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Abstract: Glucose is a major energy substrate for porcine adipocytes and also serves as a regula-
tory signal for adipogenesis and lipid metabolism. In this study, we combined transcriptome and
metabolome analyses to reveal the underlying regulatory mechanisms of high glucose (HG) on
adipogenesis by comparing differentially expressed genes (DEGs) and differentially accumulated
metabolites (DAMs) identified in porcine adipocytes. Results showed that HG (20 mmol/L) signifi-
cantly increased fat accumulation in porcine adipocytes compared to low glucose (LG, 5 mmol/L). A
total of 843 DEGs and 365 DAMs were identified. Functional enrichment analyses of DEGs found
that multiple pathways were related to adipogenesis, lipid metabolism, and immune-inflammatory
responses. PPARγ, C/EBPα, ChREBP, and FOS were identified as the key hub genes through module
3 analysis, and PPARγ acted as a central regulator by linking genes involved in lipid metabolism and
immune-inflammatory responses. Gene-metabolite networks found that PPARγ-13-HODE was the
most important interaction relationship. These results revealed that PPARγ could mediate the cross-
talk between adipogenesis and the immune-inflammatory response during adipocyte maturation.
This work provides a comprehensive view of the regulatory mechanisms of glucose on adipogenesis
in porcine adipocytes.
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1. Introduction

Adipose tissue is the main metabolic organ for controlling energy and lipid home-
ostasis and has a wide range of physiological functions. Adipocytes utilize glucose for de
novo lipogenesis (DNL), which is critical for mammals that rely on carbohydrates as their
primary energy source. Approximately 74% to 77% of body fat in pigs is derived from DNL
in the adipocytes using glucose as a substrate [1]. Excessive fat deposition caused by a
high carbohydrate diet not only reduces the leanness of pigs, but also affects the flavor and
quality of pork [2]. Additionally, excessive energy intake can lead to adipocyte hypertrophy,
which is closely related to obesity-related diseases in contemporary society [3]. However,
the impact of excess energy intake, particularly glucose, on adipogenesis and adipocyte
function remains to be elucidated. Therefore, an in-depth understanding of the regulatory
mechanisms of glucose on adipogenesis in porcine adipocytes is vital for controlling body
fat deposition and exploring potential targets for obesity treatment.

Adipogenesis is a complex process in which preadipocytes differentiate into mature
adipocytes and accumulate fat. This differentiation process is strictly regulated by a series
of adipogenic transcriptional factors [4]. These factors, such as peroxisome proliferator-
activated receptor gamma (PPARγ), CCAAT/enhancer binding proteins (C/EBPs), and
carbohydrate responsive element binding proteins (ChREBP), were considered to be central
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regulators of glucose-induced adipogenesis in adipocytes [5,6]. PPARγ is a ligand-activated
transcription factor that participates in lipid metabolism, glucose homeostasis, immune
responses, and inflammation during different metabolic states [7]. In the adipocytes,
PPARγ activation regulates a network of genes involved in free fatty acid uptake and
transport, triglyceride synthesis and hydrolysis, β-oxidation, and glycolysis [8]. So, the
identification of endogenous PPARγ ligands may provide novel strategies to regulate
obesity and metabolic syndrome [9]. Glucose metabolism provides biosynthetic precursors
and regulatory signals that drive DNL in adipocytes. ChREBP is a major effector of
glucose metabolism, which can be activated by glucose-derived metabolites of glucose-
6-phosphate [10]. ChREBP activation induces the expression of genes involved in DNL,
glycolysis, and the pentose phosphate pathway [11]. ChREBP—directly or cooperatively
with liver X receptor alpha (LXRα) and sterol regulatory element binding protein 1c
(SREBP-1c)—promotes glucose-induced adipogenesis in porcine adipocytes [12]. Through
control of the generation of endogenous fatty acid species that activate PPARγ, ChREBP
links DNL to PPARγ activity and adipocyte differentiation [11,13]. These studies provide
valuable knowledge for understanding the mechanism underlying adipogenesis induced by
glucose in adipocytes. Therefore, characterizing adipocyte adipogenesis in various glucose
environments may offer additional insights into the regulatory mechanisms of adipocyte
adipogenesis. In addition, as a response to nutritional overload, adipocyte hypertrophy is
closely associated with series of events such as inflammation, lipid metabolism disorders,
and insulin resistance [14]. High glucose (HG) accentuates the anti-adipogenic and pro-
inflammatory effects of cytokines released by macrophages on human preadipocytes,
mediating a crosstalk between adipocytes and macrophages [15]. However, it remains
to be studied how immunity and inflammatory responses induced by HG connect with
adipogenesis in porcine adipocytes.

