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Abstract: Centipedegrass (Eremochloa ophiuroides) is an important warm-season grass plant used
as a turfgrass as well as pasture grass in tropical and subtropical regions, with wide application
in land surface greening and soil conservation in South China and southern United States. In this
study, the complete cp genome of E. ophiuroides was assembled using high-throughput Illumina
sequencing technology. The circle pseudomolecule for E. ophiuroides cp genome is 139,107 bp in
length, with a quadripartite structure consisting of a large single copyregion of 82,081 bp and a small
single copy region of 12,566 bp separated by a pair of inverted repeat regions of 22,230 bp each. The
overall A + T content of the whole genome is 61.60%, showing an asymmetric nucleotide composition.
The genome encodes a total of 131 gene species, composed of 20 duplicated genes within the IR
regions and 111 unique genes comprising 77 protein-coding genes, 30 transfer RNA genes, and
4 ribosome RNA genes. The complete cp genome sequence contains 51 long repeats and 197 simple
sequence repeats, and a high degree of collinearity among E. ophiuroide and other Gramineae plants
was disclosed. Phylogenetic analysis showed E. ophiuroides, together with the other two Eremochloa
species, is closely related to Mnesithea helferi within the subtribe Rottboelliinae. These findings will
be beneficial for the classification and identification of the Eremochloa taxa, phylogenetic resolution,
novel gene discovery, and functional genomic studies for the genus Eremochloa.
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1. Introduction

Centipedegrass [Eremochloa ophiuroides (Munro) Hack.] is one of the most important C4
perennial warm-season grass species that originated in China, and is mainly distributed in
East Asia, South-east Asia, and the eastern and southern United States [1–3]. E. ophiuroides
is mainly used as a turfgrass in tropical and subtropical regions and also as a pasture grass
in some countries and regions of East Asia [4,5]. Now, it has been become an increasingly
popular turfgrass due to its excellent adaptation to infertile acid soils, as well as for its
resistance to the main biotic and abiotic stresses [2,6]. It also has great commercial applica-
tion in land surface greening and soil conservation for its exceptional advantages of high
ornamental value and low management and fertilization requirements [2,3]. Nevertheless,
due to the serious reduction of wild grassland and wasteland areas caused by the rapid
urbanization process in China, as well as the habitat destruction of the native grasses
resulting from artificial farming and overgrazing, the natural populations of E. ophiuroides
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have been experiencing a sharp decline. So, it is urgent to establish scientific strategies to
protect and conserve the resources of E. ophiuroides in its main distribution areas.

Chloroplast (cp) is the key organelle of green plants responsible for photosynthesis
and carbon fixation, and participates in the biosynthesis of a series of primary and sec-
ondary metabolites, such as amino acids, fatty acids, hormones, vitamins, nucleotides,
and pigments [7,8]. It contains not only highly conserved genes essential to plant life
but also more variable regions that are informative over broad time scales. Therefore, cp
genome sequences can provide a valuable source for taxonomic studies and phylogenetic
analysis among plant species and individuals [9,10], which could contribute greatly to
plant breeding and conservation strategies. In addition, it is the characteristics of the
non-recombinant nature, low mutation rates, and uniparental inheritance that make cp
DNA significant in giving insights into plant evolution and developing applications for
biotechnological breeding [11,12]. At present, the rapid development of high-throughput
sequencing technology makes it convenient and inexpensive to assemble plant cp genomes
and implement whole genome-based phylogenomics [13]. In contrast to previous studies
done with a single or a few cp loci-based approaches, using the complete cp genome
information now provides a unique opportunity to investigate related species evolution
based on whole-genome comparison [14,15].

As an important turfgrass, the turf quality of E. ophiuroides, to a great extent, depends
on its biomass, color, and green color retention, which are highly correlated with photo-
synthetic efficiency. Like most other turf grass species, E. ophiuroides prefers to grow in
open and sunny places. Therefore, exploring chloroplast genes related to photosynthesis
could contribute to breeding in turf grasses [16]. Analyzing and characterizing the cp
genome of a turf grass would provide invaluable information to improve the turf quality
and also to facilitate the development of a plastid transformation system for the plant [17].
However, despite being the most popular turfgrass introduced into the USA by Frank
Meyer one century ago [18], the research on E. ophiuroides cp genome is lagging behind.
To date, there is no relevant report to interpret E. ophiuroides cp genome in detail, which
is not conducive to our understanding and progress of E. ophiuroides evolution, species
identification, germplasm conservation, genetic engineering, and other related research.

In the present study, we sequenced the E. ophiuroides cp genome using Illumina
technology, assembled the complete cp genome sequence of E. ophiuroides, characterized
the cp genomic structure, and performed detailed phylogenetic analyses using complete
cp genome sequence information. We also analyzed the fully assembled cp genome of
E. ophiuroides and compared it to seven related species of Gramineae. The main purposes of
this study were to investigate the cp genome structure of the E. ophiuroides, to explore the
phylogenetic position of E. ophiuroides in the tribe Andropogonodae, and also to provide
basic data for further molecular studies related to the identification and phylogenetic
classification of Eremochloa species, chloroplast genes discovery, and functional genomic
studies in the genus Eremochloa.

