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Abstract: Docetaxel (DTX), a semi-synthetic analogue of paclitaxel (taxol), is known to exert potent
anticancer activity in various cancer cells by suppressing normal microtubule dynamics. In this
study, we examined how the anticancer effect of DTX is regulated by polyphenols extracted from
Korean Artemisia annua L. (pKAL) in DU145 prostate cancer cells (mutant p53) and HCT116 colorectal
cancer cells (wild-type p53). Here, we show that the anticancer effect of DTX was enhanced more
significantly by pKAL in HCT116 cells than in DU145 cells via phase-contrast microscopy, CCK-
8 assay, Western blot, and flow cytometric analysis of annexin V/propidium iodide-stained cells.
Notably, mutant p53 was slightly downregulated by single treatment of pKAL or DTX in DU145 cells,
whereas wild-type p53 was significantly upregulated by pKAL or DTX in HCT116 cells. Moreover,
the enhanced anticancer effect of DTX by pKAL in HCT116 cells was significantly associated with the
suppression of DTX-induced p53 upregulation, increase of DTX-induced phospho-p38, and decrease
of DTX-regulated cyclin A, cyclin B1, AKT, caspase-8, PARP1, GM130, NF-κB p65, and LDHA, leading
to the increased apoptotic cell death and plasma membrane permeability. Our results suggest that
pKAL could effectively improve the anticancer effect of DTX-containing chemotherapy used to treat
various cancers expressing wild-type p53.

Keywords: Artemisia annua L. polyphenols; docetaxel; anticancer effect; p53; prostate cancer; colorectal
cancer; chemotherapy

1. Introduction

Paclitaxel (PTX), a phytochemical extracted from the bark of the Pacific yew tree,
belongs to microtubule-stabilizing agents that promote the polymerization of tubulin
and prevent microtubule depolymerization, leading to the suppression of microtubule
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dynamics [1–3]. Docetaxel (DTX), a semi-synthetic analogue of PTX, also belongs to
microtubule-stabilizing agents and is widely used as a chemotherapy drug to suppress
various types of cancer, including castration-resistant prostate cancer, breast cancer, head
and neck cancer, stomach cancer, and non-small-cell lung cancer [4–9]. Like PTX, DTX
suppresses microtubule dynamics, induces cell cycle arrest in the G2-M phase, inhibits
cell division, and induces apoptotic cell death [3,10]. DTX-induced apoptotic cell death
is related to the modulation of p53; DTX upregulates p53 in human KB epidermoid and
HCC1937 breast cancer cells expressing wild-type p53 and downregulates p53 in HT-29
colon cancer cells expressing mutant p53 [11]. It is known that the anticancer effect of DTX
is enhanced by flavopiridol, a cyclin-dependent kinase inhibitor, which is associated with
a rapid decrease of cyclin B1/cdc-2 kinase activity [12]. However, cyclin B1 is increased
by DTX in prostate cancer cells, and this phenomenon is implicated in DTX-induced
apoptosis [13]. In addition, DTX upregulates acetylated α-tubulin (Ac-α-Tubulin), a maker
of microtubule stabilization, and the anticancer effect of DTX is promoted by the combined
treatment with trichostatin A (TSA), a histone deacetylase inhibitor, through upregulation
of Ac-α-Tubulin in A549 lung adenocarcinoma cells [14–16]. However, tubulin acetylation
upregulated by TSA is also known to be associated with apoptosis resistance to PTX in H460
and A549 lung cancer cells by stabilizing Mcl-1 [17]. Therefore, the anticancer mechanism
for DTX may depend on the regulation of cell fate determinants in different types of cancer
cells and culture conditions.