Recently, transcriptomics provided a large number of important information for screen-
ing potential targets that regulate adipogenesis, which facilitates studies of the regulatory
mechanisms of fat deposition and metabolic diseases [16,17]. It was reported that many
signaling pathways are involved in glucose and lipid metabolism and cellular energy
homeostasis, such as the adenosine-monophosphate-activated protein kinase (AMPK)
pathway, cyclic adenosine monophosphate (cAMP) signaling, and wingless-type MMTV
integration site (Wnt) signaling [18,19]. Metabolomics could provide reliable information
about specific metabolites in adipose tissue from obese patients by systematically studying
small molecule metabolite profiles [20]. Although some studies have revealed extensive
lipid remodeling in 3T3-L1 or human adipocytes [21,22], as well as the proteome and
secretome signatures during adipogenesis [23], further studies are needed to understand
the mechanisms underlying adipogenesis induced by glucose in porcine adipocytes. In this
study, transcriptomic and metabolomic analyses were conducted to examine the changes in
the transcriptional and metabolic profile in porcine adipocytes exposed to HG, in order to
screen the differentially expressed genes and differential metabolites, as well as to further
explore the relevant metabolic pathways.

2. Materials and Methods
2.1. Ethics Statement

All animal experiments followed the Regulations for the Administration of Affairs
Concerning Experiments Animals (Ministry of Science and Technology, China, 2004), and
all procedures were approved and supervised by the Northwest Minzu University Animal
Care and Use Committee (Permit No. 0307/2018).

2.2. Porcine Preadipocyte Isolation and Cell Culture

Four three-day-old male crossbred piglets (Duroc × Landrace × Large White) from
different litters were used (Lanzhou Ruiyuan Agricultural Technology Co., Ltd., Lanzhou,
China). Isolation and culture of porcine preadipocytes were performed as described
previously [5]. Briefly, the piglets were euthanized through intraperitoneal injection of
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sodium pentobarbital at 100 mg/kg body weight. Subcutaneous adipose tissue was isolated
from the neck and back of the piglets under sterile conditions. Adipose tissues were rinsed
with phosphate-buffered saline (PBS) and chopped into 1 mm3 pieces. Tissue fragments
were digested using 0.1% type I collagenase (Solarbio, Beijing, China) in a 37 ◦C water bath
for 1 h. After filtering with a 100-mesh sieve, the mixture was centrifuged for 10 min at
1500 r/min. Following the removal of the supernatant, the sediment was washed with
Dulbecco’s modified Eagle’s Medium/nutrient mixture F-12 (DMEM/F12; Sigma-Aldrich,
St Louis, MO, USA) and centrifuged again. The cells were resuspended in DMEM/F12
containing 10% fetal bovine serum (FBS; HyClone, Logan, UT, USA) and seeded in 6-well
plates. All cells were maintained in an incubator at 37 ◦C, 5% CO2, and 95% humidity.
After reaching 80% fusion, the cells were digested with 0.25% trypsin (Invitrogen, Carlsbad,
CA, USA) and seeded in 12-well plates with a density of 5 × 104. The medium was
changed every two days. When growing to 80% confluence, the cells were cultured in an
adipogenic differentiation medium (basal medium supplemented with 100 nmol/L insulin,
1 µmol/L dexamethasone, and 0.5 mmol/L IBMX; Sigma-Aldrich, St. Louis, MO, USA).
After adipogenic induction for 2 days, the cells were cultured in a maintenance medium
with 5 mmol/L glucose (LG) and 20 mmol/L glucose medium (HG) for an additional 4 days.
The cells were collected for gene expression, metabolomics, and RNA-sequencing analyses.

2.3. Oil Red O Staining and Quantification of Lipid Content

Adipocytes were stained with Oil Red O as described previously [5]. The cells were
washed with ice-cold PBS, then fixed with 4% paraformaldehyde for 30 min. Fixed cells
were then incubated in an Oil Red O solution (0.2% Oil Red O in 60% isopropanol) for
30 min. After that, morphologic changes of adipocyts were observed using a microscope
(Leica, Wetzlar, Germany). For quantification assessment, the Oil Red O dyes in the cells
were extracted into isopropanol and the absorbance was measured at 520 nm.

2.4. RNA Sequencing and Transcriptome Data Analysis

Total RNA from cultured cells was isolated using TRIzol regent (Invitrogen, Carls-
bad, CA, USA) according to the manufacturer’s protocol. The RNA concentration and
integrity was confirmed using a Nanodrop 2000 spectrophotometer (Thermo Fisher Scien-
tific, Waltham, MA, USA) and an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto,
CA, USA). Samples with an RNA integrity number (RIN) above 8 were used for library
preparation. RNA-sequencing libraries were then generated using the NEBNext Ultra II
Directional RNA Library Prep Kit (New England Biolabs, Ipswich, MA, USA). Libraries
were sequenced on an Illumina NovaSeq 6000 platform (Illumina, San Diego, CA, USA),
and 150 bp paired-end reads were generated. Raw data were deposited at NCBI Sequence
Read Archive under accession number PRJNA1039275. RNA sequencing analysis was per-
formed by Biomarker Technologies Corporation (Beijing, China) (http://www.biocloud.net,
accessed on 10 July 2023).

