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Abstract: The (pro)renin receptor ((P)RR) is an essential component of the renin–angiotensin system
(RAS) as a specific single-pass transmembrane receptor for prorenin and renin and has now emerged
as a multifunctional protein implicated in a wide variety of developmental and physio-pathological
processes and pathways. The (P)RR may be of pathological significance in metabolic syndrome. The
(P)RR has received much consideration; substantial efforts have been made to understand the local-
ization, regulation, and function of the (P)RR at both a molecular and system level. (P)RR regulation
of cell function depends on whether it is intact or cleaved into its constituent forms. Therefore, the
present chapter describes immunohistochemical approaches to examine the expression of (P)RR in
various organs. It was shown that different molecular forms of (P)RR could be present in different
tissue compartments in almost all organs. Among them, the liver has high PRR activity. Our findings
could elucidate more detailed distribution of different (P)RR molecular forms in different organs,
which could provide useful information to further investigate the pathophysiological mechanisms of
the development of various diseases in the future.

Keywords: cardiovascular disease; M8.9 fragment; (pro)renin receptor; renin-angiotensin system;
s(P)RR

1. Introduction

(Pro)renin receptor ((P)RR), also nominated as ATP6AP2, is a type I single-pass trans-
membrane protein consisting of 350 amino acids with a long extracellular domain, a
transmembrane domain, and a short intracellular domain [1,2]. In 2002, (P)RR was first
identified as a receptor of the renin–angiotensin system (RAS), in which (pro)renin binds to
(P)RR and then enhances the cleavage of angiotensinogen (AGT) to angiotensin (Ang) I;
subsequently, Ang I could be further converted to Ang II [2]. Because RAS has been eluci-
dated as important in controlling vessel pressure/resistance and salt/water reabsorption
of the kidney, evidence has also confirmed the pathogenic role of (P)RR in vascular and
kidney-related diseases [1,3,4]. Moreover, it has been further suggested that the discovery
of (P)RR might provide a plausible rationale for an issue about why a high Ang II activity
could be caused by an extreme low expression level of renin in some tissues [5,6]. After two
decades of study, (P)RR has been shown to widely express in many types of organs/tissues,
e.g., vessel, heart, thyroid, brain, kidney, liver, colon, etc. [4,7]. In addition, the pathogenic
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role and mechanism of (P)RR in various diseases, e.g., heart and kidney failure, hyperten-
sion, diabetes, obesity, and cancers, have also been further proposed and elucidated [4].
However, the exact role of (P)RR in different organs/tissues still needs more investigation
and elucidation because of its ubiquitous expression throughout the body, high clinical
pathogenic correlation, and complicated multifaceted mechanism.

In addition to being the receptor to (pro)renin, it has been found that full-length (P)RR
(f(P)RR) might be cleaved by different proteases in different environments to produce a
soluble form of (P)RR (s(P)RR), which is the extracellular domain of f(P)RR and a resid-
ual fragment which contains the transmembrane and cytoplasmic domains [8]. In 2009,
furin was the first protease found to cleave (P)RR at the R275KTR278 amino acid sites in
the trans-Golgi [9,10]. Two years later, a disintegrin and metalloproteinase 19 (ADAM19)
was also shown to cleave (P)RR, but it was processed in the Golgi apparatus and in a
furin-independent manner [10]. In 2017, site-1 protease (S1P) was indicated as another
protease cleaved (P)RR at R278TIL281 amino acid sites; in addition, it was suggested that
S1P and furin might cleave (P)RR through sequential processing [11]. Recently, a con-
vertase was further proposed to promote s(P)RR production in the placenta, which is
furin- and S1P-independent, but the underlying mechanism is still unclear [12]. Although
these complicated findings lead to a still unsolved (P)RR cleavage mechanism elucida-
tion, accumulating data have already evidenced the importance of s(P)RR production.
After cleavage, s(P)RR could be released into the extracellular fluid, such as plasma and
urine [9–12]. Similar to the regulatory mission of f(P)RR, s(P)RR has also confirmed its role
in controlling RAS activation, vessel function, and electrolyte balance and confirmed its
clinical correlation in the development of various diseases [13–17]. Furthermore, although
it still has controversy, the residual transmembrane and intracellular domains after (P)RR
cleavage might be defined as M8.9 fragment. There is evidence that M8.9 fragment might
be an accessory member of vacuolar H+-ATPase (V-ATPase) [6,18].