2. Results
2.1. Genome Assembly and Structure Analysis

A total of 19,101,863 clean reads (approximately 5.73 Gb) were obtained from the
E. ophiuroides leaf library. After reference-guided denovo assembly of the reads with
minor modifications, a complete circular pseudomolecule was generated for E. ophiuroides
cp genome with a total length of 139,107 bp (GeneBank accession: MT806102). Since
738,323 reads were mapped to the assembled cp genome, the sequencing depth for the cp
genome reached more than 1500× (Figure 1, Table 1).
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Figure 1. Circular gene map of E. ophiuroides complete chloroplast genome. Genes shown on the
outside of the circle are transcribed clockwise, and genes inside the circle are transcribed counter-
clockwise. Genes belonging to the same functional groups are color-coded. The darker gray and
lighter gray in the inner circle indicates the GC content and AT content, respectively.

Table 1. Chloroplast genome features in Eremochloa ophiuroides.

T/U (%) C (%) A (%) G (%) Length (bp) AT (%)

Genome 30.75 19.15 30.86 19.25 139,107 61.60
LSC 32.12 17.94 31.64 18.3 82,081 63.76
SSC 31.49 16.97 35.83 15.71 12,566 67.32
IRa 28.03 23.01 27.97 20.99 22,230 56.00
IRb 27.97 28.03 28.03 23.01 22,230 56.00

The cp genome of E. ophiuroides exhibited a typical circular quadripartite structure,
composed of a large single-copy (LSC) region of 82,081 bp with 63.76% AT and a small
single-copy (SSC) region of 12,566 bp with 67.32% AT separated by a pair of inverted repeat
(IR) regions of 22,230 bp each with 56.00% AT (Figure 1). The genomic AT content in the
E. ophiuroides cp was 61.60% (Table 1).

2.2. Gene Annotation

A total of 131 genes were annotated in the E. ophiuroides cp genome, of which 20 genes
are duplicated in the IR regions and 111 are unique, including 77 protein-coding genes,
30 tRNA genes, and 4 rRNA genes (Figure 1, Table 2). Except for each of the six tRNA
genes and eight protein-coding genes having one intron, and each of two protein-coding
genes containing two introns, most of the unique genes were identified with no introns.
Gene function analysis revealed that all the unique genes could be classified into four
categories, including genes associated with photosynthesis (44 genes), genes involved in
self-replication (59 genes), genes with other functions (5 genes), and genes of unknown
function (3 genes) (Table 2).
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Table 2. Summary of gene annotation for the E. ophiuroide cp genome.

Category Gene Group Gene Name

Photosynthesis

Subunits of photosystem I psaA, psaB, psaC, psaI, psaJ

Subunits of photosystem II
psbA, psbB, psbC, psbD, psbE, psbF,
psbH, psbI, psbJ, psbK, psbL, psbM,

psbN, psbT, psbZ

Subunits of NADH dehydrogenase ndhA *, ndhB *(2), ndhC, ndhD, ndhE,
ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK

Subunits of cytochrome b/f complex petA, petB *, petD *, petG, petL, petN

Subunits of ATP synthase atpA, atpB, atpE, atpF *, atpH, atpI

Large subunit of rubisco rbcL

Self-replication

Proteins of large ribosomal subunit rpl14, rpl16 *, rpl2 *(2), rpl20, rpl22,
rpl23(2), rpl32, rpl33, rpl36

Proteins of small ribosomal subunit
rps11, rps12 **(2), rps14, rps15(2), rps16 *,

rps18, rps19(2), rps2, rps3, rps4,
rps7(2), rps8

Subunits of RNA polymerase rpoA, rpoB, rpoC1, rpoC2

Ribosomal RNAs rrn16(2), rrn23(2), rrn4.5(2), rrn5(2)

Transfer RNAs

trnA-UGC *(2), trnC-GCA, trnD-GUC,
trnE-UUC, trnF-GAA, trnG-GCC,

trnG-UCC *, trnH-GUG(2), trnI-CAU(2),
trnI-GAU *(2), trnK-UUU *, trnL-CAA(2),

trnL-UAA *, trnL-UAG, trnM-CAU,
trnN-GUU(2), trnP-UGG, trnQ-UUG,
trnR-ACG(2), trnR-UCU, trnS-GCU,

trnS-GGA, trnS-UGA, trnT-GGU,
trnT-UGU, trnV-GAC(2), trnV-UAC *,

trnW-CCA, trnY-GUA, trnfM-CAU

Other genes

Maturase matK

Protease clpP

Envelope membrane protein cemA

c-type cytochrome synthesis gene ccsA

Translation initiation factor infA

Genes of unknown function Conserved hypothetical chloroplast ORF ycf2(2), ycf3 **, ycf4

* Gene with one introns, ** Gene with two introns, (2) Number of copies of multi-copy genes.

2.3. Codon Preference Analysis

In addition to the 3 termination codons, there were 63 codons encoding 20 diverse
amino acids in E. ophiuroides cp genes (Figure 2, Table S1–see Supplementary Materials), and
almost half of the codons encoding amino acids had codon preferences. A total of 31 codon
preferences were identified from all the codons, of which 30 encode 18 amino acids, and one is
the termination codon. According to the partitions of synonymous codon preferences, 70.97%,
12.90%, and 16.13% of the preferred codons displayed high (RSCU value > 1.3), moderate
(1.2 ≤ RSCU value ≤ 1.3),) and low preferences (1.0 < RSCU value < 1.2), respectively.