Raw read quality was evaluated using FastQC software v 0.11.8 [24]. Clean reads were
mapped to the porcine genome reference (Sscrofa11.1) by HISAT2 v 2.1.0 [25]. Transcript
assembly for each sample was performed with StringTie v 1.3.4 [26]. Gene expression
levels were described as fragments per kilobase of exon model per million mapped reads
(FPKM). Differentially expressed genes (DEGs) were selected using edgeR v.3.18 with a
false discovery rate (FDR) ≤ 0.05 and |log2 fold change (FC)| ≥ 1.5. Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were
conducted using Goseq R v 3.15 [27] and the KOBAS package v 3.0 [28], respectively. The
GO terms and pathways with p values or adjusted p-values less than 0.05 were considered
significantly enriched.

Expression levels of selected genes were verified by real-time RT-PCR to validate
sequencing date accuracy. PCR primers were designed and synthesized by Accurate
Biotechnology Co., Ltd. (Hunan, China) (Table S1). The expression of genes was analyzed
by the comparative method (2−∆∆Ct) with β-actin as the reference gene.

http://www.biocloud.net
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2.5. Construction of Protein–Protein Interactions (PPI) in Network and Module Analysis

The PPI network was constructed by a STRING database v12.0 (https://cn.string-db.
org/, accessed on 20 July 2023)with a confidence score of 0.4 (medium level), and then
visualized in Cytoscape v 3.7.1. To identify sub-networks and hub genes within the PPI
network, the Molecular Complex Detection (MCODE) and CytoHubba plugin in Cytoscape
were respectively used [29].

2.6. Metabolite Extraction and Metabolome Analysis by Liquid Chromatography–Mass
Spectroscopy (LC–MS)

Twelve samples (six samples per treatment) were analyzed using an UPLC-MS/MS
system. The samples were dissolved in 1000 µL methanol-acetonitrile solution (1:1 v/v),
vortexed for 30 s, incubated at −20 ◦C for 1 h, and then centrifuged at 12,000× g for 10 min
at 4 ◦C. A 500 µL supernatant was transferred to a new tube and evaporated with nitro-
gen. The samples were redissolved in 160 µL of 50% acetonitrile solution, centrifuged for
12,000× g at 15 min, and 120 µL of supernatant was loaded into autosampler vials. Addi-
tionally, 10 µL of supernatant from each sample was mixed to generate quality control (QC)
samples. Metabolome analysis was carried out by Biomarker Technologies Corporation
(Beijing, China).

UPLC-MS/MS analyses were performed on an Acquity I-Class UPLS system coupled
with Xevo G2-XS QTOF mass spectrometers (Waters, Milford, MA, USA). Chromatographic
separation was achieved by an Acquity UPLY HSS T3 column (1.8 µm, 2.1 × 100 mm;
Waters, Milford, MA, USA). Data were acquired in both positive and negative ion modes
and combined for subsequent analysis. Mobile phase A was 0.1% formic acid solution
and mobile phase B was 0.1% formic acid in acetonitrile. The elution gradient program
was set as follows: 0.0~0.25 min, 2% B; 0.25~10.0 min, 2~98% B; 10.0~13.0 min, 98% B;
13.1~15.0 min, 2% B. The column temperature was set at 45 ◦C, flow rate at 400 µL/min,
and the injection volume was 1 µL. Mass spectrometry was performed using a Waters Xevo
G2-XS QTOF mass spectrometer with an electrospray ionization (ESI) source operating in
positive/negative ion mode. The ESI-MS operating parameters were as follows: source
temperature 500 ◦C, capillary voltage 2.5 kV (positive) and −2.5 kV (negative), gas flow
rate 800 L/h, cone gas flow 50 L/h, and cone voltage 30 V.

Raw data were collected using Masslynx v 4.2 software (Waters Corporation, Milford,
MA, USA). Progenesis QI v2.3 software (Waters Corporation, Milford, MA, USA) was used
for data processing, including peak extraction, alignment, normalization, and identification.
Metabolites were identified by searching the Metlin database, Human metabolome database
(HMDB), KEGG database, Lipid maps database, and Biomark’s self-built databases. Pro-
cessed data were subjected to multivariate analyses to visualize the distribution of the
original data as well as the classification of variables, including principal components
analysis (PCA), PLS-Discriminant analysis (PLS-DA), and orthogonal Partial Least Squares-
Discriminant Analysis (OPLS-DA) model [30]. The differential accumulated metabolites
(DAMs) were evaluated by |log2 FC| ≥ 1, p-value ≤ 0.05, and the thresholds of variable
importance projection (VIP) ≥ 1. The DAMs were classified according to HMDB and
Lipid maps databases. Metabolic pathway analysis of DAMs was annotated by the KEGG
database. KEGG pathways with p values < 0.05 were considered significantly enriched.