In addition to participating in RAS activation, (P)RR could also directly initiate down-
stream signaling, independent of Ang II, to modulate the cell functions and hence affect
pathogenic development of myocardium, kidney, and many other organs/tissues. These
signaling pathways include mitogen-activated protein kinases (MAPKs), Wnt/β-catenin,
and V-ATPase [6]. After binding with (pro)renin, (P)RR could activate MAPKs signaling,
including the extracellular signal-related protein kinase (ERK) 1/2, p38, or phosphatidyli-
nositol 3-kinase (PI3K) pathways to modulate many types of cell functions, such as survival,
proliferation, oxidative stress, inflammation, fibrosis, and so on [6]. Moreover, (P)RR could
also crosslink with Wnt/β-catenin and V-ATPase to control the target gene expression and
influence the intracellular microenvironment, respectively [6,19,20]. In addition, it has also
been shown that the hydrolase activity of lysosomes could also be regulated by crosslinking
between the M8.9 fragment and V-ATPase [6].

Taken together, (P)RR might be a multifunctional protein and its complex regulatory
mechanisms might be activated in a context-dependent manner, which includes that differ-
ent mechanisms could be initiated by different (P)RR molecular forms, i.e., f(P)RR, s(P)RR,
and M8.9 fragment, in different organs/tissues. In the present study, the localization of
different molecular forms of (P)RR was analyzed and the results showed that different
molecular forms of (P)RR might be expressed in different tissue compartments in the
kidney, pancreas, heart, and brain but not in the liver. Our findings could elucidate more
detailed distribution of different (P)RR molecular forms in different organs, which could
provide useful information to further investigate the pathophysiological mechanisms of
the development of various diseases in the future.

2. Materials and Methods
2.1. Materials

Human embryonic kidney cells 293T (HEK293T) were purchased from the Cell Bank of
the American Type Culture Collection (Rockville, MD, USA). Specific antibody for anti-N-
terminal (P)RR (anti-N-(P)RR) was purchased from the Abcam (ab64957, Cambridge, UK).
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Specific antibody for anti-C-terminal (P)RR (anti-C-(P)RR) was purchased from the Everest
biotech (EB06118, Oxfordshire, UK). Restriction enzymes, T4 DNA ligase, lipofectamine
2000 reagent, and lysis buffer were purchased from Thermo (Waltham, MA, USA). Other
materials that are not described were purchased from Sigma-Aldrich (St. Louis, MO, USA).

2.2. Cell Culture

HEK293T cells were kept in Dulbecco’s Modified Eagle Medium (DMEM) with serum
(10%) and antibiotics (1%) and were incubated in an incubator with 37 ◦C and 5% CO2 con-
ditions. The materials used in culturing the cells were purchased from Thermo (Waltham,
MA, USA).

2.3. Construction of (P)RR-Overexpressed Plasmid

The DNA fragment of (P)RR wild type (Figure 1A) was linked into the pCMV-3Tag-3
plasmid (Addgene, Watertown, MA, USA) by the EcoRI and Xho I restriction enzymes
and T4 DNA ligase. The DNA fragment of (P)RR wild type was amplified by the primers:
(forward) 5′-CGT GAA TTC ACC ATG GCT GTG CTT GTC GTT C-3′ and (reverse) 5′-GGA
CTC GAG ATC CAT TCG AAT CTT CTG G-3′.
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Figure 1. Specificity validation of anti-N-(P)RR and ani-C-(P)RR antibodies. (A) The diagram of 
f(P)RR with different domains and the antigen sequences of anti-N-(P)RR and anti-C-(P)RR 
antibodies. TM: transmembrane domain, CP: cytoplasmic domain, a.a.: amino acid. (B,C) Cells were 
transfected with empty vector (EV) or (P)RR wild-type (WT)-overexpressed plasmid for 48 h and 
then the cell lysate and cell-culturing conditional medium (CM) were collected to examine the 
expression or secretion levels of different molecular forms of (P)RR by using the Western blot with 
anti-N-(P)RR (B) and anti-C-(P)RR antibodies (C). The experiments were repeated independently at 
least three times. 

