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Abstract: Skin photoaging, resulting from prolonged exposure to ultraviolet radiation, is a form of
exogenous aging that not only impacts the aesthetic aspect of the skin but also exhibits a strong corre-
lation with the onset of skin cancer. Nonetheless, the safety profile of non-natural anti-photoaging
medications and the underlying physiological alterations during the process of photoaging remain
inadequately elucidated. Consequently, there exists a pressing necessity to devise more secure in-
terventions involving anti-photoaging drugs. Multiple studies have demonstrated the noteworthy
significance of marine biomolecules in addressing safety concerns related to anti-photoaging and safe-
guarding the skin. Notably, bioactive peptides have gained considerable attention in anti-photoaging
research due to their capacity to mitigate the physiological alterations associated with photoaging, in-
cluding oxidative stress; inflammatory response; the abnormal expression of matrix metalloproteinase,
hyaluronidase, and elastase; and excessive melanin synthesis. This review provides a systematic
description of the research progress on the anti-photoaging and skin protection mechanism of marine
bioactive peptides. The focus is on the utilization of marine bioactive peptides as anti-photoaging
agents, aiming to offer theoretical references for the development of novel anti-photoaging drugs and
methodologies. Additionally, the future prospects of anti-aging drugs are discussed, providing an
initial reference for further research in this field.
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1. Introduction

The examination of marine bioactive peptides has garnered significant interest over the
past two decades owing to their extensive occurrence in various marine sources and their
notable biological effectiveness [1]. These peptides are primarily derived from mollusks,
crustaceans, fish, algae, and certain marine by-products (such as shellfish, fish skin, offal, and
muscle) [2,3]. The investigation of marine bioactive peptides has received substantial atten-
tion in recent years, primarily due to their widespread presence in diverse marine sources
and their potent biological activity [4]. Currently, Peptides derived from marine sources
are employed for their advantageous biological properties, including but not limited to
anti-aging [5], anti-oxidant [6], anti-inflammatory [7], anti-microbial [8], anti-hypertensive [9],
and anti-tumor activities [10]. Moreover, peptide compounds are extensively utilized in the
advancement of various novel food, cosmetic, and pharmaceutical products owing to their
minimal toxicity, functional versatility, specificity, and wide-ranging efficacy [3,11]. Notably,
marine bioactive peptides have been documented to mitigate the likelihood of photoaging
induced by UV radiation, thereby exerting a regulatory influence on skin aging [3,12]. Hence,
marine bioactive peptides possess promising potential in the realm of skin protection.

Skin aging is a multifaceted phenomenon encompassing both endogenous and exoge-
nous processes [13]. Among the external factors, ultraviolet (UV) radiation stands out as
the primary contributor to skin photoaging [14]. Currently, the predominant approaches to
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counteract photoaging involve pharmaceutical interventions, physical and chemical ther-
apies, and surgical interventions [15,16]. One such pharmaceutical intervention is retinoic
acid, which has received approval from the U.S. Food and Drug Administration (FDA) for
the treatment of skin photoaging [17]. However, its application is constrained by the occur-
rence of adverse reactions, such as burning, flaking, and dermatitis. Hence, the exploration
of innovative pharmaceutical candidates pertaining to anti-photoaging mechanisms has
emerged as a prominent subject of scientific inquiry. Marine bioactive peptides, originating
from the metabolites of marine organisms, constitute a significant component of the human
dietary intake [18,19]. Nevertheless, research investigating the anti-photoaging properties
of peptides remains limited, thereby impeding their potential application within industries
focused on enhancing skin quality. Nonetheless, numerous conjectures and perspectives exist
regarding the underlying mechanisms and pathways associated with these peptides.

Research has demonstrated that marine bioactive peptides play a significant role in nu-
merous anti-photoaging hypotheses [20], encompassing the oxidative stress theory [21–37],
the inflammatory response theory [38–40], the matrix metalloproteinase abnormal expres-
sion theory [41–45], the hyaluronidase abnormal expression theory [46–50], the elastase
abnormal expression theory [47,51,52], and the melanin over-synthesis theory [53–57]
(Figure 1). Based on this premise, the present study critically examines the anti-photo-aging
properties of marine bioactive peptides, encompassing their molecular characterization and
underlying mechanisms associated with photoaging. The findings elucidate the protective
attributes of marine bioactive peptides in mitigating photoaging and promoting skin well-
being. The objective of this study is to explore the potential of marine bioderived products
in promoting industrialization and the development of natural anti-photoaging agents
for the food, pharmaceutical, and cosmetic industries. Additionally, this research aims to
establish a theoretical foundation for the study and application of marine functionalized
products. Ultimately, this investigation seeks to contribute to the understanding of marine
bioactive peptides’ efficacy in combating skin photoaging, thereby providing valuable
insights for future research in this field.
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2.1. Peptide Anti-Skin-Photoaging by Inhibiting Oxidative Stress Damage

Oxidative stress, characterized by an imbalance between oxidation and antioxidant
mechanisms within the body, constitutes a significant contributor to skin photoaging [58,59]
(Figure 2). In the context of normal physiological conditions, a limited quantity of reactive
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oxygen species (ROS) exerts an immune defense effect and confers benefits to the body [60]
(Table 1). However, excessive ROS production induced by ultraviolet radiation disrupts
the cellular REDOX capacity, thereby impairing the oxidative stress defense system [61].
Consequently, the regulation of ROS levels assumes paramount importance in preserving
the equilibrium of skin homeostasis [62].
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Table 1. Potential bioactive antioxidant peptides from marine resources.