Polyphenols, plant-derived natural products, have shown anticancer effects in
various cancer cells and have potential activity as a source of less cytotoxic chemotherapy
drugs [18–21]. Intake of foods rich in polyphenols, such as fruit, tea, and coffee, has been
known to be associated with the reduction of the cancer incidence, cardiovascular disease,
and neurodegeneration [22–25]. Polyphenolic compounds can be simply classified
into flavonoids and non-flavonoids, and can be subdivided into various subclasses
depending on their chemical structure and number of phenol groups [26,27]. It is known
that synergistic anticancer effect is induced by combination treatment of PTX with
flavonoid-type polyphenols such as flavone, flavonol, baicalein, luteolin, kaempferol,
and quercetin [28,29]; in addition, the anticancer effect of DTX is synergistically induced
by combined treatment with polyphenols such as baicalein, resveratrol, and quercetin
in pancreatic cancer cells and prostate cancer cells [30–32]. However, studies on the
efficient anticancer effect and mechanism by the combined treatment of DTX and various
types of polyphenols are still needed to further improve DTX-containing chemotherapy
used in the treatment of various cancers.

Artemisia annua L., an annual herb, has been traditionally used for the prevention and
treatment of infectious diseases, and has exhibited various biological activities including
anti-malarial, anti-tumor, anti-microbial, and immunomodulatory properties [33,34]. We
have previously reported that the anticancer effect of polyphenols extracted from Korean
Artemisia annua L. (pKAL) was higher in HCT116 colorectal cancer cells expressing wild-
type p53 than null-type p53 by promoting the cleavage of PARP1 and lamin A/C [35]. In
this study, we investigated the anticancer effect by the combined treatment of DTX and
pKAL in DU145 prostate cancer cells (mutant p53) and HCT116 colorectal cancer cells
(wild-type p53). As a result, the anticancer effect of DTX was more effectively enhanced
in HCT116 cells than in DU145 cells by less toxic pKAL in a concentration-dependent
manner. Moreover, the enhanced anticancer effect by the combined treatment of DTX and
pKAL in HCT116 cells was related to the suppression of DTX-induced p53 upregulation,
promotion of apoptotic cell death signaling through decrease of AKT, caspase-8, PARP1,
GM130, NF-κB p65, and LDHA, and inhibition of G2-M cell cycle progression through
decrease of cyclin A and cyclin B1. Our results suggest that the combination treatment
of DTX and pKAL has the potential to be used to effectively improve DTX-containing
chemotherapy for various cancers, especially in the cancer treatment containing wild-type
p53 that is activated by pKAL as well as DTX.
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2. Materials and Methods
2.1. Materials

Eagle’s minimum essential medium (EMEM, 30-2003), Trypsin-EDTA solution (30-2101),
and dimethyl sulfoxide (DMSO) were purchased from the American Type Culture Collection
(ATCC, Manassas, VA, USA). RPMI 1640 medium was purchased from HyClone (Logan, UT,
USA). Penicillin-Streptomycin (10,000 U/mL) and TrypLETM Express Enzyme with phenol
red were purchased from Thermo Fisher Scientific (Grand Island, NY, USA). Propidium
iodide (PI), necrostatin-1, phosphate-buffered saline (PBS), and sodium dodecyl-sulfate (SDS)
were purchased from Sigma-Aldrich (St. Louis, MO, USA). Cell counting kit-8 (CCK-8) was
purchased from Dojindo (Kumamoto, Japan). Protein assay dye reagent concentrate, 30%
acrylamide/bis solution 29:1, 2-mercaptoethanol, and bromophenol blue were purchased from
Bio-Rad (Hercules, CA, USA). Tween-20 and DMSO were purchased from Amresco (Solon,
OH, USA). An amount of 0.22 µm nitrocellulose (NC) transfer membrane was purchased
from GVS Life Sciences (Sanford, ME, USA). Enhanced chemiluminescence (ECL) Ottimo
Western blot detection kit was purchased from TransLab (Daejeon, Republic of Korea). X-ray
film (CP-BU NEW) was purchased from AGFA (Mortsel, Belgium). Annexin V-Fluos was
purchased from Roche (Mannheim, Germany). Dishes, plates, tubes and pipettes for cell
culture were purchased from SPL Life Sciences (Pocheon, Republic of Korea) or Thermo
Fisher Scientific (Rockford, IL, USA). Ac-α-Tubulin (6-11B-1), cyclin B1 (GNS1), p53 (DO-1),
PARP1 (F-2), cyclin A (H-432), cyclin D1 (A-12), Akt1/2/3 (H-136), caspase-8 (8CSP03), NF-κB
p65 (F-6), and GAPDH (FL-335) antibodies were purchased from Santa Cruz Biotechnology
(Santa Cruz, CA, USA). Phosphorylated JNK on Thr-183 and Tyr-185 residues (Phospho-JNK)
antibody was purchased from Bioworld (St. Louis Park, MN, USA). GM130 was purchased
from BD Biosciences (San Jose, CA, USA). Phospho-p38, p38, and LDHA were purchased from
Cell Signaling Technology (Beverly, MA, USA). Secondary goat anti-rabbit and anti-mouse
horseradish peroxidase (HRP) conjugates were purchased from Bio-Rad (Hercules, CA, USA).