2.7. Combined Metabolomics and RNA Sequencing Analysis

An integrated analysis of metabolomics and transcriptomics data was conducted using
the KEGG database, and bubble maps of pathways were generated. KEGG markup lan-
guage files (KGML, http://www.genome.jp/kegg/xml/, accessed on 15 October 2023) of
the pathways were downloaded from the KEGG database, which provides abundant path-
way structure information, including nodes (genes and compounds) and edges (functional
links) [31]. Based on the KEGG KGML pathway files, relevant aspects of the pathways
were curated and combined; The igraph R package was used to create network diagrams
showing the relationships between intergroup pathways, genes, and metabolites [32].

https://cn.string-db.org/
https://cn.string-db.org/
http://www.genome.jp/kegg/xml/
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2.8. Statistical Analysis

The data of real-time RT-PCR and lipid content were presented as the means ± standard
deviation (SD). Quantitative data were visualized with GraphPad Prism 9.0.0 (GraphPad,
La Jolla, CA, USA). Differences were considered significant if p value < 0.05. Transcriptome
and metabolome data analysis was performed using BMKCloud (http://www.biocloud.net,
accessed on 9 July 2023).

3. Results
3.1. HG Promoted Adipogenesis in Porcine Adipocytes

Schematic illustration of the differentiation of adipocytes incubated at different glucose
concentrations was shown in Figure 1A. Lipid droplets were visible on day 2, and their
abundance gradually increased on day 4 (Figure 1B). By day 4, HG significantly increased
adipocyte fat content (Figure 1C). Consistent with previous studies [5], HG significantly
promoted the adipogenic differentiation of porcine preadipocytes.
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Figure 1. Effect of glucose on the adipogenesis in porcine adipocytes. (A) Schematic illustration of
the differentiation protocol for the adipocytes. (B) Differentiating porcine adipocytes exposed to low
glucose (LG) or high glucose (HG) for 2 days and for 4 days (Oil Red O staining). (C) Quantification
of fat accumulation in adipocytes on day 4. ** p < 0.01.

3.2. Identification of DEGs in Porcine Adipocytes

A total of 200,726,384 clean paired reads from eight libraries were produced after
stringent filtration (Table S2). The average Q30 value (Phred quality score > 30) was 95.01%
for each library, and the average GC content was 52.80%. More than 95% of the clean reads
were mapped to the porcine reference genome, of which 93.10% were uniquely mapped.
PCA showed that biological replicates were tightly clustered, and that there was a distinct
separation between LG and HG groups (Figure 2A). The heatmap hierarchical clustering
indicated a clear differential expression pattern between LG and HG groups (Figure 2C). A
total of 843 DEGs were identified in HG compared with LG groups, with 628 upregulated
and 215 downregulated genes (Figure 2B, Table S3). To validate the RNA-Seq results, seven
randomly selected DEGs were examined by RT-PCR, and the expression patterns of these
genes were consistent with the RNA-Seq results (Figure S1), indicating that DEGs identified
from the RNA-Seq analysis were reliable.

http://www.biocloud.net
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3.3. Enrichment and Functional Annotation of DEGs

In the GO functional annotation, the biological processes (BP) category was signifi-
cantly enriched with 415 GO terms (p < 0.05) after HG treatment, followed by molecular
function (MF) with 148 GO terms (p < 0.05), and cellular component (CC) with 67 GO
terms (p < 0.05) (Table S4). The cellular process, cell, and binding were the most abundant
GO terms within the BP, MF, and CC categories (Figure 3A), respectively. GO enrichment
analysis showed that DEGs were primarily enriched in lipid metabolism, carbohydrate
metabolism, immune, and inflammation pathways following HG treatment (Figure 3C). GO
terms were related to lipid metabolism, namely the very long-chain fatty acid biosynthetic
process (GO:0042761), fatty acid biosynthetic process (GO:0006633), fatty acid elongation,
saturated fatty acid (GO:0019367), positive regulation of cholesterol efflux (GO:0010875),
fatty acid elongase activity (GO:0009922), acetyl-CoA carboxylase activity (GO:0003996),
low-density lipoprotein particle binding (GO:0030169), and lipid droplet (GO:0005811).

Based on the KEGG database, the functions of significant pathways were generally
consistent with the enriched GO terms (Supplementary Table S5). The top 20 enriched
KEGG pathways for DEGs between the LG and HG groups were presented in Figure 3B.
Among them, PPAR signaling was the most significantly enriched pathway related to lipid
metabolism, followed by regulation of lipolysis in adipocytes, biosynthesis of unsaturated
fatty acids, and fatty acid metabolism. In addition, several immune and inflammatory reg-
ulatory pathways were identified, including the phagosome, complement, and coagulation
cascades, B cell receptor signaling pathway, chemokine signaling pathway, and natural
killer cell mediated cytotoxicity.