Source Enzyme Used Peptides (Amino
Acid Sequence) Mechanism of Action In Vivo or In Vitro Reference

Tuna eggs - Ile-Cys-Arg-Asp and
Leu-Cys-Gly-Glu-Cys

Inhibition of DPPH radicals and
activation of SOD and GSH-Px in vivo [21]

Boiled abalone
by-products - Ala-Thr-Pro-Gly-Asp-

Glu-Gly Inhibition of ROS radicals in vitro [22]

Jellyfish collagen Pepsin - Activation of total
antioxidant activity in vitro [23]

Rhopilema esculentum Pepsin - Activation of SOD, CAT,
and GSH-Px in vivo [24]

Salmon skin - - Activation of SOD, CAT,
and GSH-Px in vivo [25]

Katsuwonus pelamis - TCP3, TCP6, and TCP9 Activation of SOD, CAT,
and GSH-Px in vitro [26]

Tilapia gelatin - Leu-Ser-Gly-Tyr-Gly-Pro Scavenging free radicals in vitro [27]

Katsuwonus pelamis - - Scavenging free radicals in vitro [28]

Monkfish Trypsin
Glu-Trp-Pro-Ala-Gln,
Phe-Leu-His-Arg-Pro,

and Leu-Met-Gly-Gln-Trp

Inhibition of DPPH radicals and
hydroxyl radicals;

activation of SOD, CAT,
and GSH-Px

in vitro [29]

Macroalga P. palmata Corolase PP Ser-Asp-Ile-Thr-Arg-Pro-
Gly-Gly-Asn-Met

Activation of oxygen radical
absorption capacity (ORAC) and

iron reduction antioxidant
capacity (FRAP)

in vitro [30]
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Table 1. Cont.

Source Enzyme Used Peptides (Amino
Acid Sequence) Mechanism of Action In Vivo or In Vitro Reference

Thunnus obesus

Alcalase,
α-chymotrypsin,
neutrase, papain,

pepsin,
and trypsin

H-Leu-Asn-Leu-Pro-Thr-
Ala-Val-Tyr-Met-Val-

Thr-OH

Inhibition of DPPH, hydroxyl,
superoxide, and alkyl radicals in vitro [31]

Magalaspis cordyla
Pepsin/trypsin,

and
α-chymotrypsin

Asn-His-Arg-Tyr-
Asp-Arg

Inhibition of DPPH and
hydroxyl radicals in vitro [32]

Otolithes ruber
pepsin/trypsin

and
α-chymotrypsin

Gly-Asn-Arg-Gly-Phe-
Ala-Cys-Arg-His-Ala

Inhibition of DPPH and
hydroxyl radicals in vitro [32]

Hypoptychus
dybowskii

Alcalase,
neutrase,

α-chymotrypsin,
papain, pepsin,

and trypsin

Ile–Val–Gly–Gly–Phe–
Pro–His–Tyr–Leu Inhibition of DPPH radicals in vitro [33]

Oreochromis niloticus
Alcalase, pronase

E, pepsin,
and trypsin

Asp-Pro-Ala-Leu-Ala-
Thr-Glu-Pro-Asp-Pro-

Met-Pro-Phe

Inhibition of DPPH, hydroxyl,
and superoxide radicals in vitro [34]

Decapterus maruadsi

Alcalase, neutral
protease, papain,

pepsin,
and trypsin

His-Asp-His-Pro-Val-Cys
and His-Glu-Lys-Val-Cys

Inhibition of DPPH and
hydroxyl radicals in vitro [35]

Johnius belengerii
Trypsin,

R-chymotrypsin,
and pepsin

His-Gly-Pro-Leu-Gly-
Pro-Leu Inhibition of DPPH radicals in vitro [36]

Paralichthys olivaceus

Papain, pepsin,
trypsin, neutrase,

alcalase,
kojizyme,

protamex, and
α-chymotrypsin

Val-Cys-Ser-Val and
Cys-Ala-Ala-Pro Inhibition of DPPH radicals in vitro [37]

Marine-derived peptides have garnered considerable interest among researchers due
to their potent antioxidant characteristics [63]. Specifically, the peptides ICRD and LCGEC,
derived from tuna eggs, exhibit robust in vitro DPPH free-radical scavenging activity and
effectively protect HaCaT cells from ultraviolet B (UVB) radiation by upregulating the ex-
pression of SOD and GSH-Px [21]. Additionally, the abalone peptide ATPGEG demonstrates
the capacity to mitigate UVB-induced ROS levels in HaCaT cells and inhibit cellular DNA
damage resulting from UVB exposure [22]. According to reports, jellyfish collagen exhibits
notable antioxidant activity and holds significant promise for the development of nutritional
health products [23]. In the context of UV-induced skin photoaging in mice, the application
of jellyfish collagen hydrolysate (JCH) has been found to augment the protective effect by ele-
vating the levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) [24].
Similarly, the gelatin hydrolysate AMW derived from salmon skin has been observed to
diminish malondialdehyde (MDA) content and enhance antioxidant enzyme and glutathione
(GSH) levels while mitigating the oxidative damage inflicted by ultraviolet radiation on
the skin [25]. Three antioxidant peptides, namely TCP3 (PKK), TCP6 (YEGGD), and TCP9
(GPGLM), derived from the bonipjack heart artery balls of Skipjack tuna, have been found to
enhance the activity of SOD, CAT, and GSH-P, effectively eliminating reactive oxygen species
(ROS) and reducing intracellular malondialdehyde (MDA) levels [28]. Consequently, the pro-
tective capacity of HaCaT cells against UVB irradiation has been significantly enhanced [26].
Moreover, the impact of tilapia gelatin peptides on UV-induced skin damage in mice has also
been investigated [27]. The findings demonstrate that the tilapia gelatin peptide LSGTGP can
effectively neutralize hydroxyl radicals, thereby preventing UV-induced damage [27].
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2.2. Peptide Anti-Skin-Photoaging via Anti-Inflammation

When cells are exposed to UV radiation and other environmental stimuli, they have the
ability to release a group of small molecular peptides or glycoproteins known as cytokines,
which play a crucial role in regulating the inflammatory response [64,65] (Figure 2). In
normal physiological conditions, the production of cytokines remains at low levels, thereby
avoiding any harm to the cells [66]. However, following exposure to ultraviolet irradiation,
both epidermal and dermal cells can activate NF-κB, leading to the synthesis and secretion of
inflammatory factors such as IL-1, IL-6, cyclooxygenase-2 (COX-2), and TNF-α, consequently
inducing an inflammatory response [67]. Simultaneously, the presence of these cytokines
induces mitochondrial impairment, leading to heightened levels of reactive oxygen species
(ROS) and subsequent augmentation in the release of inflammatory mediators [68].