2.2. pKAL Compounds

Artemisia annua L. polyphenols (pKAL) were extracted from mixed tissues including
roots, stems, leaves, and flowers of Artemisa annua L. (Gaddongsook) grown in Jinju, Korea
by Prof. Sung Chul Shin, as previously reported [36]. Briefly, the mixed tissues were
lyophilized, ground, and extracted with 70% methanol for 20 h at 60 ◦C. The extract was
filtered through a glass funnel and concentrated at 35 ◦C using a rotary evaporator. Fat
components were removed by extraction three times with equal amounts of n-hexane
and methylene chloride. After extracting three times with ethyl acetate, it was dried with
anhydrous magnesium sulfate and identified by liquid chromatography-tandem mass
spectrometry (LC/MS/MS). As a result, pKAL compounds isolated from Gaddongsook
are as follows: Caffeic acid, Quercetin-3-O-galactoside, Mearnsetin-glucoside, Kaempferol-
3-O-glucoside, Ferulic acid, Isorhamnetin-glucoside, Diosmetin-7-O-glucoside, Luteolin-7-
O-glucoside, Quercetin, Quercetagetin-3-O-methyl ether, Luteolin, 8-methoxy-kaempferol,
Quercetagetin-5,3-di-O-methyl ether, Kaempferol, 3,5-dihydroxy-6,7,4′-trimethoxyflavone,
3,5-dihydroxy-6,7,3′,4′-tetramethoxyflavone, and Isorhamnetin. Quantitative analysis of
pKAL compounds using high-performance liquid chromatography (HPLC) was presented
in a previous report [37]. The pKAL compounds were dissolved in DMSO solvent at
a concentration of 100 mg/mL and used in this study.

2.3. Cell Culture

The DU145 human prostate cancer cell line (HTB-81TM) was purchased from the American
Type Culture Collection (ATCC, Manassas, VA, USA). DU145 cells were maintained in
EMEM medium with 1% penicillin/streptomycin and 10% heat-inactivated fetal bovine
serum (FBS, 30-2020, ATCC, Manassas, VA, USA). The HCT116 human colorectal cancer
cell line was purchased from Korean Cell Line Bank (KCLB No. 10247). HCT116 cells
were maintained in RPMI medium containing 300 mg/L of L-glutamine, 25 mM of 4-(2-
hydroxyethyl)piperazine-1-ethane-sulfonic acid (HEPES), 25 mM of sodium bicarbonate
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(NaHCO3), 1% penicillin/streptomycin, and 10% heat-inactivated FBS (Thermo Fisher
Scientific, Grand Island, NY, USA). DU145 and HCT116 cells were grown on a culture dish
in a 37 ◦C incubator supplemented with 5% CO2 in a humidified atmosphere.

2.4. Phase-Contrast Light Microscopy

Cell morphology was analyzed by phase-contrast light microscopy (EVOS XL Core,
Thermo Fisher Scientific, Oslo, Norway) in a 10× objective (Inf Plan Achro 10× LWD PH,
0.25 NA/6.9 WD) with 150× amplification.

