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Abstract: Neurological disorders such as Autism Spectrum Disorder (ASD), Schizophrenia (SCH),
Bipolar Disorder (BD), and Major Depressive Disorder (MDD) affect millions of people worldwide,
yet their molecular mechanisms remain poorly understood. This study describes the application
of the Comparative Analysis of Shapley values (CASh) to transcriptomic data from nine datasets
associated with these complex disorders, demonstrating its effectiveness in identifying differentially
expressed genes (DEGs). CASh, which combines Game Theory with Bootstrap resampling, offers
a robust alternative to traditional statistical methods by assessing the contribution of each gene
in the broader context of the complete dataset. Unlike conventional approaches, CASh is highly
effective at detecting subtle but meaningful molecular patterns that are often missed. These findings
highlight the potential of CASh to enhance the precision of transcriptomic analysis, providing a
deeper understanding of the molecular mechanisms underlying these disorders and establishing a
solid basis to improve diagnostic techniques and developing more targeted therapeutic interventions.

Keywords: autism; bipolar disorder; major depressive disorder; microarrays; schizophrenia; systems
biology; transcriptomics

1. Introduction

Complex disorders affecting neurological processes are responsible for great health,
social and economic costs worldwide. Despite the heterogeneity of these complex disorders,
they all pose a significant global burden, since the misunderstanding of their causes and
the associated factors that intensify the importance of these phenotypes is the main cause
of the insufficiency of diagnosis; also, the lack of effectiveness in medical treatment for
patients negatively impacts the well-being of those affected.

Autism Spectrum Disorder (ASD) [1,2] is a phenotype that spans the most severe
autism, when social and communicative functions are very limited, to Asperger syndrome,
characterized by mild symptoms. In any case, all diagnostic features show a rigid behavior
and a pathological selection for some issues, and the capacity for attention and commu-
nication is affected [3]. Some body systems are also affected, such as digestive [4,5], im-
mune [6-9], circulatory [10,11] and nervous [12-14]. Microbiota [15] and genetic causes [16]
have been proposed in the early development of this disorder, and studies support the idea
that the risk of suffering ASD rises when relatives are affected [17]. These symptoms are
harmful for patients” autonomy and the welfare of caregivers [18,19]. The World Health
Organization communicated in 2023 that one in 100 children is suffering from this disorder
and its prevalence has been rising in the previous few years. Due to that, and given the
fact that the origins and development of this condition are not agreed upon by specialists
and researchers in this field of medicine [20,21], plenty of research teams are thinking of
strategies to discover the etiology and main factors for understanding this disorder.
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Schizophrenia is a neurological disorder that is characterized by positive (hallucina-
tions, lack of social skills and cognitive distortions) and negative (general apathy, social
and job issues) [22] symptoms. This disease is linked to increased vulnerability to cardio-
vascular [23,24], metabolic [25] and infectious [26] diseases, which raise the risk of an early
death. Furthermore, it has a direct link with suicide index growth [27-29]. Also, caregivers
and relatives are negatively affected in social terms, since patients suffer from diminished
autonomy [30,31]. Its prevalence worldwide is 24 million people [32,33], with a percentage
of 0.32-0.45% in adults [34]—and it tends to appear in teenagers at an advanced age [35].
To date, the origin of this disorder remains unknown [36]. On this note, there is some
consensus in the relevance of some gene factors implied in its onset [25], but this is not
determinant to its origin [37], considering that other factors such as social environment,
drug abuse (including alcohol) [38—40], and neural pruning, usual in adolescence, can
have a decisive influence [35]. Myelin sheaths [41] and central nervous system architec-
ture [42—44] are also bonded with this disorder. The most extended belief nowadays is that
schizophrenia is a multifactorial disorder [45,46]. In order to clarify the disease causes,
omics techniques such as transcriptomics have been applied [47]. Nevertheless, this is a
pathological situation that harms the life quality of patients in a severe way, generating a
medical and social interest that concerns the pharma industry, which attempts to alleviate
this suffering with drugs that minimize the secondary effects associated with available
treatments [48], usually adverse for the daily life of patients [49]. Thus, efficient research is
crucial to solve the social and economic problems attached to this disease [50].