The potent anti-inflammatory properties of marine peptides have been extensively doc-
umented in the scientific literature [69]. Specifically, gelatin hydrolysate derived from the
skin of Pacific cod has been found to effectively mitigate inflammation caused by UV radia-
tion [38]. This is achieved through the suppression of pro-inflammatory cytokines IL-1α and
TNF-α, thereby preventing UV-radiation-induced skin damage. The polypeptide (WNLNP)
extracted from oyster protein can significantly down-regulate the inflammatory pathway of
MAPK/NF-κB and reduce the overexpression of bax, which has a good protective effect
against skin injury [70]. The hydrolysate (PWG) extracted from Pacific cod skin reduced the
cytokines TNF-α, IL-6, and IL-1β associated with inflammation and inhibited inflammation
by inhibiting the nuclear factor-κB (NF-κB) pathway, suggesting that PWG may be an effective
anti-photoaging material [71]. Additionally, the impact of hydrolyzing six collagens extracted
from sturgeon skin on photodamage induced by UVB radiation has been investigated [39]. The
study revealed that the peptides DPFRHY and PEG, derived from M. maritima, effectively sup-
pressed the abnormal expression of pro-inflammatory cytokines IL-1β, IL-6, TNF-α, and Cox-2.
Specifically, DPFRHY demonstrated notable anti-inflammatory and cell repair properties [39].
Furthermore, PEG exhibited the inhibition of IL-1β, IL-6, PGE, TNF-α, and COX-2 produc-
tion while also providing enhanced protection against UV-induced photoaging in mice [40].
The polypeptide (SEP) extracted from by-products of bonito fish can significantly reduce the
expression levels of IL-6, IL-10, and TNF-α and has a good anti-inflammatory effect [72]. In
addition, it has also been reported that SEP-3 significantly inhibits the inflammatory pathway
of NF-κB [72], which has a strong potential to prevent photoaging and inflammatory diseases.
Meanwhile, peptides isolated from marine actinomycetes have attracted attention for their
unique biological activities [73]. The cyclic peptide isolated from Streptomyces maritimus
CNB-091 can be used as an anti-inflammatory agent [74], while the peptide isolated from
Streptomyces maritimus CNB-982 also has good anti-inflammatory activity and is expected
to be used as an anti-photoaging agent [75]. However, it is important to note that limited
research has been conducted in this particular field, thus necessitating further investigation.

2.3. Peptide Anti-Skin-Photoaging via Inhibition of Matrix Metalloproteinases

Under typical physiological circumstances, matrix metalloproteinases (MMPs) exhibit
minimal expression within the human body [76] (Figure 2). However, their expression
escalates swiftly upon exposure to various stimuli such as ultraviolet (UV) radiation,
inflammation, and cancer [77]. Specifically, UVB radiation has been observed to induce
the secretion of MMPs in a dosage-dependent manner [78]. This augmented expression of
MMPs facilitates the degradation of the dermal extracellular matrix (ECM), particularly
type I and type III procollagen, while concurrently impeding collagen synthesis [79–81].
As a result, these processes contribute to the desiccation and diminished elasticity of
the skin [79–81]. Consequently, the inhibition of MMP expression and the promotion of
collagen synthesis are crucial strategies in combating photoaging [82].

Inhibiting the aberrant expression of MMPs represents a significant approach in inves-
tigating the effects of skin anti-photoaging [83]. Notably, the peptides derived from the skin
gelatin hydrolysate of Pacific cod (GEIGPSGGRGKPGKDGDAGPK and GFSGLDGAKGD)
exhibited inhibitory properties against MMP-1 expression in mouse skin fibroblasts sub-
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jected to UV radiation [41]. By suppressing MMP-1 activity, the process of skin photoaging
can be ameliorated. Additionally, peptides obtained from Pinctada martensii meat have
been found to mitigate UVB-radiation-induced damage in HaCaT cells by inhibiting the
expression of MMPs [42]. The levels of interstitial collagenase (MMP-1) and stromal lyase
(MMP-3) were found to be reduced, leading to an improvement in UVB-induced cell dam-
age in HaCaT cells. Peptides derived from Pyropia yezoensis (specifically peptide PYP1-5)
were observed to inhibit the expression of the MMP-1 protein, thereby mitigating skin aging
and demonstrating potential in combating photoaging [43]. Additionally, the enzymatic
hydrolysate (OAH) obtained from oyster exhibited the ability to suppress the expression
of MMP-1 and alleviate UV-induced cytotoxicity, thus exhibiting anti-photoaging prop-
erties [44]. The application of tlapia collagen hydrolysate YGDE resulted in a reduction
in the enzymatic activity of MMP-1 and MMP-9, mitigated cellular damage induced by
ultraviolet rays (UVB), and ameliorated the effects of skin photoaging [45].

2.4. Peptide Anti-Skin-Photoaging via Inhibition of Hyaluronidase

Hyaluronic acid, a biopolymer constituent of the dermal extracellular matrix, is natu-
rally present in various tissues of the body, such as the synovial fluid, eyes, gums, bone
tissue, and heart valves [84,85]. Its capacity to bind water enables it to contribute to the
preservation of skin moisture and serves a significant function in skin rejuvenation by
enhancing viscosity and reducing extracellular fluid permeability [86]. In the context of
normal skin, hyaluronic acid synthesis is responsible for maintaining skin moisture [87].
Nevertheless, the reduction in hyaluronic acid levels is attributed to the excessive pro-
duction of hyaluronidase [88] (Figure 2). Consequently, the inhibition of hyaluronic acid
degradation is imperative for safeguarding the integrity of the skin.