2.5. Cell Viability Analysis

Cells grown on a 24-well dish were incubated with maintenance medium containing
10% CCK-8 reagent for 1.5 h in a 37 ◦C CO2 incubator. The reaction solution (100 µL each)
was then transferred to a 96-well dish and was analyzed by measuring the absorbance at
OD485 nm using a CHAMELEON microplate reader (Hidex).

2.6. Western Blot and Densitometry Analysis

Whole cells (attached and floating cells) were extracted with 1× SDS sample buffer
(31.25 mM Tris, pH 6.8/5% glycerol/1% SDS/2.5% 2-mercaptoethanol/0.005% bromophe-
nol blue), boiled for 5–10 min at 95 ◦C, and vortexed well to be homogenized. After
quantification using protein assay dye reagent, proteins (30 µg each) were separated by
SDS polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to an NC membrane
at 30 mA for 13–15 h. Membrane was washed twice with PBST buffer (0.1% Tween-20/PBS)
for 1 h at room temperature (RT), blocked in blocking buffer (3% skim milk/PBST) for
30 min, and incubated with primary antibody in blocking buffer at 4 ◦C overnight. And
then, the membrane was washed 3 times for 10 min with PBST and incubated with an HRP-
conjugated secondary antibody in blocking buffer for 2 h at RT. After washing with PBST,
immunofluorescent proteins were detected on X-ray film using the ECL Western blot
detection system. For densitometry analysis, the film was scanned at high resolution
into TIFF file format. The image was converted into JPEG file format using Photoshop,
the image mode was changed to grayscale, and protein bands were quantified using the
ImageJ program (version 1.53 k).

2.7. Flow Cytometric Analysis of Annexin V/PI-Stained Cells

Whole cells (floating and attached cells) were collected and incubated with annexin
V-Fluos in 10 mM HEPES (pH 7.4)/140 mM NaCl/5 mM CaCl2/1 µg/mL PI/PBS solution
for 20 min at RT. Annexin V- and PI-stained cell populations were analyzed by FL1-H
green and FL2-H red fluorescent light detectors, respectively, using flow cytometry (FACS
Calibur, Becton Dickinson).

2.8. Statistical Analysis

Data were expressed as mean ± standard deviation. Statistical significance between
control and sample was determined using Student’s t-test. Values of p < 0.05 are considered
statistically significant.

3. Results
3.1. Anticancer Effect by Combined Treatment of DTX and pKAL in DU145 Prostate Cancer Cells

First, we investigated how the anticancer effect of DTX is regulated by combined treat-
ment with pKAL in DU145 cells. Cells were treated for 48 h with 0.1% DMSO control solvent,
25 µg/mL pKAL, 50 µg/mL pKAL, and 100 µg/mL pKAL in the absence or presence of
5 nM DTX, and then morphological changes were analyzed via phase-contrast microscopy.
As a result, DU145 cells showed different morphological changes on the concentration by
a single treatment of pKAL compared to the DMSO-treated control: at 25 µg/mL pKAL
treatment, some cells changed to small round cells; at 50 µg/mL pKAL treatment, most cells
showed remarkable structural changes in the nucleus and cytoplasm; at 100 µg/mL pKAL



Curr. Issues Mol. Biol. 2024, 46 1625

treatment, most cells turned into small round shapes (Figure 1, upper panels). In addition,
the combined treatment of DTX and pKAL showed greater morphological changes than
those caused by the combined treatment of DTX and 0.1% DMSO control solvent (Figure 1,
lower panels). However, in situations where single treatment of 50 or 100 µg/mL pKAL
induced significant morphological changes in cells, no significant morphological changes
were observed by the combined treatment of DTX and pKAL (Figure 1, compare upper and
lower panels). These results show that high doses of pKAL above 50 µg/mL may have
high cytotoxicity by themselves, so the combined treatment of DTX and toxic pKAL cannot
effectively enhance the anticancer effect in DU145 cells.
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Figure 1. Morphological changes by combined treatment of pKAL and DTX in DU145 cells: DU145
cells were grown for 48 h on a 10 cm culture dish with the indicated amounts of drugs. Morphology
of whole cells (attached and floating cells) was analyzed by phase-contrast light microscopy.