Bipolar disorder (BD) [51,52] is a neurological condition characterized by the alter-
nance of manic episodes (euphoria, excessive joy, uncontrolled enthusiasm, etc.) with
depressive ones (anhedonia, sadness, lack of interest in living, etc.) [53]. Genetic causes
have been studied [47], and some environmental factors such as alcoholism and other types
of drug abuse have been proposed as a disease cause [54]. The development of genomics
and transcriptomics may help us to understand the disorder and treat it efficiently. Its
prevalence was 40 million people in 2019 [55], and being affected by BD raised the suicide
index for these patients [56-58]. There is still not much understanding of this disorder, but
some drugs, including lithium, have been reported to alleviate its symptoms [59,60].

Major depressive disorder (MDD) [61] is a neurologic disease of unknown origin [62],
with more severe symptoms than common depression [63]. Among these are anhedonia,
sadness and a lack of desire to live [64]. Genetic causes are considered, which has led
to the development of transcriptomics and epigenetic studies [65]. Physiological and
hormonal origins have also been reported, as well as environmental factors like stress and
psychological and social aspects [66]. Due to the fact that its origin remains unknown, it
is classified as a complex disorder [67], which causes a great social and economic burden
for the community environment of the affected people [68,69]. World prevalence is about
350 million people [70,71], but there is not much consensus. In fact, this prevalence
differs among regions (3% in Japan and 16.3% in USA) [70,71]. Every year as many as
850,000 suicides due to major depressive disorder have been registered [72,73]. Different
techniques, such as omics and neuroimaging, and several biomarkers such as certain fatty
acids and miRNA have been used, but there is no consensus [74-76]. Nowadays, there are
lots of medicines that treat this disease, taking advantage of the limited knowledge we
have about the brain.

Despite their high prevalence worldwide, the origins of these disorders are still un-
known. Because of that, it is necessary to apply techniques that are able to detect key
factors for prevention and treatment, pointing towards their main causes and improving
the health and quality of life of these patients as much as possible.

Advances in omics technologies, specifically at the microarray analysis level, have
revolutionized the thorough exploration of gene expression patterns linked to complex
neurological phenotypes [77-79]. Microarray technology enables the simultaneous measure-
ment of thousands of genes, providing deep insights into the altered molecular mechanisms
implicated in the etiopathogenesis of various diseases [80-84]. A critical aspect of microar-
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ray data analysis is the identification of differentially expressed genes (DEGs), which serve
as key indicators in understanding disease mechanisms. Traditionally, these analyses have
relied on ranking genes based on individual p-values; however, this approach does not
always correlate with biological significance. In some cases, small p-values, indicative
of high statistical significance, may not correspond to biologically relevant signals, while
larger p-values, often disregarded, could be linked to genes crucial for specific biological
processes [85]. Classical microarray analysis methods typically utilize Welch's t-test and lin-
ear models such as Empirical Bayes to identify DEGs by comparing gene expression levels
between experimental groups or situations [86,87]. However, these traditional approaches
may miss significant gene expression changes, particularly in complex diseases like those
affecting the brain, which are characterized by heterogeneous molecular profiles [88,89].

To address the limitations of p-value-based methods, which may often result in a
loss of biologically relevant information due to multiple testing correction techniques,
more reliable methodologies have been implemented [85,90,91]. Remarkably, there is one
statistical technique that applies Game Theory, utilizing a computational concept known as
the Shapley value [85]. This approach offers a more refined evaluation of the significance
of each gene by assessing the cumulative contribution of each transcript within the context
of the whole gene set under analysis. The Shapley value measures the relevance of each
gene by assessing its contribution alongside the contributions of the rest of the genes in
the experiment [92]. By combining Game Theory with classical statistical analyses, this
methodology provides a powerful tool to improve the detection and interpretation of
relevant differences at the gene expression level [85].