The impact of hyaluronidase on skin photoaging has garnered significant scholarly
interest [89]. Research has indicated that peptides derived from a variety of microalgae
species (including Sukka’s algae, Dunaliella, and Nanophyllum) possess the ability to diminish
hyaluronidase activity [46]. Specifically, peptides extracted from three microalgae species
(Dunaliella tertiolecta, Tetraselmis suecica, and Nannochloropsis sp.) exhibit inhibitory effects
on hyaluronidase [47]. Simultaneously, previous studies have provided evidence that the
peptide levels derived from the maximum biomass of spirochete, namely pepsin (PHP),
Subtilin A (PHA), and both PHS enzymes, possess anti-hyaluronidase activities [48]. Fur-
thermore, the collagen-derived peptides from squid (Todarodes pacificus) generated through
alkaline enzymes exhibit dose-dependent characteristics and display promising efficacy as
anti-photoaging agents [49]. The administration of low-molecular-weight collagen peptides
derived from fish scales has been demonstrated to stimulate the synthesis of hyaluronic
acid in HaCaT cells. This process counteracts photoaging damage by upregulating the
expression of the hyaluronate synthase 2 (HAS2) gene and downregulating the expression
of the hyaluronase 1 (HYAL1) gene, thereby promoting improvement [50].

2.5. Peptide Anti-Skin-Photoaging via Inhibition of Elastase

Elastin, an extracellular matrix protein, imparts elasticity and resilience to various connec-
tive tissues including the aorta, lungs, cartilage, elastic ligaments, and skin [90]. In comparison
to collagen, elastin exhibits a significantly higher degree of flexibility, approximately 1000 times
greater [91]. Consequently, the principal role of elastin lies in conferring tissue elasticity [92].
The synthesis and secretion of elastin occur through the activity of vascular smooth muscle cells
and fibroblasts [93]. This physiological phenomenon typically ceases shortly after the onset
of puberty, coinciding with the maturation of the body. Alongside collagen, the production
of elastin is initiated to uphold the suppleness and tautness of the skin [91]. Nevertheless,
an excessive production of elastase leads to a decline in elastin fibers, thereby compromising
the mechanical characteristics of the tissue (Figure 2). Consequently, the inhibition of elastase
becomes imperative in safeguarding the integumentary system [94].

Marine bioactive peptides have demonstrated their potential in effectively inhibiting
elastase activity within skin anti-photoaging pathways [42,89]. Previous studies have
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reported the beneficial impact of squid skin collagen hydrolysate in inhibiting elastin and
serving as an effective anti-photoaging agent [51]. Notably, two peptides derived from
bonito’s elastin hydrolysate, namely TGVLTVM and NHIINGW, have exhibited protective
effects against UVA-irradiation-induced skin damage by effectively inhibiting elastase [52].
Furthermore, additional peptides with elastase inhibition properties have been identified
from Duneria, Susica, and Nannochloropsis sp. [47]. This implies that the utilization of these
peptides may potentially enhance skin health by preventing the deterioration of the protein
matrix within the skin, although the precise mechanism has yet to be fully understood.

2.6. Peptide Anti-Skin-Photoaging via Inhibition of Melanin Over-Synthesis

Melanin serves as the primary protective mechanism against ultraviolet radiation in
the skin [95]. Following exposure to UVB, melanocytes situated in the basal layer of the skin
generate an excessive amount of melanin, leading to the manifestation of skin pigmentation [96]
(Figure 2). The formation of this pigment is facilitated by a series of oxidation reactions mediated
by the enzyme tyrosinase (TYR), with the synthesis, transportation, and catalytic activity of TYR
playing pivotal roles in melanin synthesis [97]. Hence, directing attention towards the active
constituents of marine bioactive peptides towards melanocytes, impeding the overproduction
of melanin, and exploring novel tyrosinase inhibitors have emerged as a viable approach to
mitigate the manifestations associated with skin photoaging.

The TYR inhibitory peptide derived from marine organisms exhibits the ability to
hinder melanin production and enhance skin lightening, thereby demonstrating promising
prospects in combating skin photoaging [98]. Notably, research has demonstrated that the
protein hydrolysate obtained from the shrimp by-product Kirin polysavone exhibits signifi-
cant TYR inhibitory activity [56]. This inhibitory effect is concentration-dependent, with
a complete TYR inhibition observed at a concentration of 400 µg/mL [54]. Additionally,
tilapia scale polypeptides possess the capacity to chelate copper ions, thereby affecting
TYR activity [55]. In vitro investigations have demonstrated the potent inhibition of TYR
activity and effective reduction of melanin synthesis in mouse melanoma cells through the
utilization of polypeptide hydrolysates derived from tilapia by-products [55]. Furthermore,
there have been numerous in vivo and in vitro evaluations of the use of active collagen pep-
tides derived from fish by-products. Notably, the marine bioactive peptide DLGFLARGF
has exhibited the ability to impede tyrosinase activity, consequently hindering melanin
production [57]. The squamosal fish’s collagen peptide demonstrates a remarkable moisture
absorption capacity of 20%, effectively inhibits tyrosinase activity and melanin synthesis,
and exhibits promising anti-photoaging properties [53].

3. Skin Protective Effects of Marine Bioactive Peptides
3.1. Peptides Improve Skin via Photoprotective Mechanisms

Skin aging encompasses both intrinsic aging and photoaging, with research indicating
that photoaging contributes to over 80% of facial aging [99]. External factors that contribute to
skin photoaging primarily consist of ultraviolet (UV) radiation, infrared radiation, chemical
smoke, dust, and haze, with UV radiation being the most influential [100]. Numerous studies
have demonstrated the efficacy of marine biopeptides in combating photoaging, making them
a promising ingredient for the development of cosmeceuticals aimed at reducing skin aging.