Based on the results in Figure 1, we investigated how the cytotoxicity of DTX is
regulated by the amount of less-toxic pKAL in DU145 cells. Cells were treated with 0.1%
DMSO, 10 µg/mL pKAL, 20 µg/mL pKAL, and 30 µg/mL pKAL in the absence or presence
of 5 nM DTX for 48 h, and then cell viability was analyzed via a CCK-8 assay. The results
showed that cell viability was downregulated by single treatment of 10 µg/mL pKAL (84%),
20 µg/mL pKAL (61%), and 30 µg/mL pKAL (36%) (Figure 2, bar graphs 1–4). In addition,
downregulation of cell viability by DTX was somewhat promoted by combined treatment
with 10 µg/mL pKAL (30%), 20 µg/mL pKAL (30%), and 30 µg/mL pKAL (27%), compared
to the 0.1% DMSO-treated control (41%); however, this phenomenon was not significantly
promoted in a pKAL concentration-dependent manner (Figure 2, bar graphs 5–8).

To better understand these results, the protein levels of Ac-α-Tubulin, Phospho-JNK,
GM130, cyclin B1, p53, and PARP1 were examined using Western blot and densitometry
analysis. As a result, the anticancer activity of pKAL was significantly associated with the
upregulation of cyclin B1 and downregulation of p53 in DU145 cells expressing mutant
p53 (Figure 3, lanes 1–4). In addition, the anticancer activity of DTX was significantly
associated with more than two-fold upregulation of Ac-α-Tubulin, GM130, and cyclin B1
(Figure 3, compare lanes 1, 5). Notably, the downregulation of p53 by DTX was somewhat
promoted by pKAL, and the upregulation of GM130 and cyclin B1 by DTX was significantly
downregulated by pKAL in a concentration-dependent manner (Figure 3, compare lanes
1 and 5–8). However, there was no significant downregulation of cell survival and death
regulators such as GM130, cyclin B1, and PARP1 by the combined treatment of DTX and
pKAL compared to the 0.1% DMSO-treated control (Figure 3, compare lanes 1 and 5–8).
These results show that the anticancer activity by combined treatment of DTX and pKAL
may not be efficiently enhanced in DU145 cells expressing mutant p53 due to no significant
alteration of cell survival and death determinants compared to DMSO-treated control.
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Figure 2. Regulation of cell viability by combined treatment of pKAL and DTX in DU145 cells: DU145
cells were grown for 48 h on a 24-well plate with the indicated amounts of drugs. Cell viability was
analyzed using a CCK-8 assay in triplicate tests. Statistical significance between control and sample
was determined using Student’s t-test, * p < 0.05.
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Figure 3. Regulation of protein levels by combined treatment of pKAL and DTX in DU145 cells:
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ImageJ program (version 1.53 k).

3.2. Anticancer Effect by Combined Treatment of DTX and pKAL in HCT116 Colorectal
Cancer Cells

Next, we examined how the anticancer effect of DTX is regulated by the amount of less-
toxic pKAL in HCT116 cells expressing wild-type p53. Cells were treated with 0.1% DMSO,
10 µg/mL pKAL, 20 µg/mL pKAL, and 30 µg/mL pKAL in the absence or presence of 3 nM
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DTX for 72 h, and then morphological changes were analyzed via phase-contrast microscopy.
As a result, compared to the DMSO-treated control, cell morphology was somewhat changed
by single treatment of pKAL in a concentration-dependent manner (Figure 4, upper panels).
In addition, compared to the combined treatment of DTX and DMSO, cell morphology was
significantly altered by the combined treatment of DTX and pKAL in a pKAL concentration-
dependent manner (Figure 4, lower panels). Moreover, there were significant morphological
differences between single treatment with pKAL and combination treatment with DTX and
pKAL; especially, combined treatment with DTX and 30 µg/mL pKAL resulted in a decrease
in cell number and remarkable structural changes in the plasma membrane, cytoplasm, and
nucleus (Figure 4, compare upper and lower panels). These results show that the less-toxic
pKAL enhances the anticancer activity of DTX by inducing abnormal intracellular structural
changes in HCT116 cells expressing wild-type p53.
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Figure 4. Morphological changes by combined treatment of pKAL and DTX in HCT116 cells: HCT116
cells were grown for 72 h on a 10 cm culture dish with the indicated amounts of drugs. Morphology
of whole cells (attached and floating cells) was analyzed by phase-contrast light microscopy.