We applied the microarray games methodology in this study, specifically harnessing
Shapley values, to gene expression data from different neurological pathologies. This
approach integrates Game Theory with the aim of improving the detection and functional
analysis of genes involved in complex neurological conditions, such as ASD, schizophrenia,
bipolar disorder, and major depressive disorder [85]. By evaluating the contribution of
each transcript across all possible coalitions, this technique reveals powerful knowledge
about the genetic underpinnings of these complex diseases, potentially leading to inno-
vative diagnostic and therapeutic strategies. Comparative Analysis of the Shapley values
approach not only enhances the identification of key molecular players but also enhances
our understanding of their biological activities within complex, multi-genic contexts.

To achieve a comprehensive understanding of the gene expression profiles associated
with four prevalent neurological pathologies, we employed two distinct methods for mi-
croarray data analysis: (i) an orthodox approach utilizing Welch’s t-test and Empirical
Bayes methods, and (ii) an alternative analysis based on the Comparative Analysis of
Shapley values (CASh) method, derived from Game Theory. Previous research [85,93] has
demonstrated that the CASh method significantly increases the power to detect differen-
tially expressed genes (DEGs), providing a more robust framework for analyzing complex
biological data.

2. Materials and Methods
2.1. Microarray Expression Data Retrieval, Processing and Exploratory Analysis

Microarray-derived gene expression data were sourced from the public repository
Gene Expression Omnibus (GEO) https:/ /www.ncbi.nlm.nih.gov/geo/ (accessed on 18
March 2024). For dataset selection, raw data from Affymetrix commercial microarrays were
prioritized whenever available.

CEL files from three autism datasets—GSE6575, GSE18123, and GSE25507 [94-96]; two
schizophrenia datasets—GSE17612 and GSE62333 [97,98]; two bipolar disorder datasets—
GSE5389 and GSE7036 [99,100]; and two datasets encompassing schizophrenia, bipolar
disorder, and major depressive disorder samples—GSE12654 and GSE53987 [101,102] were
accessed through the GEO repository. Raw data were downloaded for each dataset, and
further preprocessing, quality control, and normalization steps were applied using relative
log expression (RLE), normalized unscaled standard error (NUSE), and Robust Multi-Array
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Average expression measure (RMA) techniques. The “affy’ (version 1.82.0) and ‘affyPLM’
(version 1.80.0) RStudio packages were used for these parts of data analysis (RStudio
version 2021.09.20) [103-105]. Finally, expression matrices were created, and samples were
assigned to experimental and control groups for further analysis (Supplementary Table S1).

Each dataset was analyzed separately to identify differentially expressed genes (DEGs).
Two distinct approaches were employed for differential expression analysis between pa-
tients and controls: (i) a traditional approach utilizing Welch’s ¢-test and Empirical Bayes
methods, and (ii) an alternative method based on the Comparative Analysis of Shapley
values (CASh) technique.

To gain a comprehensive understanding of gene expression patterns, we applied
various microarray data exploratory techniques. Principal Component Analysis (PCA),
heatmaps, and volcano plots were generated to evaluate the distribution of gene expression
patterns. PCA was used to illustrate gene expression distribution at two levels: (i) the entire
gene set in each dataset and (ii) the DEGs identified by CASh analysis (p-value < 0.01).
Heatmaps were created to visualize DEGs after differential gene expression analysis
through Empirical Bayes (raw p-value < 0.05) and CASh (p-value < 0.01) methods, which
exhibited a well-defined clustering of samples according to disease status. Additionally,
volcano plots were employed to contrast the p-values obtained from Empirical Bayes and
CASh analyses, providing a visual representation of the statistical relationships between
the methods used for detecting DEGs (see Supplementary Figures S1-S3 for further details).

2.1.1. Traditional Approaches

Orthodox analyses for detecting DEGs were conducted using the unequal variance
t-test (Welch’s t-test), implemented through the ‘multtest” (2.60.0) package in RStudio
(version 2021.09.0) [106]. In microarray experiments, the small number of replicates and the
large number of genes typically analyzed pose significant challenges, leading to the issue
of low statistical power with ordinary ¢-tests. This limitation makes f-tests less effective for
filtering out regulated genes [107,108]. Moreover, most multiple testing adjustments tend
to be quite conservative, particularly with small replicate numbers [108]. To address this
issue, we employed Bayesian-based methods, specifically the Empirical Bayes approach, as
implemented in the Bioconductor ‘limma’ R package (version 4.4, https:/ /bioconductor.
org/packages/release/bioc/html/limma.html, accessed on 22 October 2024).