The present study investigated the anti-photoaging effects of the peptide LSGYGP,
isolated from the skin of tilapia [27]. It was observed that this peptide exerted its beneficial
effects on the skin by utilizing its antioxidant activity to ameliorate UV-induced photoaging
in mice [27]. In addition, it was found that cod skin gelatin hydrolysate (CGH) can inhibit
MMP-1 and contribute to its anti-photoaging expression [41]. Protein hydrolysates derived
from various sources such as fish bones, scales, and digestive organs were also identified
as potential agents for improving skin aging [101–103]. Research findings indicate that
starfish collagen peptides possess the ability to diminish the expression of MMP-1, which is
induced by UV radiation photoaging, thereby exhibiting anti-photoaging properties [44].
Polypeptides isolated from scallops can inhibit UVA-induced ROS production and protect
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HaCaT cells from UVA-induced apoptosis [70]. Polypeptide (JCH) extracted from jellyfish
(Rhopilema esculentum) mitigated abnormal UV-induced changes in antioxidant defense
systems such as superoxide dismutase and glutathione peroxidase, effectively protecting
skin from UV radiation [104]. The hydrolysate (PWG) extracted from Pacific cod skin de-
creased the cytokines TNF-α, IL-6, and IL-1β associated with inflammation and increased
the contents of antioxidant enzymes, HO-1, SOD, GPx, CAT, and GSH. These multi-target
mechanisms suggest that PWG may be an effective anti-photoaging material [71]. Addition-
ally, the UVB irradiation of human immortalized keratinocytes (Hacats) and mouse aging
models have been studied. The hexapeptide (AAH) extracted from spirulina can signifi-
cantly increase the expression of SOD and GSH-P and reduce the expression of MMP-1 and
MMP-3, which has potential applications in preventing skin photoaging [105]. The derived
peptide (CDP) extracted from Chlorella can inhibit UVB-induced MMP-1 expression in skin
fibroblasts and achieve photoprotection [106].

3.2. Peptides Improve Skin via Anti-Microbial Mechanisms

The skin is frequently exposed to environmental factors and can be harmed by microbial
agents and ultraviolet radiation [107]. The aging process of the skin diminishes the production
of protective bacteria, resulting in skin damage [108]. Consequently, it is imperative to investi-
gate bioactive peptides that exhibit resistance against various bacteria such as Staphylococcus
aureus, propionibacterium acnes, Pseudomonas aeruginosa, Enterococcus faecium, Acinetobacter bau-
mannii, Klebsiella pneumoniae, propionibacterium acnes, and Escherichia coli. Numerous studies
have demonstrated the efficacious antibacterial activity of marine-derived biopeptides, thereby
highlighting their considerable potential for application in the realm of skin protection.

Marine antimicrobial peptides exhibit a diverse array of antibacterial and bacterici-
dal properties, rendering them suitable for employment as fungicides [109]. Moreover,
these peptides possess substantial potential in the realm of skin protection [110]. They are
extensively present in various marine fish species [111], such as Capitella teleta, Porphyra
yezoensis, Octopus minor, Olivancillaria hiatula, Mytilus coruscus, Green tiger shrimp (Peaneaus
semisulcatus), Hypoptychus dybowskii, and Cyanobacteria, demonstrating notable efficacy
against bacterial pathogens (Table 2) [112–118]. The proteolytic peptides derived from S.
longicruris, a brown seaweed, exhibited notable antibacterial efficacy and demonstrated sig-
nificant activity against Gram-positive Staphylococcus aureus [119]. Specifically, HAHp2-3-I,
consisting of five cationic peptides (MLTTPPHAKYVLQW, SHAATKAPPKNGNY, PTAG-
VANALQHA, QLGTHSAQPVPF, and VNVDERWRKL) and obtained from the hydrolysate
of semi-engraan pepsin, displayed robust resistance against Escherichia coli [8]. Additionally,
a separate investigation revealed that the half anchoa pepsin hydrolysate (HAHp) exhibited
a potent inhibitory effect against Escherichia coli, suggesting its potential as a protective
agent for the skin [120]. The potential of protamex hydrolysate, derived from Atlantic
mackerel, to provide skin protection through the inhibition of both Gram-positive (intrinsic lis-
teria) and Gram-negative bacteria (Escherichia coli) has been observed in various studies [121].
Furthermore, these studies have consistently shown that the inhibitory activity against
both Gram-positive (intrinsic listeria) and Gram-negative bacteria (Escherichia coli) is more
pronounced in Atlantic mackerel [122].

Table 2. Potential bioactive antimicrobial peptides from marine resources.

Source Enzyme Used Peptides (Amino Acid Sequence) Microorganisms Reference

Capitella teleta - - E. coli BL21 [110]

Porphyra yezoensis Pepsin Thr-Pro-Asp-Ser-Glu-
Ala-Leu Staphylococcus aureus [112]

Octopus minor -
Gly-Trp-Leu-Ile-Arg-Gly-Ala-Ile-
His-Ala-Gly-Lys-Ala-Ile-His-Gly-

Leu-Ile-His-Arg-Arg-Arg-His
Candida albicans [113]

Olivancillaria hiatula - - Pseudomonas aeruginosa [114]
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Table 2. Cont.