Figure 1. Specificity validation of anti-N-(P)RR and ani-C-(P)RR antibodies. (A) The diagram of
f(P)RR with different domains and the antigen sequences of anti-N-(P)RR and anti-C-(P)RR antibodies.
TM: transmembrane domain, CP: cytoplasmic domain, a.a.: amino acid. (B,C) Cells were transfected
with empty vector (EV) or (P)RR wild-type (WT)-overexpressed plasmid for 48 h and then the
cell lysate and cell-culturing conditional medium (CM) were collected to examine the expression
or secretion levels of different molecular forms of (P)RR by using the Western blot with anti-N-
(P)RR (B) and anti-C-(P)RR antibodies (C). The experiments were repeated independently at least
three times.
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2.4. Transfection of (P)RR-Overexpressed Plasmid

HEK293T cells (60–70% confluence) were cultured in 3.5 cm dishes with antibiotic-
free DMEM medium for 24 h before transfection. Transient transfection with plasmid
pCMV-3Tag-3 empty vector (EV) and pCMV-3Tag-3-(P)RR wild type was performed 24 h
after plating using Lipofectamin2000 reagent (Invitrogen, Carlsbad, CA, USA) according
to the manufacturer’s instructions. A total of 5 µg of deoxyribonucleic acid and 15 µL of
Lipofectamine2000 reagent were each diluted into 250 µL Opti-MEM (Invitrogen, Carlsbad,
CA, USA), mixed, and added to cells cultured in 3.5 cm dishes. After 4 h, the cells were
washed and cultured in fresh medium for 4 h. Subsequently, the cells were plated onto
10 cm dishes for Western blotting.

2.5. Western Blot Analysis

After 48 h transfection, the transfected cells were collected and the total proteins were
extracted from cells by adding the commercial lysis buffer. Protein concentration was
measured by using the Bio-Rad protein assay kit (Bio-Rad, Hercules, CA, USA). A total of
150 µg of protein extract was separated using sodium dodecyl sulfate-polyacrylamide gel
electrophoresis and then transferred onto a polyvinyl difluoride membrane with 0.45 µm
pore size (Bio-Rad, Hercules, CA, USA). After that, the membrane was blocked by using
5% milk and subsequently incubated with the anti-N-(P)RR and anti-C-(P)RR primary
antibodies and the horse-radish peroxidase-conjugated secondary antibody. Immunoreac-
tive bands were visualized by using the enhanced chemiluminescence detection system
(Applied Biosystems, Foster, CA, USA).

2.6. Animals

All the animal experiments and protocols were approved by the Institutional Animal
Care and Use Committee (No. 2019122304) in Chiayi Chang Gung Memorial Hospital.
Sprague–Dawley (SD) rats (male, ight weeks old) were purchased from the BioLASCO
Taiwan Co., Ltd. (Taipei, Taiwan). Rats were housed in a suitable and controlled envi-
ronment (temperature: 23 ± 2 ◦C; relative humidity: 50 ± 5%) with a 12 h light/dark
cycle and were allowed free access to food and water ad libitum. The organs, including
kidney, liver, pancreas, heart, and brain, were excised after rats were anesthetized with
isoflurane inhalation. These organs were further analyzed by using immunohistochemical
staining assay.

2.7. Immunohistochemical Staining

Organs were embedded in Tissue-Tek OCT (optimal cutting temperature) compound
(Sakura Finetek, Torrance, CA, USA), frozen, and sectioned into 12–16 µm cryosections.
Cryosections were fixed with 10% neutral buffered formalin for 15 min at room temperature
and washed 3 times with PBS. Cryostat sections were incubated with 0.1% TritonX-100 for
15 min at room temperature and washed 3 times with PBS. To block unspecific binding
of antibodies, cryosections were incubated with 1% BSA in PBS for 30 min prior to the
primary antibody. The primary antibodies (rabbit polyclonal anti-N-(P)RR 1:500 and goat
anti-C-(P)RR 1:500) were diluted in PBS and applied for overnight at 4 ◦C. Cryosections
were then washed 3 times with PBS and incubated with secondary donkey anti-rabbit
Alexa fluor 488 (1:50, Invitrogen, Carlsbad, CA, USA) and/or donkey anti-goat Alexa
fluor 594 (1:50, Invitrogen, Carlsbad, CA) antibodies for 60 min. Nuclei were stained blue
with 4,6-diamidino-2-phenylinodole (DAPI, Invitrogen, Carlsbad, CA, USA) for 15 min
at room temperature. Cryosections were again washed 3 times with PBS and once with
PBS before mounting with glycergel mounting medium (Dako, Carpinetria, CA, USA) and
were sealed with a coverslip. Cryosections were viewed with a Leica TCS SP5 II confocal
microscope (Leica Microsystems, Wetzlar, Germany) and, for images comparing localization
and intensity of staining, pictures were taken on the same day and with identical settings
for gain, intensity, and fluorescence filters. Images were processed using Image J.
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3. Results
3.1. Specificity Validation of anti-N-(P)RR and anti-C-(P)RR Antibodies