3.4. Identification of the Key Pathways and Hub Genes in the PPI Network

To identify key regulators of complex lipid metabolism pathways, PPI networks were
constructed using the STRING database and visualized by Cytoscape. The top three
modules included MCODE 1 (MCODE score = 40, consisting of 43 nodes and 1680 edges),
MCODE 2 (MCODE score = 15.90, consisting of 20 nodes and 302 edges), and MCODE
3 (MCODE score = 7.24, containing 43 nodes and 304 edges) (Figures 4 and S2). Module
one and module two genes were enriched in the cell cycle progression and inflammatory
pathways, respectively (Figure S2). The genes in module three were primarily enriched in
GO terms involved in immune processes, and in the PPAR signaling pathway via KEGG
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pathway annotation. Notably, PPARγ bridged the hub genes involved in inflammation and
immune response processes to multiple adipogenic transcription factors and genes, such
as PPARγ, CEBPα, FOX, and ChREBP (Figure 4A). The top 10 hub genes identified in PPI
network with the highest betweenness centrality were MMP9, TLR2, AGT, PIK3R3, RAC2,
PPARγ, PTPRC, FOS, and TYROBP (Figure 4B).
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Figure 4. Identification of Module 3 and the top 10 hub genes in the PPI network. (A) Function and
pathway enrichment analyses of Modules 3. (B) Top 10 hub genes screened from the PPI network.
Nodes represent genes and edges represent interactions between DEGs in the PPI network. The
colors of the circles (or diamonds) represents different scores (as with Figure 4B).
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3.5. Identification of Differentially Accumulated Metabolites

Untargeted metabolomics analysis was performed to assay the variation of metabolites
in adipocytes exposed to HG. PCA analysis showed that the separation was not complete
between LG and HG groups, and the first two principal components (27.55% PC1 and
23.06% PC2) covered 52.61% of the total variance (Figure S3). OPLS-DA, a supervised
statistical method, was used to detect metabolite variations in adipocytes (Figure 5A). All
samples were inside the 95% confidence interval with obvious separation between the two
groups, proven by R 2 Y = 0.995 and Q 2 Y = 0.908. The OPLS-DA model was validated
using permutation tests (200 permutations), which confirmed the reliability of the OPLS-DA
model (Figure 5B). A total of 365 DAMs were identified, including 233 up-regulated and
132 down-regulated (Figure 5C, Table S6). Heatmap analysis showed that the metabolite
profiles were also clearly distinguished between LG and HG groups (Figure 5D).
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3.6. Pathway Enrichment Analysis of DAMs

Metabolite categories were determined by the HMDB (http://www.hmdb.ca/, ac-
cessed on 20 October 2023) and Lipid Maps (https://lipidmaps.org, accessed on 20 Octo-
ber 2023) databases. In the HMDB database, 302 metabolites were classified into 20 cat-
egories (Figure 6Aa). Types that were most rich in metabolites were carboxylic acids
and derivatives (43 metabolites), glycerophospholipids (41 metabolites), and fatty acyls
(31 metabolites). In the Lipid Maps database, 69 metabolites were classified into seven
categories (Figure 6Ab). Similar to the results mapped from the HMDB database, the
predominant types were fatty acyls (22 metabolites) and glycerophospholipids (37 metabo-
lites). In the fatty acyl family, the significantly increased metabolites included tetra-
cosanoic acid, oleamide, 15-Octadecene-9,11,13-triynoic acid, 9,12,15-Octadecatrien-1-ol,
and 13-Hydroxyoctadecadienoic acids (13-HODE), whereas docosapentaenoic acid (22n-3)
was decreased (Figure 6Ba). Moreover, the content of glycerophospholipids was signifi-

http://www.hmdb.ca/
https://lipidmaps.org
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cantly altered, such as LysoPE [16:1(9Z)/0:0], which was significantly increased; LysoPE
[0:0/20:5(5Z,8Z,11Z,14Z,17Z)] was significantly decreased (Figure 6Bb).
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KEGG metabolic pathways for DAMs were assigned to 45 terms between LG and HG
groups (p > 0.05). These metabolic pathways were primarily related to the metabolism of
lipids; amino acid and energy, such as phenylalanine, tyrosine and tryptophan biosynthesis;
biosynthesis of unsaturated fatty acids; linoleic acid metabolism; vitamin B6 metabolism;
purine metabolism; and beta-Alanine metabolism (Figure 6C, Table S7).

3.7. Integrated Analyses of Transcriptomics and Metabolomics Data

To obtain a comprehensive insight into the mechanism underlying adipogenesis
and lipid metabolism induced by HG in porcine adipocytes, an integrated analysis of
metabolomic and transcriptomic data was performed to explore the related DEGs and
DAMs involved in the same pathway (Table S8). A total of 24 integrative KEGG pathways
were identified to have both DEGs and DAMs associated with each other (Figure 7A).
The results showed that the most DEGs and DAMs were enriched in the PPAR signaling
pathway (20 genes and 1 metabolites), biosynthesis of unsaturated fatty acids (7 genes
and 3 metabolites), biosynthesis of amino acids (9 genes and 2 metabolites), and purine
metabolism (12 genes and 2 metabolites) (Figure 7B), indicating that HG had diverse
impacts on both amino acid metabolism and lipid metabolism. Gene–metabolite networks
found that 13-HODE may be a key metabolite involved in the PPAR signaling pathway.
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4. Discussion