Source Enzyme Used Peptides (Amino Acid Sequence) Microorganisms Reference

Mytilus coruscus - -

Gram-positive bacteria —Bacillus,
Bacillus subtilis, Clostridium

perfringens, Staphylococcus aureus,
Streptococcus, Streptococcus mutans;
Gram-negative bacteria—Escherichia

coli, Pseudomonas aeruginosa,
Vibrio alginolyticus

[115]

Green tiger shrimp
(Peaneaus semisulcatus) - - Staphylococcus aureus [116]

Hypoptychus dybowskii -
Ser-Arg-Ser-Ser-Arg-Ala-Gly-Leu-
Gln-Phe-Pro-Val-Gly-Arg-Ile-His-

Arg-Leu-Leu-Arg-Lys

Staphylococcus aureus and
Escherichia coli [117]

Cyanobacteria - - Candida albicans [118]

3.3. Peptides Improve Skin via Skin Repair

Skin is an important immune organ of the human body, but it easily experiences health
problems under the influence of physiological factors and external environmental factors.
At the same time, as the efficacy of collagen peptides in improving the skin has become
apparent, the research in this area has been increasing in recent years (Table 3). Studies
have shown that the ingestion of collagen peptides inhibits UVB-induced reduced skin
hydration, epidermal hyperplasia, and decreased soluble type I collagen. These results
suggest that collagen peptides as a dietary supplement may be beneficial in inhibiting UVB-
induced skin damage and photoaging [123]. The oral administration of marine collagen
peptides from salmon skin promoted skin wound healing and angiogenesis in rats in [124].
Meanwhile, the oral administration of marine collagen peptides from salmon skin also
promoted skin wound healing in rats in [125]. Cod skin collagen polypeptides have good
moisture absorption and moisture retention properties and can reduce the damage from
ultraviolet light on the skin [126]. At the same time, some studies have shown that cod
skin gelatin peptides can inhibit the production of melanin [127]. Paralichthys olivaceus
(PO) and Alaska pollock Gadus chalcogrammus (AP) proteolytic substance increased the
viability of UVB-irradiated HaCaT cells and decreased the intracellular and extracellular
melanin content of stimulated B16F10 cells. These results indicate that PO and AP have
potential applications in the cosmetics industry [128]. In a UVB-irradiated HDF cell model,
Pacific cod protein hydrolysate (PWG) had a protective effect against photoaging by down-
regulating MMP1 [71]. In addition, there are clinical trials showing that marine collagen
peptide (MCP) can improve skin properties without the risk of oxidative damage [125].

The reparative properties of marine biological collagen and its hydrolysate for skin damage
caused by UV exposure have been observed [129]. In vitro cell experiments have demonstrated
that the hydrolysate derived from sponge collagen possesses wound healing capabilities and
tissue repair functions for UV-irradiated fibroblasts and keratinocytes [130]. Additionally,
scholars have conducted mouse experiments and discovered that gelatin hydrolysate from
trilefish exhibits a reparative effect on UV-induced skin damage [25]. The reparative properties
of jellyfish collagen peptide have been observed in its ability to restore endogenous collagen
and elastin fibers in compromised skin [104]. A study conducted on mice with cortical injury
demonstrated that the administration of nude sidereal collagen peptide resulted in successful
wound healing [131]. Furthermore, the application of marine collagen peptides (MCPs) derived
from salmon skin exhibited a substantial enhancement in the tensile strength of skin wounds
in rats [132]. The specific peptides employed in cosmetic formulations exhibit diverse effects.
Notably, collagen peptides derived from deep-sea fish possess a range of functionalities [133],
such as skin whitening, freckle removal, moisturization, nutritional repair, and anti-aging
properties. Consequently, these peptides hold significant promise in safeguarding the skin.
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Table 3. Potential skin-protective bioactive peptides from marine resources.

Source Functional Product Processing Method Cosmeceutical Function Reference

Salmon skin Collagen peptides Water, protease Wound healing [124]

Fish scales Collagen peptides Hot water, enzymatic Improving skin elasticity [125]

Codfish skin Collagen polypeptides Water, pepsin, and
alkaline protease Moisturizer, antioxidant [126]

Pacific whiting skin Hydrolysate gelatin Hot water Anti-photoaging, delayed
skin wrinkling [71]

Pacific cod skin Gelatin and polypeptides
Hot water extraction,
pepsin, and alkaline
protease hydrolysis

Melanogenesis inhibition [127]

Olive flounder and Alaska
pollock skins Fish skin hydrolysates

Enzymatic hydrolysis
(pepsin,

alcalase, protemax)

Minimizing ROS levels, enhancing the
viability of UVB-irradiated HaCat cells

and human dermal fibroblasts
[128]

Scales of Tilapia zillii Polypeptides Pepsin Increasing skin hydration and
decreasing epidermal hyperplasia [123]

4. Bioavailability of Marine Bioactive Peptides

The photoaging of the skin is a notable characteristic associated with the aging process,
particularly concerning women [134]. Statistical data reveal that a mere 2% of Chinese women
undertake anti-aging measures, while the anti-aging market in China reached a substantial value
of RMB 6.4 billion in 1990 [135]. In addition, by 2027, the global market for skin whitening
and anti-aging products is expected to reach USD 1.23 billion [136] and USD 83.2 billion [137],
respectfully. Marine bioactive peptide substances exhibit potent anti-photoaging and skin
protection properties with minimal toxicity; however, the investigation into their underlying
mechanisms remains at a nascent stage. Therefore, it is imperative to undertake the isolation and
purification of marine bioactive peptides, as well as to conduct extensive investigations into their
safety and bioavailability. Additionally, there is a need to further explore the relevant indicators
and pathways associated with photoaging. It is crucial to note that the development of marine
bioactive peptide drugs is still in its nascent stage and lacks clinical application. Consequently,
enhancing the bioavailability of marine bioactive peptides through increased modifications and
more favorable methods of separation and purification has become highly significant. Therefore,
efforts should be made to improve the separation and purification techniques for marine bioactive
peptides in order to enhance their bioavailability (Figure 3).
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4.1. Improvement of Bioavailability of Marine Bioactive Peptides via Isolation and Purification

The majority of polypeptide bioactive compounds derived from marine organisms
exist as intricate mixtures, and the presence of these complex constituents can impede the
extraction procedure of polypeptide compounds. Consequently, prior to conducting an
in-depth investigation of polypeptide compounds, it is imperative to effectively extract and
purify these compounds from marine organisms to facilitate a more comprehensive and
meticulous analysis. A fundamental requirement for identifying polypeptide compounds
in marine organisms is the establishment of effective extraction technology. Consequently,
the exploration of novel approaches for extracting polypeptide compounds with high
purity has emerged as a new area of research. The conventional method of extracting and
purifying polypeptides relies on the utilization of organic solvents, which is frequently
associated with inefficiency, time consumption, and labor intensiveness [138]. Furthermore,
the utilization of organic solvents is restricted in the food and pharmaceutical industries due
to certain limitations. Moreover, the viability of their application is further compromised by
the potential generation of degradation products during the extraction process. As scientific
and technological advancements continue to unfold, numerous intricate extraction and
purification methodologies have been developed and implemented, such as supercritical
fluid extraction (SFE) [139], subcritical water extraction (SCW) [140], pulsed electric fields
(PEFs) [140], and molecular imprinting technology (MIT) [141]. These technologies provide
enhanced functionalities by mitigating the constraints of conventional extraction methods.