To investigate the exact localization of different molecular forms of (P)RR, i.e., f(P)RR,
s(P)RR, and M8.9 fragment, in different organs, the specificity of commercial anti-N-(P)RR
antibody, which recognizes the amino acid sequences of (P)RR from 191th to 220th, and
anti-C-(P)RR antibody, which recognizes the amino acid sequences of (P)RR from 337th to
350th, should be evidenced firstly (Figure 1A). HEK293T cells were transfected with empty
vector (EV) or (P)RR wild-type (WT)-overexpressed plasmid for 48 h and then the cell lysate
and cell-culturing conditional medium (CM) were collected to examine the expression or
secretion levels of different molecular forms of (P)RR by using the Western blot with both
commercial antibodies. It was shown that anti-N-(P)RR antibody could identify the f(P)RR
expression (left panel of Figure 1B) and s(P)RR secretion (right panel of Figure 1B) levels
in the cell lysate and conditional medium, respectively, in the (P)RR-WT-overexpressed
cells compared to those of the EV-transfected cells. Anti-C-(P)RR antibody could also
identify the expression level of f(P)RR in the cell lysate of the (P)RR-WT-overexpressed cells
compared to that of the EV-transfected cells (left panel of Figure 1C). However, it could
not detect the secretion level of s(P)RR in the conditional medium of both EV-transfected
and (P)RR-WT-overexpressed cells (right panel of Figure 1C). These results confirmed the
specificity of both commercial antibodies in detecting the expression and secretion levels of
f(P)RR and s(P)RR, respectively.

3.2. Different Localization of f(P)RR, s(P)RR, and M8.9 Fragment in the Kidney

As described in the Materials and Methods, the organs were collected from the SD rats
and the exact localization of f(P)RR, s(P)RR, and M8.9 fragment was examined by using the
immunohistochemical staining with both commercial antibodies. Within the kidney, it was
shown that s(P)RR could localize in all tissues (Figure 2A,D), but f(P)RR and M8.9 fragment
could only be found in the lumen of renal tubules (Figure 2B,D). This is because signals
positive for anti-N-(P)RR antibody, indicating the location of f(P)RR and/or s(P)RR, were
found in all kidney tissues, including mesangium, Bowman’s capsule, and lumen of renal
tubules (Figure 2A,D). However, signals positive for anti-C-(P)RR antibody, indicating the
location of f(P)RR and/or M8.9 fragment, were only found in the lumen of renal tubules
(Figure 2B,D).
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Figure 2. Different localization of f(P)RR, s(P)RR, and M8.9 fragment in the kidney. The kidney was
collected from the SD rats and the exact localization of f(P)RR, s(P)RR, and M8.9 fragment in the
kidney was examined by using immunohistochemical staining with anti-N-(P)RR (A, green) and
anti-C-(P)RR antibodies (B, red). (C) The cell nucleus was stained by DAPI reagent (blue). (D) The
merge image indicates the distribution and overlapping of different molecular forms of (P)RR and
nuclei. Scale bar: 75 mm.