Curr. Issues Mol. Biol. 2024, 46 1639
Curr. Issues Mol. Biol. 2024, 46, FOR PEER REVIEW  5 
 

 

 

Figure 2. Codon content of 20 amino acids in all cp protein-coding genes of the E. ophiuroides. 

2.4. Repeat Structure and SSR Analysis 

Repeated analysis revealed 20 palindromic repeats, 29 forward repeats, and two re-

verse repeats in the cp genome of the E. ophiuroides (Table S2). The forward repeat units 

were 30–242 bp long, and most of the forward repeats were positioned in the LSC regions 

except  for  four  located  in IR regions and one  in  the SSC region. Similar  to  the forward 

repeats, the majority of palindromic repeat units were 30–242 bp in length and distributed 

in LSC regions, with one of them being 22,230 bp long as an exception. Alternatively, for 

the reverse repeats, two in total were less than 35 bp in length and were identified in LSC 

regions. 
Microsatellite repeats were also extracted in E. ophiuroides genome (Table S3). A total 

of 197 simple sequence repeats (SSRs) loci were identified, including 191 perfect SSRs and 

six complex SSRs. Among these perfect SSRs, 129 (67.54%) SSRs were mononucleotide re-

peats, and the rest (in descending order of abundance) were tri- (46, 24.08%), tetra- (10, 

5.24%), di- (5, 2.62%), and penta- (1, 0.52%) nucleotide repeats. Most of the mononucleo-

tide repeats were composed of poly A (43.41%) and poly T (50.39%) repeats, whereas only 

a few mononucleotides were poly G and poly C repeats (6.20%). For dinucleotides, four 

out of five were AT/TA repeat motifs, and the rest was a TC repeat. Among the trinucleo-

tide and tetranucleotide repeat motifs, the proportion of A or T in trimers and tetramers 

reached 71.01% and 55.00%, respectively. One pentanucleotide was an ATAAA repeat. 

2.5. Expansion and Contraction of IR and Genome Collinearity 

The exact positions of IR boundaries and  their adjacent genes of  the E. ophiuroides 

were compared with the other seven species from the family Gramineae or Poaceae (Fig-

ure 3). In the cp genome of the three Eremochloa species, the IR boundary positions and 

their adjacent genes were exactly the same. IRa/SSC and IRb/SSC  junctions were found 

within the gene ndhH and the gene ndhF, respectively, and correspondingly the ndhH 

pseudogene (1 bp), the ndhF pseudogene (29 bp) was observed at the IRa/SSC boundary 

and  the  IRb/SSC  border,  whereas  no  pseudogene  was  detected  at  the  IRa/LSC  and 

IRb/LSC boundaries. As for Sorghum and Zea, they were found to have exactly the same 

IR boundary position and the adjacent genes and to have almost unanimous IR situations 

with Eremochloa only, except for the positions of the genes rpl22 (57 bp to IRb) and psbA 

(88 bp to IRa) in LSC. Setaria italic had IR boundary positions similar to that of Sorghum 

bicolor or Zea mays. IR boundary positions and  the adjacent genes of Oryza sativa and 

Brachypodium distachyon were generally consistent with that of Eremochloa plants, even 

Figure 2. Codon content of 20 amino acids in all cp protein-coding genes of the E. ophiuroides.

2.4. Repeat Structure and SSR Analysis

Repeated analysis revealed 20 palindromic repeats, 29 forward repeats, and two
reverse repeats in the cp genome of the E. ophiuroides (Table S2). The forward repeat units
were 30–242 bp long, and most of the forward repeats were positioned in the LSC regions
except for four located in IR regions and one in the SSC region. Similar to the forward
repeats, the majority of palindromic repeat units were 30–242 bp in length and distributed
in LSC regions, with one of them being 22,230 bp long as an exception. Alternatively,
for the reverse repeats, two in total were less than 35 bp in length and were identified in
LSC regions.

Microsatellite repeats were also extracted in E. ophiuroides genome (Table S3). A total of
197 simple sequence repeats (SSRs) loci were identified, including 191 perfect SSRs and six
complex SSRs. Among these perfect SSRs, 129 (67.54%) SSRs were mononucleotide repeats,
and the rest (in descending order of abundance) were tri- (46, 24.08%), tetra- (10, 5.24%),
di- (5, 2.62%), and penta- (1, 0.52%) nucleotide repeats. Most of the mononucleotide
repeats were composed of poly A (43.41%) and poly T (50.39%) repeats, whereas only a few
mononucleotides were poly G and poly C repeats (6.20%). For dinucleotides, four out of
five were AT/TA repeat motifs, and the rest was a TC repeat. Among the trinucleotide and
tetranucleotide repeat motifs, the proportion of A or T in trimers and tetramers reached
71.01% and 55.00%, respectively. One pentanucleotide was an ATAAA repeat.