Significant DEGs were identified after multiple testing correction with the Benjamini
and Hochberg method to control the False Discovery Rates (FDR) [109].

2.1.2. Comparative Analysis of Shapley Values (CASh) Approach

We utilized the Comparative Analysis of Shapley values (CASh) method to the de-
tection of differentially expressed transcripts by assessing their cooperative contribution
to overall changes at gene expression levels [110]. The Shapley value, a concept rooted
in Game Theory, quantifies the particular contribution of each gene to the overall expres-
sion changes observed in the whole dataset [111]. CASh combines the Microarray Game
algorithm, which is applied to transcriptomic data from microarrays, with the Bootstrap
technique that involves the resampling of some values to reduce the impact of potential
outliers in the data matrix [110-113]. In this approach, gene expression is treated as a
cooperative game, where each gene contributing collaboratively to the expression changes
is detected, providing a more nuanced understanding of gene interactions within the
dataset. The protocol used has been previously described in the articles by Esteban and
Wall, 2011 and Castro-Martinez et al., 2024, where the mathematical development can also
be found [85,93].

In our study, the CASh method was used for the detection of DEGs using two levels
of stringency by setting cutoff p-values at 0.01 (more restrictive) and 0.05 (less restrictive).
These genes were then analyzed to distinguish dysregulated expression levels (either over-
or under-expression) in the experimental samples compared to the control group. Boolean
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matrices were created to determine the expression levels, which were subsequently used to
define microarray games and calculate the Shapley values.

A final matrix with the expression levels of a selected number of samples and genes
was generated from the original data. The matrix included genes with raw p-values below
0.01 or 0.05 and classified the samples into experimental groups (e.g., patients with specific
conditions) and healthy controls. To detect over-regulated gene expression levels relative
to controls, each value in the gene expression vector was coded as 1 if it met or exceeded
the mean plus the standard deviation of the control group expressions, and as 0 otherwise.
This generated a Boolean matrix {0, 1} reflecting these criteria.

A similar method was employed to identify under-regulated expression: values below
the mean minus one standard deviation of the control group was coded as 1, while all other
values were coded as 0. This resulted in another Boolean matrix, where rows corresponded
to genes and columns to samples. These Boolean matrices were then grouped by sample
categories, creating separate matrices for each group. Using these group-specific matrices,
microarray games were constructed for each condition, and Shapley values were computed
to evaluate the significance of each gene’s contribution to the conditions under study.

To attenuate the influence of random high Shapley values, a Bootstrap resampling
procedure was applied with 1000 iterations for each analysis, similar to that described by
Moretti et al. (2008) [110]. This method, known as Comparative Analysis of Shapley values
(CASh), refines the detection of genes significantly associated with the studied conditions.

To further reduce the likelihood of false positives, multiple testing corrections were
applied, and Shapley values were compared against statistically significant thresholds.
Additionally, Fold Changes (FC) were evaluated, with genes exhibiting p-values below 0.01
and 0.05 and | FC| > 2 being considered statistically significant.

2.2. Biological Pathway Analysis and Functional Profiling

The g:Profiler functional profiling tool (version elll_eg58_p18_30541362), specifi-
cally the g:GOSt module https:/ /biit.cs.ut.ee/gprofiler/gost (accessed on 10 September
2024), was utilized to perform a functional enrichment analysis of the biological processes
and pathways influenced by differentially expressed genes (DEGs). This tool leverages
Gene Ontology (GO) terms to create a comprehensive overview of gene functions and
interactions [114,115]. Gene Ontology provides a structured vocabulary that classifies and
integrates biological data across species into three main categories: biological processes
(BPs), cellular components (CCs), and molecular functions (MFs).