Glucose is a main substrate for lipid synthesis in adipocytes, and its metabolic interme-
diate glucose-6-phosphate enhances the expression and transcriptional activity of ChREBP
to promote adipogenesis [5]. In line with previous findings [6], HG significantly increased
lipid accumulation in porcine adipocytes. Here, we focused on the regulatory effect of
glucose on adipogenesis in porcine adipocytes, and identified 843 DEGs (628 upregulated
and 215 downregulated) and 365 DAMs (233 upregulated and 132 downregulated) between
LG and HG groups. GO enrichment analysis showed that the DEGs were mainly involved
in the inflammatory response, fatty acid elongation, saturated fatty acids, very long-chain
fatty acid biosynthetic processes, and the fatty acid biosynthetic process. KEGG pathways
analysis showed that PPAR signaling pathways, phagosomes, regulation of lipolysis in
adipocytes, complement and coagulation cascades, and biosynthesis of unsaturated fatty
acids signaling pathways were significantly enriched. Moreover, integrated metabolomics
and transcriptomics analyses found that there were consistent changes in DEGs and DAMs
related to lipid and amino acid metabolism in porcine adipocytes exposed to HG, and that
the PPARγ-13-HODE interaction network could constitute a complex regulatory network
for the regulation of adipogenesis.

The PPAR signaling pathway is a key pathway associated with adipogenic differentia-
tion, fatty acid metabolism, and immuno-inflammatory responses [33]. Ligand-induced
activation of PPARs (PPARα, PPARβ/δ, and PPARγ) transmits signals that generate adi-
pogenic effects in adipocytes [7]. In the present study, the upregulated DEGs by HG were
significantly enriched in the PPAR signaling pathway, and many of them were direct
PPARγ target genes involved in fatty acid synthesis. This supports that the adipogenesis
induced by HG in porcine adipocytes depends on PPARγ. PPARδ is a master regulator of
fatty acid catabolism in adipose tissue. Activation of PPARδ decreases lipid accumulation
in adipose tissue by stimulating expression of genes related to fatty acid oxidation [34].
Therefore, the upregulation of PPARδ by HG seemed to collaborate with PPARγ at the
transcriptional level to regulate fat deposition in porcine adipocytes, which could play
a role in improving glucose metabolism and lipid homeostasis [35]. In addition, PPARγ
was identified as a hub gene and is highly connected to other adipogenic transcription
factors, such as C/EBPα, ChREBP, and FOS. This implied that HG-induced adipogenesis
could be the outcome of enhanced activity and interaction with multiple transcription
factors in porcine adipocytes [5]. C/EBPα, as another potential marker, cooperates with
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PPARγ to synergistically trigger the adipocyte terminal differentiation program [36]. It was
demonstrated that C/EBPα is essential for adipocyte expansion and the de novo synthesis
of fatty acids in response to metabolic challenges [37]. Activated ChREBP mediates the
endogenous de novo fatty acid synthesis pathway and affects the transcriptional activity
of PPARγ [11,13]. ChREBP-silenced porcine adipocytes still exhibited fat accumulation,
suggesting that other transcription factors could be involved in glucose-induced adipogen-
esis [5]. FOS (known as c-fos gene) is a heterodimer of the AP-1 transcription factor that
could contribute to PPARγ activation and adipogenesis, and FOS knockdown resulted in
significantly decreased 3T3-L1 adipocyte differentiation [38]. Therefore, HG could regulate
adipogenesis in porcine adipocytes, with PPARγ as a core regulator, coordinated with
C/EBPα, ChREBP, and FOS. Furthermore, the regulatory networks between the DEGs and
DAMs showed that 13-HODE was linked with PPARγ in the PPARγ signaling pathway.
These results indicated that 13-HODE could be a key intermediate metabolite regulating
lipid metabolism by HG in adipocytes. Previous work established that 13-HODE, an ox-
idation product of linoleic acid, serves as an endogenous ligand for PPARγ to increase
its transcriptional activation [9]. Multiple metabolomics analyses have also indicated that
HODE isomers are abundant lipid metabolites in preadipocyte 3T3-L1 cells and in human
and mouse plasma [39,40]. Therefore, HG might induce adipogenesis in porcine adipocytes
by promoting the generation of metabolite 13-HODE to increase the transcriptional ac-
tivity of PPARγ. 13-HODE may act as a specific endogenous ligand for PPARγ, and this
relationship provides a new understanding of the regulatory mechanism of glucose on
adipocyte adipogenesis. Overall, these results suggested that glucose acts as a precursor
and a potential signaling molecule to promote the global process of de novo synthesis of
fatty acids.