To better understand these results, we performed a Western blot analysis using various
antibodies involved in cell survival and death signaling in whole extracts of HCT116
cells expressing wild-type p53, and the protein bands were quantified using the ImageJ
program (version 1.53 k). As a result, the anticancer activity of pKAL in HCT116 cells was
associated with a more than 2-fold significant upregulation of p53 and phospho-p38, and
downregulation of Ac-α-Tubulin and cyclin D1 (Figure 5a,b, lanes 1–4). In addition, the
anticancer effect of DTX was associated with significant upregulation of p53 and phospho-
p38, and slight upregulation of Ac-α-Tubulin, cyclin A, and cyclin B1 (Figure 5a,b, compare
lanes 1, 5). Moreover, the enhanced anticancer activity of DTX by pKAL was significantly
associated with an increase in phospho-p38 and Ac-α-Tubulin and a decrease in cyclin
A and B1 in a pKAL concentration-dependent manner, compared with DTX single treatment
(Figure 5a,b). Notably, unlike cyclin A and cyclin B1, the enhanced anticancer activity of
DTX by pKAL was not significantly affected by cyclin D1 (Figure 5a,b).

In addition, the protein levels of AKT, caspase-8, PARP1, GM130, NF-κB p65, and LDHA
were downregulated by single treatment of pKAL or DTX, and this phenomenon was more
promoted by the combined treatment of DTX and pKAL in a pKAL concentration-dependent
manner (Figure 5c,d). Especially, all of the downregulated protein levels by the combined
treatment of 3 nM DTX and 30 µg/mL pKAL were significantly lower compared to treatment
with 0.1% DMSO control solvent due to the enhanced anticancer activity of DTX by pKAL
(Figure 5c,d, compare lanes 1,8). These results show that pKAL enhances the anticancer activity
of DTX by inhibiting cell survival signaling and promoting the apoptotic cell death process
through the downregulation of AKT, GM130, NF-κB p65, LDHA, caspase-8, and PARP1.
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Figure 5. Regulation of protein levels by combined treatment of pKAL and DTX in HCT116 cells:
(a,c) HCT116 cells were grown for 72 h on a 10 cm culture dish with the indicated amounts of drugs.
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Whole cell extracts were prepared using 1× SDS sample buffer and analyzed via Western blot using
the indicated antibodies; (b,d) densitometry analysis of protein bands in the panels of (a,c) using the
ImageJ program (version 1.53 k).