Curr. Issues Mol. Biol. 2024, 46 1746

3.3. Different Localization of f(P)RR, s(P)RR, and M8.9 Fragment in the Liver

Within the liver, no significant differences in the localization of f(P)RR, s(P)RR, and
M8.9 fragment were found, as signals positive for anti-N-(P)RR and anti-C-(P)RR antibodies
overlapped in almost all tissues (Figure 3).
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Figure 3. Different localization of f(P)RR, s(P)RR, and M8.9 fragment in the liver. The liver was
collected from the SD rats and the exact localization of f(P)RR, s(P)RR, and M8.9 fragment in the
liver was examined by using immunohistochemical staining with anti-N-(P)RR (A, green) and anti-C-
(P)RR antibodies (B, red). (C) The cell nucleus was stained by DAPI reagent (blue). (D) The merge
image indicates the distribution and overlapping of different molecular forms of (P)RR and nuclei.
Scale bar: 75 mm.

3.4. Different Localization of f(P)RR, s(P)RR, and M8.9 fragment in The Pancreas

Within the pancreas, it was shown that s(P)RR, signals positive for anti-N-(P)RR anti-
body, could localize in all tissues, including the vessel wall (marked by a star, Figure 4A,D),
exocrine duct system (marked by a dotted arrow, Figure 4A,D), and islets of Langerhans
(marked by a solid arrow, Figure 4A,D). However, f(P)RR and M8.9 fragment, signals
positive for anti-C-(P)RR antibody, could only be found in the vessel wall (marked by a
star, Figure 4B,D) and islets of Langerhans (marked by a solid arrow, Figure 4B,D). To
further analyze if the distribution of different molecular forms of (P)RR was associated with
insulin-producing β-cells in the islets of Langerhans, the co-localization of f(P)RR, s(P)RR,
and M8.9 fragment with insulin was examined by using immunohistochemical staining
with anti-N-(P)RR (Figure 4E), anti-C-(P)RR (Figure 4I), and anti-insulin (Figure 4F,J) anti-
bodies. It was indicated that all types of (P)RR might be present in the cytoplasmic and
peri-nuclear regions of β-cells (Figure 4E,H,I,L), as they were found to co-localize with
insulin (Figure 4F,H,J,L) in the islets of Langerhans.
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pancreas was examined by using immunohistochemical staining with anti-N-(P)RR (A, green) and
anti-C-(P)RR antibodies (B, red). (E,F,I–L) The co-localization of f(P)RR, s(P)RR, and M8.9 fragment
with insulin was examined by using immunohistochemical staining with anti-N-(P)RR (E, green),
anti-C-(P)RR (I, green), and anti-insulin (F,J, red) antibodies. (C,G,K) The cell nucleus was stained
by DAPI reagent (blue). (D,H,L) The merge image indicates the distribution and overlapping of
different molecular forms of (P)RR, insulin, and nuclei. Star indicates vessel; dotted arrow indicates
exocrine duct system; solid arrow indicates islets of Langerhans. Scale bar in (A–D): 75 mm. Scale
bar in (E–L): 50 mm.

3.5. Different Localization of f(P)RR, s(P)RR, and M8.9 Fragment in the Heart

Within the heart, different molecular forms of (P)RR were shown in almost all cardiac
tissues except endocardium (marked by a solid arrow), as positive signals from both
anti-N-(P)RR and anti-C-(P)RR antibodies were present in those regions (Figure 5A–D).
However, in the endocardium, it was indicated that only s(P)RR was present there, as only
anti-N-(P)RR antibody showed positive signals there (marked by an arrow, Figure 5A,D).
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Figure 5. Different localization of f(P)RR, s(P)RR, and M8.9 fragment in the heart. The heart was
collected from the SD rats and the exact localization of f(P)RR, s(P)RR, and M8.9 fragment in the
heart was examined by using immunohistochemical staining with anti-N-(P)RR (A, green) and anti-
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3.6. Different Localization of f(P)RR, s(P)RR, and M8.9 Fragment in the Brain