During the analysis of gene expression data such as those derived from the application
of microarray devices, it is crucial to ensure that gene identifiers (IDs) are accurately
annotated and standardized to the official gene symbols, especially when consolidating
data from different sources. The aim of this step is to further facilitate meaningful biological
interpretation, which ultimately enhances the consistency and reliability of genomic data
analysis, The g:Convert tool, available on the g:Profiler web server https:/ /biit.cs.ut.ee/
gprofiler /convert (accessed on 10 June 2024, was used for this purpose. The g:Convert
module supports a plethora of biological identifiers, including Ensembl IDs, UniProt IDs,
RefSeq, and others, allowing researchers to input data from various experimental outputs
and databases. In cases of ambiguity of the transcript names, which can occur due to
multiple identifiers for a single gene or updates in genomic databases, we prioritized IDs
with the most extensive Gene Ontology (GO) annotations. By selecting IDs with the most
GO annotations, we aimed to enhance the robustness of our dataset, ensuring that the
functional analysis reflects supported gene functions and interactions well [114,115].

To determine the significance of the GO categories analyzed, we applied a rigorous
statistical criterion, the Benjamini-Hochberg False Discovery Rate (FDR), with GO terms
with an FDR value below 0.05 considered as significantly enriched, thus minimizing the
likelihood of false positives. To visually represent the findings, the significantly enriched
GO terms in each category were plotted for CASh 0.05 comparisons using the ‘ggplot2’
(version 3.5.1) package in RStudio [116].
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3. Results
3.1. Data Collections and Samples Analyzed

Microarray expression data from nine datasets, encompassing 506 samples in total,
were included in this study. Table 1 provides an overview of the main characteristics of
these datasets.

Table 1. Gene Expression Omnibus (GEO) datasets accessed in our study. For each study, the
main characteristics of samples are shown. SCH: Schizophrenia; BD: Bipolar Disorder; MDD: Major
Depressive Disorder.

Phenotype Group Dataset ID No. of Samples Type of Samples
GSE6575 25 Whole blood autism (n = 14) vs. controls (n = 11)
Autism GSE18123 23 Whole blood autism (n = 13) vs. controls (n = 10)
GSE25507 26 Peripheral blood lymphocytes (n = 12) vs. controls (n = 14)
Schizophrenia GSE17612 30 Brain tissue (n = 17) vs. controls (n = 13)
P GSE62333 25 Skin fibroblasts (n = 11) vs. controls (n = 14)
Binolar disorder GSE5389 17 Brain tissue (n = 7) vs. controls (n = 10)
p GSE7036 6 Lymphoblastoid cell lines (n = 3) vs. controls (n = 3)
. GSE12654 38 Brain tissue (n = 24) vs. controls (n = 14)
Miscellanea (SCH, BD, MDD) GSE53987 186 Brain tissue (n = 135) vs. controls (n = 51)

To detect differentially expressed genes (DEGs), we employed two distinct strategies.
First, traditional methods based on the unequal variance ¢-test (Welch’s t-test) and Empirical
Bayes were applied. Following this, we conducted an alternative analysis using the CASh
method. The conventional approach, utilizing Welch’s t-test and Empirical Bayes, failed to
identify any DEGs. In contrast, the CASh method successfully revealed several transcripts
when using both 0.01 and 0.05 cutoff p-values for the preselection of DEGs (Table 2).
Complete lists of DEGs detected for each dataset after these comparisons are provided
in Supplementary Table S2. Our analyses demonstrate that the use of the CASh method
significantly improves the detection of DEGs across the nine datasets analyzed.

Table 2. Number of differentially expressed genes (DEGs) detected after the differential gene expres-
sion analysis using conventional techniques (unequal variances Welch'’s t-test and Empirical Bayes
(EBayes) [117]), and alternative approaches based on the Comparative Analysis of Shapley values
(CASh) method with raw p-values thresholds of 0.01 or 0.05, respectively. FDR corrected p-values
are calculated where indicated. SCH: Schizophrenia; BD: Bipolar Disorder; MDD: Major Depressive
Disorder; HPC: hippocampus; PFC: pre-frontal cortex; STR: striatum.

