypium hirsutum genome, and their amino acid sequences displayed a high degree of
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similarity. The collinearity analysis suggested that GhVLNs share functional similarities
with VLN genes in the model species Arabidopsis. An examination of expression patterns
across various tissues indicated that GhVLN genes are extensively expressed in different
tissues, and that there may be functional overlaps among different GhVLN members. An
analysis of protein-interaction networks and cis-elements suggests that GhVLNs may be
involved in various physiological processes, including responses to hormones, stress, and
developmental signals. The insights obtained from our study lay a robust foundation for
future studies on the function of VLN genes in Gossypium and other higher plant species.
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predicted locus, function, and score metrics.
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