Functional enrichment analysis for the upregulated DEGs showed that the PPAR
signaling pathway, biosynthesis of unsaturated fatty acids, and fatty acid metabolism
were significantly enriched. These DEGs, such as adenosine triphosphate (ATP)-citrate
lyase (ACLY), acetyl-CoA synthetase 2 (ACSS2), acetyl-CoA carboxylase alpha (ACACA,
or ACC1), fatty acid synthase (FASN), malic enzyme 1 (ME1), stearoyl-CoA desaturase
(SCD), Elongase 2 (ELOVL2), ELOVL5, and ELOVL6, were involved in de novo fatty
acid synthesis, fatty acid desaturation, and fatty acid elongation. Acetyl-CoA, the major
substrate for DNL, is primarily derived from the conversion of citrates by ACLY [41], as
well as from acetate by ACSS2 [42]. In nutrition excess mammals, the glucose-derived
pyruvate generates more endogenous acetate [43]. Thus, the upregulation of ACSS2
expression by HG could promote the utilization of glucose-derived carbon to increase
the acetyl-CoA pool in porcine adipocytes. ACLY and ACSS2 compensate for each other
to a certain extent, but their dominance varies under different nutritional and hypoxic
conditions [44,45]. The together upregulation of ACLY and ACSS2 could be an adaptive
response of porcine adipocytes to HG [46]. Moreover, ACACA and ME1 are responsible for
catalyzing reactions that produce specific non-lipid precursors malonyl-CoA and NADPH,
which can subsequently be used by FASN to assemble palmitic acid (C16:0) [47]. Obviously,
these steps are critical for the conversion of glucose and its intermediate metabolites into
fatty acids. SCD catalyzes the synthesis of monounsaturated fatty acids (MUFA), mainly
oleic acid (C18:1) and palmitoleate (C16:1), which was identified as a critical candidate
gene for the determination of the fatty acid composition in adipose tissue and muscle
tissue [48]. The increases in the synthesis of oleic acid and its derivatives mediated by SCD
resulted in the accumulation of more MUFA in pork, as reported in previous studies [49].
ELOVL 6 catalyzes the elongation of saturated fatty acids (SFA) and MUFA with 12 to 18
carbons, and it is considered an important regulator of fatty acid composition, particularly
stearic (18:0) and oleic acids (18:1) [50]. Considering the predominance of DNL pathways
in porcine adipocytes, upregulation of SCD and Elovl 6 may play a key role in regulating
fatty acid composition in response to changes in glucose levels [49].

Moreover, n-3 long chain polyunsaturated fatty acids (n-3 LC-PUFAs), such as docosa-
hexaenoic acid (DHA, 22:6n-3), Eicosapentaenoic acid (EPA, 20:5n-3), and docosapentaenoic
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acid (DPA, 22:5n-3), participate in regulating both lipid and carbohydrate metabolism, and
must be obtained for mammals from diets. Elovl2 and Elovl5 are involved in n-3 PUFA
biosynthesis, especially Elovl2, which elongates DPA to 24:5n-3, a precursor to DHA [51].
KEGG enrichment analysis of DEGs and DAMs showed that the biosynthesis of the unsat-
urated fatty acids pathway was enriched, which included the upregulated ELOVL2 and
ELOVL5, and the downregulated metabolites DPA, suggesting that DHA synthesis was
intensified by HG. Interestingly, the DHA level was not affected by HG, while a 7-fold
reduction in DPA was observed. Previous studies pointed out that DHA synthesis via
ELOVL2 is indispensable for the regulation of DNL and lipid homeostasis in vivo [52], and
that lipid and glucose metabolism in mammals was synergistically affected by dietary DHA
and sucrose [53]. It might be reasonable to speculate that the upregulation of Elovl2 and
Elovl5 by HG was stimulated by insufficient DPA and the demand for DHA in fatty acid
synthesis through a feedback mechanism. As a result, HG could stimulate adipogenesis
through the upregulation of the whole process of de novo synthesis of fatty acids in porcine
adipocytes, and the synthesis of DHA was a prerequisite in the sustained synthesis of
fatty acids.

Glycolysis is the primary metabolic pathway for glucose metabolism, and it links
glucose metabolism with lipid and amino acid metabolism. Enhancing the glycolytic
pathway provides available precursors for fatty acid synthesis. In this study, the carbon
metabolism pathway was enriched by DEGs involved in glycolysis, such as glucokinase
(GCK), malate dehydrogenase 1 (MDH1), phosphoglycerate dehydrogenase (PHGDH), and
phosphoserine aminotransferase 1 (PSAT1) downregulated by HG. GCK phosphorylates
glucose to glucose-6-phosphate, which acts as a substrate for DNL [54] and a signaling
molecule to activate ChREBP, too. MDH1 and ALDOC participate in the NADH/NAD+
redox balance and aldol condensation reactions during glycolysis, respectively [55,56]. Ob-
viously, increased glycolysis is a key feature of HG-induced fatty acid synthesis in porcine
adipocytes. Additionally, the enzymes coded by PHGDH and PSAT1 catalyze de novo
serine biosynthesis. The serine synthesis is a side-branch of glycolysis that coordinates an-
abolic fluxes associated with central carbon metabolism [57]. PHGDH generates glycolytic
intermediate 3-phosphoglycerate and controls the flux from the glycolytic pathway into
serine synthesis [58]. PSAT1 catalyzes serine synthesis and affects the serine production
and its downstream pathways [59]. As a result, HG inhibited serine de novo synthesis
by downregulating PHGDH and PSAT1, leading to an increase in the carbon flux flow
from the glycolytic pathway to fatty acid synthesis. This notion is supported by recent
research which found that inhibition of de novo serine biosynthesis results in hepatic lipid
overaccumulation in mice [60]. Furthermore, KEGG analysis showed that downregulated
DAMs were enriched in purine, pyrimidine, and amino acid biosynthesis, which may be
due to insufficient serine synthesis affecting the biosynthetic pathway using it as a precur-
sor [61]. Collectively, HG could promote DNL through the increase of glycolysis and the
inhibition of serine synthesis in porcine adipocytes. It is necessary to further understand
the relevance of serine metabolic pathways in adipogenesis induced by HG, which could
provide potential avenues for dietary intervention, biomarker discovery, and combating
obesity-related diseases [62].