Welch’s EBayes EBayes CASh 0.05
Dataset ID t-Test ~ FDR<001 FDR<005  FDR<0.05 CASh0.01 CASh0.05
GSE6575 0 0 0 0 204 (87 1,1171) 930 (3241, 606 )
GSE18123 947 205 2973 45(121,33)) 879 (4671,412]) 1862 (1027 1,835 |)
GSE25507 0 0 0 0 28 (107,18 1) 141 (414,100 )
GSE17612 0 0 0 0 1(11,0) 11(87,3 1)
GSE62333 5 0 5 0 68(331,35) 164 (951, 69 1)
GSE5389 1 0 2 0 40 (247,16 1) 162 (103 1,59 )
GSE7036 0 0 0 0 841,41 35(121,23 )
GSE12654_SCH 0 0 0 0 2(21,01) 8(41,41)
GSE12654_BD 0 0 0 0 0 8(61,21)
GSE12654_ MDD 0 0 0 0 0 0
GSE53987_HPC_SCH 283 2 1393 401,41)  794(5951,199])  655(357 1,298 |)
GSE53987_HPC_BD 0 0 0 0 41(141,27 ) 152 (48 1,104 )
GSE53987_HPC_MDD 0 0 0 0 47 (147,33 )) 163 (417,122 )
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Table 2. Cont.
Welch’s EBayes EBayes CASh 0.05
Dataset ID t-Test ~ FDR<001 FDR<005  FDR<0.05 CASh0.01 CASh0.05

GSE53987_PFC_SCH 0 0 32 0 182 (106 1,76 1) 354 (179 1,175 1)

GSE53987_PFC_BD 0 0 0 0 157 (54 1,103 ]) 394 (141 1,253 ))
GSE53987_PFC_MDD 0 0 0 0 61 (111,50 1) 175 (34 1,141 ])
GSE53987_STR_SCH 0 0 1 0 81 (361,45 1) 258 (139 1,119 |)

GSE53987_STR_BD 0 0 0 0 42 (101,32 1) 77 (331,44 1)
GSE53987_STR_MDD 0 0 0 0 19@81,111) 32(121,30)

Among the main DEGs detected through the application of CASh, PCDC4 (Pro-
grammed Cell Death 4), BRF1 (BRF1 RNA Polymerase III Transcription Initiation Factor
Subunit), OFCC1 (Orofacial Cleft 1 Candidate 1 (Pseudogene)), TMTC1 (Transmembrane
O-Mannosyltransferase Targeting Cadherins 1), TIPRL (TOR Signaling Pathway Regulator),
LEPROT (Leptin Receptor Overlapping Transcript), NR5A2 (Nuclear receptor subfamily
5 group A member 2), and ATM (Ataxia Telangiectasia Mutated Serine/Threonine Kinase)
are some examples of frequently dysregulated genes detected in the datasets of Autism
Spectrum Disorder analyzed in our study.

GADD45B (Growth Arrest And DNA Damage Inducible Beta), UTP4 (UTP4 small
subunit processome component) and TNFRSF10A (TNF receptor superfamily member 10a)
were common DEGs to three of the schizophrenia datasets analyzed, and PDHA1 (Pyruvate
Dehydrogenase E1 Subunit Alpha 1), CCDC91 (Coiled-Coil Domain Containing 91), CHD9
(Chromodomain Helicase DNA Binding Protein 9), and SMIM14 (Small Integral Membrane
Protein 14) were DEGs in at least two out of the six schizophrenia datasets included in
our study.

VWAS8 (von Willebrand domain-containing protein 8), SNAP29 (Synaptosomal-associated
protein 29), RIF1 (Replication Timing Regulatory Factor 1), AQP4 (Aquaporin-4) and
GSTM3 (Glutathione S-Transferase Mu 3) were some relevant differentially expressed genes
detected in the bipolar disorder datasets.

Finally, the variety of DEGs detected in the Major Depressive Disorder datasets was
high, and only the gene CCDC144A (Coiled-Coil Domain Containing 144A) was dysreg-
ulated in more than one of the datasets analyzed. Nevertheless, some other relevant
overexpressed genes detected after CASh analysis of the major depression datasets in-
clude EXOSC2 (Exosome Component 2), DPP10 (Dipeptidyl Peptidase Like 10), GSTM5
(Glutathione S-Transferase Mu 5), and ZNF184 (Zinc Finger Protein 184).