2.5. Expansion and Contraction of IR and Genome Collinearity

The exact positions of IR boundaries and their adjacent genes of the E. ophiuroides were
compared with the other seven species from the family Gramineae or Poaceae (Figure 3). In
the cp genome of the three Eremochloa species, the IR boundary positions and their adjacent
genes were exactly the same. IRa/SSC and IRb/SSC junctions were found within the gene
ndhH and the gene ndhF, respectively, and correspondingly the ndhH pseudogene (1 bp),
the ndhF pseudogene (29 bp) was observed at the IRa/SSC boundary and the IRb/SSC
border, whereas no pseudogene was detected at the IRa/LSC and IRb/LSC boundaries.
As for Sorghum and Zea, they were found to have exactly the same IR boundary position
and the adjacent genes and to have almost unanimous IR situations with Eremochloa only,
except for the positions of the genes rpl22 (57 bp to IRb) and psbA (88 bp to IRa) in LSC.
Setaria italic had IR boundary positions similar to that of Sorghum bicolor or Zea mays. IR
boundary positions and the adjacent genes of Oryza sativa and Brachypodium distachyon
were generally consistent with that of Eremochloa plants, even though slight differences
were observed, such as the position divergence of the gene ndhF adjacent to IRb/SSC
junction, the pseudogene ndhH length variations detected in IRa regions of the two species.



Curr. Issues Mol. Biol. 2024, 46 1640

Curr. Issues Mol. Biol. 2024, 46, FOR PEER REVIEW 6 
 

 

though slight differences were observed, such as the position divergence of the gene ndhF 
adjacent to IRb/SSC junction, the pseudogene ndhH length variations detected in IRa re-
gions of the two species. 

 
Figure 3. Comparison of the borders of LSC, SSC, and IR regions among eight cp genomes. The 
regions of LSC, IR, and SSC were indicated using three different colors, respectively. JLA: junction 
line between LSC and IRA; JSA: junction line between SSC and IRA; JSB: junction line between SSC 
and IRB; JLB: junction line between LSC and IRB. 

Collinearity analyses revealed that all cp genomes of the eight species formed locally 
collinear blocks (LCBs). The gene order of the three Eremochloa cp genomes was espe-
cially highly conserved compared with that of other plant species (Figure 4). Although the 
highest cp genome homologies were detected between Eremochloa and Sorghum, the order 
of cp gene loci was highly consistent among the Gramineae plant genomes. This demon-
strates that the cp genome has a high homology among Gramineae plants. 

Figure 3. Comparison of the borders of LSC, SSC, and IR regions among eight cp genomes. The
regions of LSC, IR, and SSC were indicated using three different colors, respectively. JLA: junction
line between LSC and IRA; JSA: junction line between SSC and IRA; JSB: junction line between SSC
and IRB; JLB: junction line between LSC and IRB.

Collinearity analyses revealed that all cp genomes of the eight species formed locally
collinear blocks (LCBs). The gene order of the three Eremochloa cp genomes was especially
highly conserved compared with that of other plant species (Figure 4). Although the highest
cp genome homologies were detected between Eremochloa and Sorghum, the order of cp
gene loci was highly consistent among the Gramineae plant genomes. This demonstrates
that the cp genome has a high homology among Gramineae plants.

2.6. Phylogenetic Relationship

Phylogenetic relationships of species in the tribe Andropogoneae and taxonomic
statuses of E. ophiuroides and other species in the same tribe were systematically classified
through maximal likelihood (ML) analysis of the newly sequenced and published complete
cp sequences. Forty-nine published or available complete cp genome sequences and a newly
sequenced E. ophiuroides cp sequence were combined in this study. Thus, we reconstructed
a phylogenetic tree of the tribe Andropogoneae using a total of 50 cp genomes, which were
selected from 46 different species in Andropogoneae (three species with two cp sequences)
and one species (Arundinella deppeana) in Arundinelleae used as an outgroup (Table S4). The
newly constructed phylogenetic tree fully supported that E. ophiuroides is closely related to
Eremochloa ciliaris and Eremochloa eriopoda with 100% bootstrap values. The three Eremochloa
species, together with Mnesithea helferi, form one monophyletic group corresponding to the
subtribe Rottboelliinae (Figure 5).



Curr. Issues Mol. Biol. 2024, 46 1641

5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000 55,000 60,000 65,000 70,000 75,000 80,000 85,000 90,000 95,000 100,000 105,000 110,000 115,000 120,000 125,000 130,000 135,000

5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000 55,000 60,000 65,000 70,000 75,000 80,000 85,000 90,000 95,000 100,000 105,000 110,000 115,000 120,000 125,000 130,000 135,000

5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000 55,000 60,000 65,000 70,000 75,000 80,000 85,000 90,000 95,000 100,000 105,000 110,000 115,000 120,000 125,000 130,000 135,000

5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000 55,000 60,000 65,000 70,000 75,000 80,000 85,000 90,000 95,000 100,000 105,000 110,000 115,000 120,000 125,000 130,000 135,000

5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000 55,000 60,000 65,000 70,000 75,000 80,000 85,000 90,000 95,000 100,000 105,000 110,000 115,000 120,000 125,000 130,000 135,000

5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000 55,000 60,000 65,000 70,000 75,000 80,000 85,000 90,000 95,000 100,000 105,000 110,000 115,000 120,000 125,000 130,000

5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000 55,000 60,000 65,000 70,000 75,000 80,000 85,000 90,000 95,000 100,000 105,000 110,000 115,000 120,000 125,000 130,000 135,000

140,000

140,000

5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000 55,000 60,000 65,000 70,000 75,000 80,000 85,000 90,000 95,000 100,000 105,000 110,000 115,000 120,000 125,000 130,000 135,000

Eremochloa ophiuroides 

Eremochloa eriopoda

Eremochloa ciliaris

Sorghum bicolor

Zea mays

Setatia italica

Brachypodium distachyon

Oryza sativa

Figure 4. Comparison gene collinearity analysis of the chloroplast genomes from eight Gramineae species. Annotations of protein-coding genes, tRNA genes, and
rRNA genes are indicated using white, green, and red boxes, respectively.