The present study found that the upregulated DEGs were enriched in multiple path-
ways involved in the immune-inflammatory response, such as the phagosome, complement
and coagulation cascades, B cell receptor, and chemokine signalling pathway. These DEGs
included more than 20 genes related to antigen processing and presentation, innate im-
munity and chemokines, which connected immune and inflammatory response with lipid
metabolism during adipocyte hypertrophy [23], and were indispensable for the cross-talk
between adipocytes and immune cells in adipose tissues [63]. Apparently, HG-induced
adipocytes exhibited a pronounced “immune-like” capability that could activate and re-
cruit immune cells to dialogue with themselves [64]. This could be related to the positive
role of the immune-inflammatory response in maintaining the adipose tissue microenvi-
ronment to promote healthy adipocyte expansion [65]. A recent study also found that
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the antigen-presenting functions of adipocytes can improve systemic glucose metabolism
in high-fat diet-fed mice [66]. Furthermore, MCODE 3 and hub genes analysis identi-
fied that PPARγ was a core linking the hub genes associated with lipid metabolism and
immune–inflammatory responses, suggesting that PPARγ could act as a central regulator
for the connection between immune–inflammatory responses and adipogenesis during
adipocyte maturation.

5. Conclusions

In conclusion, the combined transcriptome and metabolome analyses revealed the
regulatory mechanisms underlying adipogenesis induced by HG in porcine adipocytes.
HG could stimulate adipogenesis in porcine adipocytes through the increase of the whole
process of de novo synthesis of fatty acids and glycolysis, as well as the inhibition of serine
synthesis, in which the synthesis of DHA was a prerequisite in sustained synthesis of fatty
acids. PPARγ, as a core transcription factor, coordinated with C/EBPα, ChREBP, and FOS
to mediate HG-induced adipogenesis in adipocytes. PPARγ also was a connecter of the
cross-talk between adipogenesis and the immune-inflammatory response, which effected
the adipocyte adipogenesis induced by HG. Moreover, 13-HODE was a critical metabolite
by HG, serving as an endogenous ligand to enhance transcriptional activity of PPARγ.
These findings provide novel perspectives for further exploring the regulatory mechanisms
of glucose in lipid metabolism in adipocytes.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cimb46030131/s1, Figure S1: Validation of seven randomly selected DEGs
by RT-qPCR; Figure S2: Function and pathway enrichment analyses of Module 1 (A) and Module 2
(B); Figure S3: Principal component analysis (PCA) of the metabolite profiles for LG and HG groups;
Table S1: Primers used for experimtal validation by qRT-PCR analysis; Table S2: Output statistics of
sequencing data; Table S3: Summary of DEGs between LG and HG groups; Table S4: Overview of
significant enriched GO terms; Table S5: KEGG enrichment analysis of DEGs between LG and HG
groups; Table S6: Identification of the differential metabolites between LG and HG groups; Table S7:
KEGG anno-tated results of differential metabolites; Table S8: The differential metabolites and genes
related top 20 of the enriched KEGG pathways. Figure S1: title; Table S1: title.

Author Contributions: Conceptualization, S.J., J.L. (Jianxiong Lu) and G.Z.; methodology, S.J.;
software, S.J. and D.W.; validation, S.J., J.L. (Jiawei Li) and G.Z.; formal analysis, S.J.; investigation,
S.J.; resources, J.M., X.L. and J.L. (Jiawei Li); data curation, S.J. and J.L. (Jianxiong Lu); writing—
original draft preparation, S.J.; writing—review and editing, S.J. and J.L. (Jianxiong Lu); visualization,
J.L. (Jianxiong Lu) and G.Z.; supervision, S.G.; project administration, J.L. (Jianxiong lu) and G.Z.;
funding acquisition, G.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 31860633.

Institutional Review Board Statement: The animal study protocol was approved by the Northwest
Minzu University Animal Care and Use Committee (Permit No. 0307/2018; approval date: 3 July
2018).

Informed Consent Statement: Not applicable.

Data Availability Statement: The data were submitted to the NCBI Sequence Read Archive (PR-
JNA1039275).

Acknowledgments: We are grateful to Beijing Biomarker Technologies Corporation (Beijing, China)
for assisting in sequencing. All authors have read and agreed to the published version of the
manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

https://www.mdpi.com/article/10.3390/cimb46030131/s1
https://www.mdpi.com/article/10.3390/cimb46030131/s1


Curr. Issues Mol. Biol. 2024, 46 2040

References
1. Dunshea, F.R.; D’Souza, D.N.; Pethick, D.W.; Harper, G.S.; Warner, R.D. Effects of dietary factors and other metabolic modifiers

on quality and nutritional value of meat. Meat Sci. 2005, 71, 8–38. [CrossRef]
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