Regarding the main differentially expressed genes detected, it is also noteworthy
to mention that some overlap was detected among different disorders. Bipolar disor-
der, schizophrenia and major depression shared two DEGs: PRDX6 (Peroxiredoxin 6)
and GHRHR (Growth-hormone-releasing hormone receptor). Autism Spectrum Disorder,
schizophrenia and major depression exhibited an overlap of two DEGs as well: SLC4A4
(Solute carrier family 4 member 4) and Y_RNA (RNA Gene Y RNA). Also, we were able
to detect an overlap of six DEGs among the autism spectrum disorder, schizophrenia and
bipolar disorder datasets: RAB2A (Member RAS Oncogene Family), RAD23B (RAD23 ho-
molog B, nucleotide excision repair protein), LGALS8 (Galectin-8), PIAS1 (Protein Inhibitor
of Activated STAT 1), PDP1 (Pyruvate Dehydrogenase Phosphatase Catalytic Subunit
1), and CHD9 (Chromodomain Helicase DNA Binding Protein 9). This overlap may in-
dicate the existence of a common dysregulation at the gene expression level that could
lead to the development of the neuropsychiatric conditions under study. However, we
were not able to find any common DEG among the four neurological disorders analyzed.
Thus, further research is warranted to help unravel the molecular origin of these complex
neuropsychiatric disorders.
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3.2. Functional Annotation Analysis of the Differentially Expressed Genes

The number of DEGs detected after the CASh 0.01 method and the FDR correction of
p-values was insufficient to identify significantly enriched biological pathways associated
with some gene sets. However, gene set enrichment analysis using the DEGs identified
with the CASh 0.05 method revealed several significantly enriched processes in most of the
analyzed datasets.

In the Autism Spectrum Disorder datasets (GSE6575, GSE18123, and GSE25507), DEGs
were primarily associated with biological processes (BP) such as structure development,
transport and cardiac development, while cellular components (CC) were mainly related
to the cytoplasm and the intracellular organelles, and the molecular functions (MFs) were
mainly associated with protein binding (Figure 1).
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Figure 1. Functional Enrichment Analysis results showing significant Gene Ontology (GO) terms
of the differentially expressed genes in Autism Spectrum Disorder datasets: (a) relevant GO terms
identified in GSE6575 dataset; (b) top 50 GO terms in GSE18123 dataset; (c) GO significant terms
in GSE25507 dataset. For each dataset, significantly enriched molecular functions (GO:MF), bi-
ological processes (GO:BP) and cellular components (GO:CC) are shown in green, blue and or-
ange, respectively.

For the schizophrenia datasets (GSE17612, GSE62333, GSE12654, and GSE53987),
the most significantly enriched BPs were related to the regulation of programmed cell
death, regulation of primary metabolic processes, and the development of multicellular
organism structures. The CC results highlighted cytoplasm, nucleoplasm, and extracellular
space, while molecular function (MF) analysis identified activities mainly associated with
glycine-tRNA ligase and protein binding activity (Figure 2).
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Figure 2. Functional Enrichment Analysis results showing significant Gene Ontology (GO) terms of
the differentially expressed genes in Schizophrenia datasets: (a) GSE62333 dataset; (b) GSE12654_SCH
dataset; (c) top 50 GO terms detected in GSE53987_HPC_sch dataset; (d) top 50 significant GO terms
in GSE53987_PFC_sch dataset; (e) GSE53987_STR_sch dataset. For each dataset, significantly enriched
molecular functions (GO:MF), biological processes (GO:BP) and cellular components (GO:CC) are
shown in green, blue and orange, respectively. GSE17612 has no results in GO. SCH: schizophrenia;
HPC: hippocampus; PFC: pre-frontal cortex; STR: striatum.