Supercritical fluid extraction (SFE) is a technique wherein a supercritical fluid is
employed as a solvent to facilitate the separation of a mixture, owing to the notable
permeability and solubility of the fluid in this state. In contrast to conventional toxic,
flammable, and volatile organic solvents, SFE predominantly employs carbon dioxide as an
extractant [142]. SFE technology holds significance in the extraction of marine polypeptides.
Moreover, it possesses the ability to effectively isolate and extract various other marine
biological active substances, including marine biotoxins, essential oils, marine natural
pigments, and select rare amino acids [143].

Subcritical water extraction (SCW) refers to the treatment of liquid water under high
pressure at temperatures above its boiling point (100–374 ◦C). This process utilizes subcriti-
cal water as a solvent for both polar and non-polar compounds due to its lower dielectric
constant in the subcritical state, which enhances its affinity for less polar compounds and
facilitates excellent protein solubility [144]. Furthermore, the application of a high tempera-
ture and pressure during SCW also triggers protein hydrolysis, leading to the generation
of peptides and amino acids. The SCW process resulted in a peptide yield of 87.4% from
sardine by-products [144]. Additionally, the hydrolysis rate of squid viscera treated with
SCW reached 95% [145]. By employing SCW in the extraction process, the need for enzyme
and acid–base ion removal is eliminated, thereby establishing SCW as an environmentally
friendly technology for enhancing the yield of marine bioactive peptides [146].

The utilization of pulsed electric field (PEF) technology has gained prominence in the
fields of the low-temperature sterilization and preservation of agricultural products. In recent
times, there has been a growing trend towards employing PEF for the extraction of bioactive
substances from food-source substrates. PEF facilitates the enhancement of membrane
permeability through mechanisms such as membrane electroporation or electroosmosis,
thereby enabling the release of intracellular proteins and exogenous enzymes. Consequently,
the integration of PEF with enzymatic or solvent extraction methods presents a promising
approach to augment the production yield of marine bioactive peptides [147]. For instance,
the utilization of a pulsed electric field (PEF) in conjunction with enzymes, such as flavor
enzymes and trypsin, during the treatment of abalone (Haliotis discus hannai Ino) viscera
resulted in a significantly higher yield of hydrolysate compared to extraction using a single
enzyme [148]. Furthermore, the application of PEF to senedesmus almeriensis demonstrated
enhanced enzymatic (specifically alkaline enzyme) hydrolysis, leading to an increase in the
yield of bioactive peptides from 40.8% to 50.6% [149]. The utilization of a pulsed electric
field (PEF) in marine bioprocessing remains constrained primarily by equipment costs.
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Nevertheless, the inherent attributes of PEFs, such as their low energy consumption, rapid
processing time, and comparatively gentle extraction conditions, hold significant promise for
augmenting the production capacity of bioproducts derived from marine organisms.

Molecular imprinting (MIT) is a novel interdisciplinary technique that integrates receptor–
antibody mechanisms and expertise in biochemistry, structural chemistry, and materials
chemistry [150]. Due to its remarkable selectivity, robust stability, and broad applicability,
MIT has garnered significant attention and extensive investigation in recent years [149]. The
advancement of molecular imprinting technology holds the potential to facilitate the efficient
and expeditious separation of biomolecules, including polypeptides and proteins, from
intricate mixtures [149]. However, during the preparation procedure of molecularly imprinted
polymers, it is typically imperative to incorporate biomolecules as imprint templates, some of
which possess conformational flexibility, volatility, and inactivation.

4.2. Improvement of Bioavailability of Marine Bioactive Peptides via Nanodelivery Systems

The potential disparity between the activity of peptides in vitro and in vivo is influenced
by the presence of enzymes and stomach acids during gastrointestinal digestion, which can
impact peptide bioavailability. Consequently, it is imperative to carry out both in vitro and
in vivo experiments to ascertain the validity of these findings. In particular, the outcomes
of in vivo studies need to be verified in order to confirm the observed results. In the event
that biological activity is compromised in vitro, it is essential to re-evaluate peptide concen-
trations or matrix properties prior to conducting in vivo testing. In order to ascertain the
gastrointestinal digestibility and solubility, absorption, distribution, and utilization of each
peptide, as well as to determine the required dosage for achieving its efficacy, it is imperative
to conduct in vivo studies encompassing both animal and human subjects [151]. Various
models, including invertebrate C. elegans and fruit flies, vertebrate rats and mice, and human
subjects, have been employed for in vivo investigations of peptide functionality, particularly
in the context of functional foods. In vivo experiments serve as a reliable means of observing
the potential outcomes associated with the consumption of a substrate containing peptides.
However, these experiments are intricate and costly, necessitating the involvement of either
animals or humans and often requiring an extended duration. To date, there has been a
scarcity of research conducted on the bioavailability of marine compounds.

Despite the demonstrated diverse biological activities of marine bioactive peptides,
their practical application is hindered by challenges such as hydrophobicity, chemical
instability, and limited bioavailability. Consequently, the preservation of peptide activity
post-digestion necessitates the exploration of protective measures. Among these measures,
nanodelivery has emerged as the most extensively investigated and documented method.