Curr. Issues Mol. Biol. 2024, 46 1642

SaccharumnhybridncultivarnNConGkHnFnAPHHxzkB

DiheteropogonnamplectensnvarEncatangensisnFnKUI-kB-z

SaccharumnhybridncultivarnFnLNR-xGT-Ek

SaccharumnofficinarumnFnLNRB--kGEk

SaccharumnspontaneumnFnLNR-xGxHEk

MiscanthusnjunceusnFnLNRx-IkxEk

MiscanthusnsacchariflorusnFnLNRx-IkREk

MiscanthusnsinensisnsubspEnsinensisnFnLNRx-IIzEk

MiscanthusnfloridulusnFnLNRx-IkTEk

PseudosorghumnfascicularenFnKYT-xkTz

SorghumntimorensenFnNCHIGRHH

SorghumnbicolornFnEFkkTTBI

HemisorghumnmekongensenFnKYT-xkGIEk

ImperatancylindricanFnNCHGHBRz

PogonatherumnpaniceumnFnKU-xkRT-Ek

GermainiancapitatanFnKYT-xkzT

SorghastrumnnutansnFnNCHGHB-R

DichanthiumnsericeumnFnKYT-xkIR

CapillipediumnvenustumnFnKUI-kB-G

BothriochloanaltanFnNCHGHxIk

IseilemanmacratherumnFnNCHGHxkk

ThemedanspEnSaarelankRGGnFnKUI-kBRB

HeteropogonntriticeusnFnKYT-xkBIEk

CymbopogonnflexuosusnFnKYT-xkx-

SchizachyriumnsanguineumnFnKYT-xkIBEk

AndropogonndistachyosnFnKYT-xkzHEk

HyparrheniansubplumosanFnNCHGHxIT

EulalianaureanBorynKunthnFnNCHGHTHG

DimerianornithopodanFnKYT-xkGHEk

EulaliopsisnbinatanFnKYT-xkRIEk

ChrysopogonnserrulatusnFnKU-xkRxBEk

MnesitheanhelferinFnKYT-xkxIEk

EremochloanophiuroidesnFnKYBGIRH-Ek

EremochloanophiuroidesnFnMTRHxkHI

EremochloaneriopodanFnKYT-xkGBEk

EremochloanciliarisnFnKYT-xkBxEk

KerriochloansiamensisnFnKYT-xkIH

ParahyparrheniansiamensisnFnKYT-xkTT

EriochrysisnlaxanFnKU-xkRxGEk

EriochrysisnvillosanFnKU-xkRxHEk

TripidiumnarundinaceumnFnLCkxHkGHEk

IschaemumnafrumnFnNCHGHBRR

RottboelliancochinchinensisnFnNCHGHxkT

CoixnlacrymaYjobinFnNCHkGIzG

PolytocandigitatanFnKYT-xkzR

ZeanmaysnsubspEnmaysnFnKFIBk-RH

ZeanluxuriansnFnKRRzGBIBEk

ArthraxonnprionodesnFnNCHGHxkG

ArthraxonnprionodesnFnKUI-kBzk

ArundinellandeppeananFnNCHGHxIH

Saccharinae

Sorghinae

Incertae3sedis

Germainiinae

Sorghinae

Anthistiriinae

Andropogoninae

Saccharinae

Dimeriinae

Saccharinae

Incertae3sedis

Rottboelliinae

Ischaeminae

Incertae3sedis

Ischaeminae

Rottboelliinae

Coicinae

Chionachninae

Tripsacinae

Arthraxoninae

Arundinelleae

Andropogoneae

89

99

90

85

93

100
100

100

97

98 100

100

100

10054

100

100

99

100

100 79

78

100

95

87

99

73

28

25
99

100

100

100

32

11

100

100

100

100

100

100

33

83

100

100

63

100

Figure 5. Phylogenetic tree of the Andropogoneae species based on the complete cp genome data by
maximum likelihood (ML). A total of 50 species were used to reconstruct a phylogenetic tree using
MEGA6 software (version 6.0), and Arundinella deppeana was used as the outgroup. Subtribes and
higher taxonomic groupings are indicated.



Curr. Issues Mol. Biol. 2024, 46 1643

It is noteworthy that a larger number of species traditionally classified as the same
subtribe do not form a group. From the phylogenetic analysis of this study, only four mono-
phyletic groups, corresponding to subtribe Saccjaromae, Sorghinae, Andropogoninae, and
Rottboelliinae, can be retrieved from the tree, while quite a few non-monophyly are formed.
A typical instance is the placement of Germainia capitata (Germainiinae) as a sister to
Pogonatherum paniceum (Incertae sedis) with the same branch length. Similar cases can be
found for the placement of Dimeria ornithopoda (Dimeriinae) as the sister of Eulaliopsis binata
(Saccharinae) and the placement of Rottboellia cochinchinensis (Rottboelliinae) as a sister of
Coix lacryma-jobi (Coicinae). In addition, Heteropogon triticeus and Cymbopogon flexuosus, two
species in Anthistiriinae, were clustered to a sister clade of Andropogoninae; Kerriochloa
siamensis, one species of Ischaeminae, was constrained as sister to Incertae sedis.