To better understand the anticancer mechanism enhanced by the combined treatment
of DTX and pKAL, HCT116 cells were pretreated with 0.1% DMSO or 10 µM necrostatin-1,
an inhibitor of necroptosis, for 16 h, then split and treated again with 0.1% DMSO, 30 µg/mL
pKAL, 3 nM DTX, and combination of 30 µg/mL pKAL and 3 nM DTX for 72 h. Cells
were co-stained with annexin V and PI, and analyzed using flow cytometry. As shown
in Figure 6, in DMSO-pretreated HCT116 cells, annexin V-stained cells were increased
by single treatment of pKAL (11.41%) or DTX (13.00%) compared to the DMSO-treated
control (4.88%), and this phenomenon was enhanced by the combined treatment of pKAL
and DTX (21.86%) (second panels in DMSO-pretreated HCT116). Similarly, in necrostatin-
1-pretreated HCT116 cells, annexin V-stained cells were more significantly increased by
the combined treatment of pKAL and DTX (23.82%) compared to the single treatment
of pKAL (12.44%) or DTX (16.52%) (second panels in necrostatin-1-pretreated HCT116).
Moreover, in DMSO-pretreated HCT116 cells, PI-stained cells were remarkably increased by
the combined treatment of pKAL and DTX (51.92%) compared to the single treatment of
pKAL (28.30%) or DTX (31.49%) (third panels in DMSO-pretreated HCT116). Similarly, in
necrostatin-1-pretreated HCT116 cells, PI-stained cells were more significantly increased by
the combined treatment of pKAL and DTX (52.68%) compared to the single treatment of
pKAL (29.46%) or DTX (34.69%) (third panels in necrostatin-1-pretreated HCT116). However,
annexin-V- and PI-stained cell populations were not significantly altered by either single or
combination treatment of pKAL and DTX between DMSO and necrostain-1 pretreatment
(compare DMSO-pretreated and necrostatin-1-pretreated panels). These results show that
higher cell death by the combined treatment of pKAL and DTX than single treatment of
pKAL or DTX was significantly associated with apoptosis and increase of plasma membrane
permeability, which induced PI uptake into dead or dying cells; however, this phenomenon
was not significantly related with necroptosis in HCT116 cells expressing wild-type p53.
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Figure 6. Effects of pKAL, DTX, and necrostatin-1 on apoptosis and PI uptake in HCT116 cells.
HCT116 cells were grown for 16 h on a 10 cm culture dish with 0.1% DMSO or 10 µM necrostatin-1,
then split and grown again for 72 h on a 6-well plate with 0.1% DMSO, 30 µg/mL pKAL, 3 nM DTX,
and combination of 30 µg/mL pKAL and 3 nM DTX. Cells were co-stained with annexin V and
PI, and analyzed using a flow cytometry: first panels, dot plots for co-stained cells with annexin V
(FL1-H) and PI (FL2-H); second panels, histogram of annexin V-stained cells; third panels, histogram
of PI-stained cells.

4. Discussion

DTX is a chemotherapy agent widely used in the treatment of various malignant
cancers, as well as castration-resistant prostate cancer, by inducing microtubule stabiliza-
tion and G2-M phase cell cycle arrest [5,6]. The anticancer activity of DTX is known to be
improved by combined treatment with less-toxic natural polyphenols, such as resveratrol,
in prostate cancer cells [38]. Many studies on the biological role of Artemisia annua L.
were accomplished using artemisinin and its derivatives, which exerted anticancer activ-
ity [39,40]. However, little is known about a role of polyphenols isolated from Artemisia
annua L. on the anticancer effect of DTX. In this study, we investigated how the anticancer
effect of DTX is regulated by pKAL in castration-resistant DU145 prostate cancer cells
(mutant p53) and HCT116 colorectal cancer cells (wild-type p53). As a result, there were
morphological changes and cytotoxicity by single treatment of pKAL or DTX for 48 h in
DU145 cells; however, there were no significant synergistic morphological changes and
cytotoxicity by the combined treatment of 5 nM of DTX and 10 to 100 µg/mL of pKAL
compared to single treatment of pKAL (Figures 1 and 2). In contrast, cell morphology
was significantly changed in a pKAL concentration-dependent manner by the combined
treatment of 30 µg/mL pKAL and 3 nM DTX for 72 h compared to single treatment of
pKAL or DTX in HCT116 cells, resulting in increased apoptotic cell death and plasma
membrane permeability (Figures 4 and 6).