Nanotechnology has emerged as a promising strategy for addressing the challenges associ-
ated with incorporating bioactive peptides into food [151]. Recent studies have demonstrated the
efficacy of utilizing nanosized carriers, such as nanoemulsions, nanoliposomes, microemulsions,
micelles, nanostructured lipid carriers, solid lipid nanoparticles, and polymer nanoparticles,
to encapsulate hydrophobic bioactive peptides. These encapsulated peptides have exhibited
enhanced biological effects, highlighting the potential of nanotechnology in developing ef-
fective delivery systems for bioactive peptides in food [152]. Furthermore, nanometer-based
delivery systems possess the ability to modify the uptake pathway of bioactive substances
by manipulating their metabolism and bioactivity within an organism [153]. This enhanced
biological performance can be attributed to the diminutive size, augmented surface area, and
refined surface chemistry of these systems. For instance, the encapsulation of peptide grades
derived from fish skin gelatin within a nanoliposome system resulted in a prolonged release
rate, decreasing from 41% to 24% over a span of 30 h, accompanied by a comparatively elevated
antioxidant activity ranging from 15.7% to 74.7% when compared to unencapsulated peptide
grades [154]. In two additional autonomous investigations, the nanoencapsulation of fish pro-
tein peptides was achieved through ion-to-gel techniques, yielding improved gastrointestinal
stability and bioavailability outcomes [155]. Nevertheless, the safety considerations associated
with nanoencapsulated marine peptides should not be disregarded. Ultimately, comprehending
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the destiny and conduct of nanoparticles in food and the human organism is imperative for
safety evaluation, with their capacity to maintain structural integrity within the gastrointestinal
tract serving as the principal determining factor. In the presence of digestive enzymes, strong
acids, and bile salts, nanoparticles have a tendency to aggregate or experience alterations in
size, consequently impacting their capacity to be absorbed and traverse biological barriers
within the body [156]. Moreover, nanoparticles derived from digestible organic substances, such
as proteins, lipids, or starches, present a lesser risk compared to nanoparticles obtained from
indigestible inorganic materials, such as metal or metal oxide nanoparticles.

5. Conclusions and Prospects

The investigation of marine active peptides constitutes a crucial domain within marine
research and development in the 21st century, currently experiencing rapid advancements
and yielding significant outcomes. Nevertheless, the present research endeavors in this
area are insufficient within our nation, necessitating an augmentation in research funding
for marine peptides. This would enable the further examination and elucidation of the
mechanism of action of marine peptides, the exploration of the inherent characteristics of
active peptides, and the fortification of the application research pertaining to marine active
peptides across diverse domains.

Marine bioactive peptides have emerged as a significant asset in combating skin pho-
toaging. Extensively investigated for their diverse biological attributes, including theories
related to oxidative stress, the abnormal expression of matrix metalloproteinase, inflam-
matory response, the abnormal expression of hyaluronidase, the abnormal expression of
elastase, and the excessive synthesis of melanin, these peptides have garnered considerable
attention for their potential in enhancing skin health. Novel extraction methods, such as
supercritical fluid extraction (SFE), subcritical water extraction (SCW), pulsed electric fields
(PEFs), and molecular imprinting technology (MIT), have successfully yielded several bioac-
tive peptides from marine fish. These methods are regarded as safer alternatives for the
development of cosmeceutical products. Simultaneously, the utilization of marine bioactive
peptides aids in mitigating environmental pollution resulting from waste generated by the
fish processing industry. Furthermore, the potential topical applications or oral utilization
of marine bioactive peptides for safeguarding the skin highlight their significant biolog-
ical activities (Table 4). However, it is crucial to acknowledge that despite the immense
potential of marine fish-derived proteins and peptides in the field of cosmeceuticals, the
majority of these compounds remain in the experimental phase. Consequently, additional
investigations pertaining to their formulations and long-term safety are imperative for their
successful commercialization. Additionally, it is imperative to explore the development of
supplementary products that can enhance the bioavailability and efficacy of proteins and
peptides derived from marine sources, thereby augmenting their potential in the field of
cosmeceuticals, particularly in terms of tissue regeneration.

In summary, researchers can obtain a large number of bioactive peptides with strong
light protection and light repair properties from marine organisms, which have a se-
ries of important functions such as blocking light penetration, anti-oxidant activity, anti-
inflammatory behavior, damage repair, delaying degradation, promoting synthesis, and
stabilizing the skin barrier and can be applied to various scenarios such as external use,
oral use, and product addition. This is of great value for future research in light damage
and primary skin disease prevention, product development, and other fields. In addition,
marine bioactive peptides, which are generally more acceptable due to their “natural and
healthy” characteristics, can promote a positive response from consumers, provide social
impetus, and help to further tap the great potential of ocean treasures, providing valuable
insights for future research in this field and thus laying a solid foundation for the global
anti-aging molecule market.
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Table 4. Marine bioactive peptides as cosmetic ingredients.

Company Country By-Product Resource Bioactive
Compounds

Cosmeceutical
Function Reference

Rousselot France Fisk skin and bone Collagen peptides Skin moisturization, enhanced
skin collagen density [157]

Celergen Inc Switzerland Fish skin Collagen hydrolysate Enhanced skill elasticity [125]

Abyss France Fish skin Collagen hydrolysate Reduced appearance
of wrinkles [158]

Finn Canada Canada Salmon skin Collagen

Improved skin condition;
treatment of various skin

problems, such as wrinkles,
spots, dryness, dullness,

and acne

[159]

Kenney and
Ross Limited Canada Fish skin Collagen Stimulates healthy skin, nails,

and hair [160]

Nuwen France Fish skin Collagen hydrolysate Skin moisturization [161]

One Ocean United States Fish skin Collagen Skin moisturization,
anti-wrinkle [162]

Osteralia France Mother-of-pearl Oyster shell Anti-aging, skin nourishment [163]
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