3. Discussion
3.1. Genome Size and Gene Identification

The E. ophiuroides cp genome is 139,107 bp in length, which is similar to those cp
genomes in the Panicoideae subfamily, which range from 138 Kb in Setaria viridis [19] to
141 Kb in Saccharum offcinarum [20] but is larger than those of species in Chloridoideae,
Pooideae, and Oryzoideae subfamilies with not more than 137 Kb (Table S5). Judged from
the average size of ~137 kb for most Poaceae cp genomes [21], E. ophiuroides cp genome is
of average size within Panicoideae and of large size within Poaceae (Gramineae). The cp
pseudomolecule of E. ophiuroides, like that of most angiosperms, is circular with a typical
quadripartite structure with LSC and SSC regions separated by a pair of IRs. The overall
AT content of the E. ophiuroides cp genome was 61.6%, which is similar to that of most
Gramineae plants (~61%, Table S5).

The gene and intron contents in the E. ophiuroides cp DNA are basically identical to those
of rice [22,23], wheat [24], maize [25], sorghum [26], and other grass species [20,21,27,28], with
77 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Among the 111 unique genes,
1 intron was detected in the 14 genes (6 tRNA and 8 protein-coding genes) and 2 introns
were in the 2 genes (rps12 and ycf3). For all identified genes, 59 fragments are related to self-
replication, and 44 genes are associated with photosynthesis. Of the 44 photosynthesis-related
genes, five genes (psaA, B, C, I, J) are related to photosystem I, 15 genes encode photosystem
II component, and six genes (atpA, B, E, F, H, and I) are responsible for ATP synthase and the
other 18 genes encode the components of the electron transport chain. Similar characteristics
of the protein-coding genes were also present in a few Oryza species [23,29,30].

3.2. Repeat Sequence

The nucleotide sequences of most organism genomes contain many different types of
repetitive sequences, such as short tandem repeats, interspersed repeats, or spaced repeats.
These repeat elements are either dispersed throughout the genome or within a short region
of the genome [31]. The mismatch and false recombination of the sequences generally
result in the occurrence of sequence variation and DNA rearrangement [32,33]. In the
present study, quite a few long repeats, including forward and palindromic repeats and
reverse repeats, were detected in E. ophiuroides cp genome sequences, and most of them
were distributed in LSC regions of the genome. Similar results were also observed in other
plant species, such as Swertia mussotii [34] and Oryza minuta [23]. This reflects the common
characteristics of the LSCs in most plant cp genomes.

SSRs, also called microsatellites, are known to be more informative and are very
abundant and evenly distributed in angiosperm plastomes [35]. Because of their high
abundance and polymorphism, and ubiquitous distribution, SSRs have been extensively
used as versatile DNA markers in plant genetic and genomic studies [36]. SSR length and
abundance, as well as the motif type, are the key characteristics of microsatellites [37].
Besides complex SSRs, five types of perfect SSRs (mono-/di-/tri-/tetra-/penta-nucleotide
repeats) were found in the E. ophiuroides cp genome sequences. Mononucleotide repeats
were the most abundant cp SSR motif, followed by trinucleotide and tetranucleotide
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repeats in detected E. ophiuroides cp SSRs. This result is not completely consistent with
other findings that showed either mono- or dinucleotides are the most frequent SSR type in
many plant cp genomes [38–40], but is consistent with the reports in Lythraceae species [41]
and Magnolia polytepala [12], and is also in accord with the finding of SSR mining from the
E. ophiuroides RNA-seq data although mononucleotide repeat was omitted in that study [42].
No matter which type of SSRs were detected in the present study, most of them were rich
in AT content. This is congruent with some reported chloroplast SSRs [43–45].

3.3. IR Expansion and Contraction

A prominent feature of cp genomes is the presence of IRs. Expansion and contraction
of IR region boundaries generally lead to size variations in the cp genome, which plays a
significant role in species evolution [46]. In this study, a detailed analysis of IR expansion
and contraction in cp genomes of E. ophiuroides and seven other species was conducted by
comparing the positions of four junctions, i.e., JLA (junction line between LSC and IRa),
JSA (junction line between SSC and IRa), JLB (junction line between LSC and IRb), JSB
(junction line between SSC and IRb), and the lengths of two IRs (IRa and IRb) and two
single-copy regions (LSC and SSC), and exact IR border positions and adjacent genes as
well. The IR region of E. ophiuroides was 22,230 bp in length, which was a medium length in
the eight compared species from 20,804 bp to 22,783 bp. JLA is between rps19 and rpl22, and
JLB is located between rps19 and psbA in all eight Gramineae species. Both the distances
between rps19 and JLA, between rps19 and JLB are 35 bp in all three Eremochloa species,
S. bicolor and Z. mays, which are shorter than that in other three Gramineae species; the
distance between rpl22 and JLA in three Eremochloa species is shorter than that in S. bicolor
and Z. mays, but is longer than that in the other species, while the distance between psbA
and JLB in three Eremochloa species is longer than that in the other Gramineae species.
The ndhF gene traverses the SSC and IRa regions, with 29 bp located in the IRa region
for all the C4 plants, for which photosynthetic enzymes are located in the chloroplasts of
the mesophyll and/or bundle sheath cells, including three Eremochloa species, S. bicolor,
Z. mays and S. italic, but is located in the SSC region for C3 plants, for which all photosyn-
thetic enzymes are confined in the bundle sheath cells, of O. sativa and B. distachyon, as
revealed in the present study, or of O. minuta, as reported by Asaf et al. [23]. Although the
ndhH gene stretched across the SSC and IRb regions, approximately 1181 bp were located in
the IR region, while only 1 bp was in the IRb region for all species except for O. sativa and
B. distachyon. This is in accord with most reported findings in Gramineae plants [23]. This
hints that variation in the JSA border caused by IR expansion or contraction might result in
the difference between C3 and C4 plant cp genomes. Our results also demonstrated that
size variation of cp genomes resulting from IR contraction and expansion is a common
feature during the evolution of Gramineae plants, although structural organization and
gene order of Gramineae cp genomes are highly conserved [47].