Finally, different molecular forms of (P)RR in the brain cortex (Figure 6A), third
ventricle (Figure 6B), and hippocampus (Figure 6C) were analyzed. It was shown that
all types of (P)RR were found in the neurons of the brain cortex (Figure 6A(a–d)).The
more interesting findings in the third ventricle of brain showed that s(P)RR is mainly
localized in the tanycytes (marked by a green arrow, Figure 6B(a,d), but M8.9 fragment
is mainly localized in the arcuate nucleus and dorsomedial hypothalamic nucleus areas
(Figure 6B(b,d)). Moreover, within the hippocampus, s(P)RR and M8.9 fragment were
also found to localize in different hippocampus layers: s(P)RR is mainly localized in the
radiatum layer and dentate gyrus (marked by a green arrow, Figure 6C(a,d,e,h) and M8.9
fragment is mainly localized in the cornu ammonis subfields (Figure 6C(b,d,f,h)).
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Figure 6. Different localization of f(P)RR, s(P)RR, and M8.9 fragment in the brain. The brain was
collected from the SD rats and the exact localization of f(P)RR, s(P)RR, and M8.9 fragment in brain
cortex (A), third ventricle (B), and hippocampus (C) was examined by using immunohistochemical
staining with anti-N-(P)RR (a in A–C and e in A–C, green) and anti-C-(P)RR antibodies (b in A–C and
f in C, red). (A–C) The cell nucleus was stained by DAPI reagent (c in A–C and g in C, blue).
(A–C) The merge image indicates the distribution and overlapping of different molecular forms of
(P)RR and nuclei (d in A–C and h in C). Green arrow indicates (B) tanycytes and (C) radiatum layer
and dentate gyrus. Scale bar is 75 mm in (A); 25 mm in (B); and 100 mm in (C).
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4. Discussion

(P)RR has been indicated as a context-dependent regulatory receptor because it has
been found that (P)RR in different organs/tissues might have various effects. This study
examined the localization of different molecular forms of (P)RR, including s(P)RR, f(P)RR,
and M8.9 fragment, in multiple organs, i.e., kidney, liver, pancreas, heart, and brain, and
found that different molecular forms of (P)RR might exist in different tissue compartments
in most of the organs except the liver: (i) s(P)RR could localize in all tissue compartments
of the kidney but f(P)RR and M8.9 fragment could only co-localize in the renal tubules;
(ii) s(P)RR could localize in all tissue compartments of the pancreas but f(P)RR and M8.9
fragment could only co-localize in the vessel wall and islets of Langerhans; (iii) all types of
(P)RR could co-localize in all cardiac tissue compartments except the endocardium, where
only s(P)RR was present; and (iv) all types of (P)RR could localize in all tissue compartments
of the brain cortex; moreover, s(P)RR could localize in the tanycytes of the third ventricle
of brain as well as in the radiatum layer and dentate gyrus of the hippocampus but M8.9
fragment could localize in the arcuate nucleus and dorsomedial hypothalamic nucleus areas
of the brain third ventricle as well as in the cornu ammonis subfields of the hippocampus.

The distribution of (P)RR in the kidney has still remained controversial. However,
most of the studies have evidenced the abundance of (P)RR in the renal tubules [21],
which also supports our finding about the co-localization of f(P)RR and M8.9 fragment
in the renal tubules. (P)RR is essential to nephron development/function and blood
pressure control through regulating the lysosomal acidification and sodium/water balance
under physiological conditions [21]. The pathogenic role of (P)RR in hypertension and
kidney injury have been extensively studied and evidenced. However, the discovery of
s(P)RR has provided a more complex effect and mechanism for the development of related
diseases [15,22–24]. In addition to co-localizing in renal tubules, our study also showed that
s(P)RR could exist in almost all tissue compartments of the kidney. Recently, it has been
indicated that the reduction in s(P)RR level might alleviate Ang-II-initiated hypertension
and renal injury [24]. Moreover, more studies have further elucidated the pathogenic role
of s(P)RR in controlling sodium/water balance, blood pressure, and kidney injury [25–28].
Therefore, our finding of ubiquitous s(P)RR in all tissue compartments of the kidney could
confirm the importance of s(P)RR in the kidney and raise the need for further research.

Our data showed that all types of (P)RR co-localize in the hepatocytes with simi-
lar subcellular location. A novel, Ang-II-independent pathway of (P)RR is a regulatory
mechanism of lipoprotein metabolism. The liver is the main organ in controlling the reg-
ulation of low-density lipoprotein (LDL). Recently, sortilin-1 has been identified to be a
hepatic clearance receptor for LDL and also regulate the LDL metabolism, very low-density
lipoprotein (VLDL) secretion, and plasma triglycerides [29–31]. Moreover, it has been
further indicated that (P)RR could be a sortilin-1-interacting protein and the silence of
(P)RR gene expression in hepatocytes could reduce the protein abundance of sortilin-1
and consequent post-transcriptional mechanism of LDLR and cellular LDL uptake [30].
Therefore, the role of (P)RR in lipid metabolism and liver function is an interesting and
important issue for further investigation.