It is known that DTX induces p53-dependent apoptosis in human epithelial cancer
and prostate cancer cells; in addition, DTX induces p53-independent apoptosis in p53-null
PC3 prostate cancer cells [11,41–43]. In this study, our results showed that the anticancer
effect of DTX was more effectively enhanced by pKAL in HCT116 colorectal cancer cells
(wild-type p53) than in DU145 prostate cancer cells (mutant p53) when wild-type p53 was
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upregulated by the single treatment of pKAL as well as DTX in HCT116 cells; however,
mutant 53 was slightly downregulated by the single treatment of pKAL or DTX in DU145
cells (compare Figure 3a,b and Figure 5a,b). Notably, the enhanced anticancer activity of
DTX by pKAL in HCT116 cells was associated with the suppression of DTX-induced wild-
type p53 upregulation and the increase of DTX-induced p38 phosphorylation (Figure 5a,b).
It is known that DTX-induced apoptosis is activated by JNK phosphorylation, but not
by p38 phosphorylation, in human melanoma cells [44], and the knock-down of p38
protein by small interference RNA (siRNA) sensitizes DTX-induced apoptosis in prostate
cancer cells [42]. Therefore, it is currently unclear whether phospho-p38 upregulated by
combined treatment of DTX and pKAL is involved in cell survival or death in HCT116 cells
(Figure 5a,b).

Microtubules are assembled from heterodimers of α- and β-tubulin, and DTX-induced
tubulin acetylation is associated with drug resistance to DTX in prostate cancer cells [45].
In addition, DTX promotes Ac-α-Tubulin upregulation induced by tanespimycin, and
tanespimycin-induced Ac-α-Tubulin has been shown to play a dual role in apoptosis and
autophagy depending on its protein level in lung cancer cells [46]. Cyclins and cyclin-
dependent kinases (CDKs) play an important role in the regulation of cell cycle at specific
phase. Cyclin A is known as a marker for tumor proliferation and prognosis in advanced
breast cancer, essential for DNA replication at S phase, and also involved in G2-M cell
cycle progression [47]. The tumor suppressor p53 is known to block cancer development
by suppressing various types of cyclin/CDK complexes such as cyclin D-CDK4/6, cyclin
A/E-CDK2, and cyclin B-CDK1 through upregulation of the CDK inhibitor p21 [48].

In this study, our results showed that Ac-α-Tubulin and cyclin B1 were significantly
upregulated by 5 nM DTX in DU145 cells and slightly upregulated by 3 nM DTX in HCT116
cells. Notably, cyclin B1, but not Ac-α-Tubulin, was more significantly downregulated by
combined treatment of DTX and pKAL in HCT116 cells expressing wild-type p53 than
in DU145 cells, leading to a defect in cell cycle progression (compare Figure 3a,b and
Figure 5a,b). Moreover, our results showed that cell death determinant such as PARP1
was significantly downregulated by 3 nM DTX in HCT116 cells containing wild-type p53,
and this phenomenon was associated with DTX-induced downregulation of cell survival
proteins such as AKT and NF-κB p65 in HCT116 cells (Figure 5c,d). Collectively, our
results show that KAL enhances the anticancer effect of DTX through downregulation of
cell survival, death, and cell cycle regulators such as AKT, GM130, NF-κB p65, LDHA,
caspase-8, PARP1, cyclin A, and cyclin B1 in HCT116 cells expressing wild-type p53 that
can be activated by DTX.

5. Conclusions

In this study, our results showed that wild-type p53 was significantly upregulated by
single treatment of less-toxic pKAL or 3 nM DTX for 72 h in HCT116 cells, whereas mutant
p53 was slightly downregulated by single treatment of pKAL or 5 nM DTX for 48 h in DU145
cells. Although Ac-α-Tubulin and cyclin B1 were more increased by 5 nM DTX for 48 h in
DU145 cells compared to 3 nM DTX for 72 h in HCT116 cells, cell death determinant PARP1
was more significantly downregulated by DTX in HCT116 cells compared to DU145 cells,
and this phenomenon was associated with the downregulation of cell survival proteins
such as AKT and NF-κB p65. Moreover, pKAL enhanced the anticancer effect of DTX in
HCT116 cells through the suppression of DTX-induced p53 upregulation, increase of DTX-
induced phospho-p38, and decrease of DTX-regulated cyclin A, cyclin B1, AKT, caspase-8,
PARP1, GM130, NF-κB p65, and LDHA, leading to increased apoptotic cell death and
plasma membrane permeability. Our study indicates that less-toxic pKAL could effectively
improve the anticancer activity of DTX in various cancer cells expressing wild-type p53
that can be activated by DTX as well as pKAL.
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