3.4. Phylogenetic Analysis

The tribe Andropogoneae includes over 1200 species in ca. 90 genera, and is a pri-
mary component of grasslands and savannahs throughout most of the world’s tropical
and subtropical regions [48,49]. Recently, a number of phylogenetic and evolutionary
studies have been implemented for the tribe Andropogonodae using complete chloroplast
genomes [49–52]. Although E. ophiuroides is an important member of the genera Eremochloa
of the tribe Andropogoneae, it has not been included in these studies, which restricts illu-
minating its evolutionary relationships to other Andropogoneae species. Our molecular
phylogenetic tree based on sequences of complete cp genomes revealed a close relation-
ship between E. ophiuroides, E. ciliaris, and E. eriopoda, and their placement in a common
clade with Mnesithea helferi is highly supported with bootstrap values of 100% within the
subtribe Rottboelliinae (Figure 5). This is congruent with the traditional morphology-
based taxa of Rottboelliinae, indicating that the classification of subtribe Rottboelliinae is
generally reasonable.
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In addition, from our results, the Rottboelliinae, Saccjaromae, Sorghinae, and An-
dropogoninae are typically monophyletic groups, which reflect the agreement between
molecular phylogeny and traditional morphology-based taxonomy. However, some non-
monophylies of subtribes were recognized in the current molecular phylogeny. In the
present study, Germainia capitata (Germainiinae) was placed as a sister to Pogonatherum
paniceum (Incertae sedis), Dimeria ornithopoda (Dimeriinae) as a sister to Eulaliopsis binata
(Saccharinae), and Rottboellia cochinchinensis (Rottboelliinae) as a sister to Coix lacryma-jobi
(Coicinae), which are congruent with previous results for these species [49–52]. Another
typical non-monophyletic area in the tree is the placement of Heteropogon triticeus and
Cymbopogon flexuosus (two species in Anthistiriinae) in a common clade with Andropogo-
ninae species, and a similar result has actually been reported [49]. However, it is worth
mentioning that Sorghastrum nutans and Eulalia aurea were not clustered as sister clades in
the current study, which is incongruent with previously reported results [50–52]. This
is mainly due to the fact that more extensive species (50 complete cp genome data of
47 different species) in the tribe Andropogoneae were used for phylogenetic analysis in
the present study. Considering the same monophyletic clades clustered between Rottboellia
cochinchinensis and Coix lacryma-jobi, Germainia capitata and Pogonatherum paniceum,
Dimeria ornithopoda and Eulaliopsis binata, and the different monophyletic clades formed from
Eulalia aurea and Eulaliopsis binata displayed in this study, combined with previously reported
phylogenetic relationships between these species [50–52], future more sampling with better
balancing of ingroup Rottboelliinae, Coicinae, Germainiinae, Incertae sedis, Dimeriinae,
Saccharinae should be considered so as to better address questions of subtribal monophylies.

4. Materials and Methods
4.1. Plant Material, DNA Extraction and Sequencing

The experimental material was an elite E. ophiuroides cultivar “Ganbei”, which was
originally collected from Lushan, Jiangxi province, and now is deposited in the nursery
of the National Main Warm-season Turfgrass Gene Bank (NMWTGB) at the Institute of
Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden,
Men. Sun Yat-sen, China, with an accession No. E039 in NMWTGB. Total genomic DNA
was extracted from fresh young leaves of E039 using the EZgeneTM SuperFast Plant Leaves
DNA Kit (Biomiga, San Diego, CA, USA) following the manufacturer’s protocol. The
quality and integrity of the DNA were checked and determined using spectrophotometry
and agarose gel electrophoresis, respectively. The high-quality DNA was then divided
into 300~500 bp fragments using an ultrasonicator (Covaris M220, Covaris, Woburn, MA,
USA). Average 350 bp paired-end (PE) libraries were prepared using Illumina TruSeq DNA
Sample Prep kit (Illumina Inc., San Diego, CA, USA) and were then sequenced on Illumina’s
NovaSeq 6000 platform.