Previous studies have shown that (P)RR might participate in the pathogenesis of glu-
cose intolerance, at least in part, through RAS-dependent mechanisms [32–34]. Moreover,
it has been further indicated that (P)RR could be found in both alpha and beta cells in
the islets of Langerhans to modulate glucagon-like peptide 1 (GLP1) receptor (GLP1R)
signaling and insulin processing and hence controls insulin secretion [34–36]. GLP1 is an
incretin hormone that enhances insulin secretion by interacting and activating its receptor,
GLP1R. Furthermore, it has also been found that (P)RR levels would be reduced in the islets
of Langerhans of patients with diabetes mellitus compared to healthy subjects [36]. All of
these data support our findings that all types of (P)RR could exist in the islets of Langerhans
and co-localize with insulin. This evidence, including ours, could demonstrate the role of
(P)RR in controlling the insulin metabolism and subsequent blood glucose homeostasis.
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Our results showed that all types of (P)RR were found in almost all tissue compart-
ments of the heart except the endocardium, where only s(P)RR was present. The role
of (P)RR in cardiac disease development through RAS-dependent and RAS-independent
pathway have been evidenced. It has been further elucidated that (P)RR activation in
myocardium is associated with the development of cardiac hypertension/fibrosis, heart
failure, diabetic cardiomyopathy, and ischemia/reperfusion damage [37]. The endocardium
is the innermost soft layer of the heart that covers the chambers’ inner surface and forms
the valves’ surface, protecting these tissues from damage. Two of the important roles of
endocardium are to control myocardium contraction through paracrine mechanisms and
to form a kind of blood–heart barrier controlling ion homeostasis. Moreover, in cardiac
pathogenesis, including heart failure and ischemia/reperfusion damage, dysfunctional
endocardium and myocardium have further shown their reciprocal paracrine regulation
to promote disease progression [38,39]. All of this evidence illuminates the importance of
endocardial–myocardial crosstalk in controlling the physiological and pathophysiological
situations of cardiac tissues. Therefore, our finding regarding the unique presence of s(P)RR
in the endocardium suggested a possible role for s(P)RR in regulating the communication
between the endocardium and myocardium.

RAS could exist in many organs/tissues to play an important regulating role in control-
ling blood pressure. Renin is the most critical component to enhance RAS activation [5,6,40].
However, early on, an interesting phenomenon has been found in many organs/tissues,
including the brain, where renin expression is extremely low but Ang-II activity is high.
Moreover, it has been further shown that these organs/tissues might express high prorenin,
which is only ~3% as active as renin; the enzymatic cleavage of prorenin into renin does
not occur [40]. This confusing phenomenon could not be reasonably explained until
the discovery of (P)RR. The binding of prorenin with (P)RR could significantly increase
prorenin activity to initiate the RAS mechanism [5,6,40]. In our study, although there was
no difference in the distribution of all types of (P)RR in the brain cortex, the distribution
of s(P)RR and M8.9 fragment in the third ventricle and hippocampus showed obvious
differences. These intriguing findings suggest that RAS components, including different
molecular forms of (P)RR, in the brain might have more complex mechanisms to control
blood pressure or other pathophysiological events.

Limitations: there are some limitations to this study. First, this study only analyzed
normal tissue and lacked pathological tissue results, making it impossible to verify the phys-
iological and pathophysiological roles of different forms of (P)RR. Second, the functional
roles of (P)RR could not be determined by this immunohistochemical study. However, this
study demonstrated that different types of (P)RR might have different tissue compartment
distributions in the analyzed organs (except the liver), providing important information on
the roles of (P)RR in the development of various diseases.

5. Conclusions

In the present study, different molecular forms of (P)RR were examined in various
organs. Our results showed that different types of (P)RR might have different tissue com-
partment distributions in the analyzed organs (except the liver). These findings suggested
that the current mechanism elucidation of (P)RR and its subsequent RAS-dependent and
RAS-independent signaling requires more precise and detailed investigations.
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