4.2. Data Assembly, Gene Annotation and Codon Preference Analysis

Raw reads were filtered using the base quality control software fastp (version 0.20.0) to
obtain high-quality reads. Then a BLAST analysis was performed between the high-quality
reads and the reference cp genome (KY432809.1) to extract cp-like reads. The obtained high-
quality cp-like reads were further assembled into contigs via de novo assembler SPAdes
v3.9.0 [53]. Then a draft sequence was generated by integrating all contigs using NOVO-
Plasty with the reference genome (KY432809.1) as a template. Cp cyclization and initiation
site determination was done by manual processing. Prodigal [54] and hmmer [55] software
were applied to annotate protein-coding genes and ribosomal RNAs, respectively, while
transfer RNAs were predicted via Aragorn software (version 1.2.41) [56]. The annotation
results were verified using the CpGAVAS pipeline and then manually corrected. Finally, the
genome map was constructed using the OrganellarGenomeDRAW tool (OGDRAW) [57].

The codon preference was analyzed by R software (version 4.1.3). The degree of
the codon preference was evaluated by the relative synonymous codon usage (RSCU).
The RSCU value was computed as the ratio between the use frequency and the expected
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frequency of a particular codon. According to the RSCU theory [58,59], synonymous codon
preference was artificially categorized into four models: high preference (RSCU > 1.3),
moderate preference (1.2 ≤ RSCU ≤ 1.3), low preference (1.0 < RSCU < 1.2), and no
preference (RSCU ≤ 1.0).

4.3. Comparative Analysis and Repeat Sequence Identification

Besides the newly sequenced E. ophiuroides cp genome, the complete cp genome se-
quences of seven different plant species, including Eremochloa ciliaris (KY596146.1), Eremochloa
eriopoda (KY596134.1), Sorghum bicolor (EF115542.1), Zea mays (AY928077.1), Setaria italic
(KJ001642.1), Oryza sativa (MG252500.1), and Brachypodium distachyon (KU170609.1), were
downloaded from NCBI Organelle Genome Resources database. Collinearity analysis among
the eight species was implemented by using Mauve (http://darlinglab.org/mauve, accessed
on 25 July 2021) software with default parameters.

Tandem repeats in the cp genome were assessed using the Tandem Repeat Finder
program [60] with default settings. Forward, palindromic, reverse, and complement repeats
were detected using vmatch v2.3.0 with the minimal repeat size setting greater than 30 bp
and a Hamming distance of 3. Simple sequence repeats (SSRs) or microsatellites were
identified using the Perl script MISA v1.0 [61], and the parameters were set for identifying
mono-, di-, tri-, tetra-, penta- and hexa-nucleotide motifs with a threshold of eight, five,
three, three, three, and three repeat units, respectively; microsatellites with interruption
bases between two adjacent microsatellites or two different microsatellites connected
directly are specified as complex SSR.

4.4. Phylogenetic Analysis

The phylogenetic analysis was conducted based on E. ophiuroides cp genome data
including a newly sequenced cp genome (MT806102) in the present study and another one
submitted to NCBI GeneBank (KY432809.1) by Gallaher et al. in 2017, together with the cp
genomes of 48 Andropogonodae species with strong genetic relationships downloaded from
GeneBank, and Arundinella deppeana (NC030620) was selected as the outgroup (Table S4).
MAFFT [62] and trimAl [63] were used for genome sequence alignment and data set
trimming, respectively. The best substitution model (GTR+G) was applied as suggested
by jModelTest v2.1.7 [64], and the randomized axelerated maximum likelihood (RAxML)
program was chosen to perform a phylogenetic analysis with 1000 bootstrap replicates in
MEGA 6.0.

5. Conclusions

The complete cp genome sequence of E. ophiuroides (139,107 bp) was present in this
study. The circular cp genome of E. ophiuroides possesses a typical quadripartite structure,
which is well conserved among most cp genomes from the Gramineae family. We annotated
a total of 131 genes in the E. ophiuroides cp genome and found that 44 of the genes are
involved in photosynthesis. Most E. ophiuroides codons encoding amino acids have codon
preferences. A system analysis was performed to detect the location and distribution of
repeat sequences, and around 197 SSR loci and 51 long repeat sequences were identified in
E. ophiuroides cp genome. Comparative genomic analysis revealed that E. ophiuroides has
a high level of collinearity with the other Gramineae cp genomes. Phylogenetic analyses
authenticated the close relationship among E. ophiuroides, E. ciliaris, and E. eriopoda. The
three Eremochloa species, together with Mnesithea helferi, were placed in a monophyletic
group corresponding to the subtribe Rottboelliinae, which is completely in accord with the
traditional morphology-based taxa of Rottboelliinae in the tribe Andropogoneae. The cp
genome information of E. ophiuroides could be utilized for species identification, taxonomic
clarification, and phylogenetic resolution. Some species-specific markers can be identified
and included in this study.

http://darlinglab.org/mauve
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cimb46020106/s1, Table S1: Statistics of codon preference in cp
protein-coding genes of the E. ophiuroides, Table S2: Statistics of forward repeats, palindromic repeats
and reverse repeats in cp genome of the E. ophiuroides, Table S3: SSRs distribution in cp genome of
the E. ophiuroides, Table S4: Species information and GenBank accession number of the sequenced
cp genome used in this study, Table S5: Information of sequenced cp genomes of Panicoideae,
Chloridoideae, Oryzoideae, and Pooideae.
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