In the bipolar disorder datasets (GSE5389, GSE7036, GSE12654, and GSE53987), gene
set enrichment analysis revealed neurogenesis and telomeric and metabolic processes
(mainly those related to lipids and nitrogen compounds) as a significantly enriched BP.
Additionally, synapses, lipoprotein activity and chromosomes, and protein binding were
identified as significantly enriched CC and MF, respectively (Figure 3).
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Figure 3. Functional Enrichment Analysis results showing significant Gene Ontology (GO) terms
of the differentially expressed genes in Bipolar Disorder datasets: (a) GSE5389 dataset; (b) GSE7036
dataset; (c) GSE53987_PFC_bd dataset. For each dataset, significantly enriched molecular functions
(GO:MF), biological processes (GO:BP) and cellular components (GO:CC) are shown in green, blue
and orange, respectively. GSE12654, GSE53987_HPC_bd and GSE53987_STR_bd have no results in
GO. BD: bipolar disorder; HPC: hippocampus; PFC: pre-frontal cortex; STR: striatum.

Finally, in the major depressive disorder datasets (GSE12654 and GSE53987), gene set
enrichment analysis highlighted epiboly and wound healing as significantly enriched BPs,
while nucleoplasm, the site of polarized growth, and the growth cone were identified as
significantly enriched CCs and protein binding as significantly enriched MF (Figure 4).
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Figure 4. Functional Enrichment Analysis results showing significant Gene Ontology (GO) terms of
the differentially expressed genes in Major Depression datasets: (a) GSE53987_HPC_mdd dataset;
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(b) GSE53987_PFC_mdd dataset; (c) GSE53987_STR_mdd dataset. For each dataset, significantly en-
riched molecular functions (GO:MF), biological processes (GO:BP) and cellular components (GO:CC)
are shown in green, blue and orange, respectively. GSE12654 has no results in GO. MDD: major
depressive disorder; HPC: hippocampus; PFC: pre-frontal cortex; STR: striatum.

At this point, it is important to highlight the overlap detected between the GO terms
identified after the gene set enrichment analysis (Figure 5). Notably, the molecular function
“protein binding” (GO:0005515) and the cellular component “nucleoplasm” (GO:0005654)
were revealed as significant GO terms in all the neuropsychiatric conditions analyzed.

Schizophrenia Bipolar disorder

31
(8.4%)

91
(24.7%)

Major depression

Figure 5. Venn diagram showing significant Gene Ontology (GO) terms associated with the four
neuropsychiatric conditions analyzed. ASD: Autism Spectrum Disorder. The diagram was built
using Venny’s online tool available at: https:/ /bioinfogp.cnb.csic.es/tools/venny/ (Oliveros, 2015)
(accessed on 22 October 2024).

4. Discussion

Neurological pathologies inflict significant suffering and pose substantial burdens
on millions of people worldwide. Lately, a significant boost to omics technologies has
enabled a comprehensive exploration of the molecular mechanisms underlying a number
of common neurological conditions. Microarrays, which emerged nearly three decades ago
aiming to study whole gene expression profiles, have since shed light on the molecular
pathways involved in disease pathogenesis [118,119]. In the present work, we investigated
data from nine public datasets obtained using Affymetrix microarray devices, including
three datasets from Autism Spectrum Disorder, two from Schizophrenia, two from Bipolar
Disorder, and two datasets encompassing samples from Schizophrenia, Bipolar Disorder,
and Major Depressive Disorder.

Raw data were accessed through the GEO public repository, and gene expression
files were pre-processed, quality controlled, and normalized. Then, to the detection of
differentially expressed genes (DEGs), we employed two strategies: (i) a traditional ap-
proach using classical unequal variances ¢-test and Empirical Bayes methods, and (ii) an
alternative approach utilizing the CASh method [110]. The traditional t-test approach iden-
tified few DEGs, whereas the CASh method revealed a significant number of statistically
relevant genes across the nine datasets analyzed. The t-test identifies genes based on their
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differential expression between two conditions, considering a gene significant when its
p-value falls below a pre-established threshold (0.05 adjusted p-value and |FCI| > 2 in
our study). In contrast, the CASh method not only considers the expression of each gene
under two conditions but also evaluates the contribution of each gene across all possible
permutations using the Shapley value as a measure. This holistic approach mitigates the im-
pact of confounding variables by considering the global gene network rather than isolated
gene expressions. However, a current limitation of the CASh method is that it does not
explicitly account for potential confounding effects, which should be addressed in future
applications [110,112,113,120]. In summary, CASh offers a more nuanced understanding of
gene interactions and their collective impact on disease pathophysiology.

The use of CASh evidenced the dysregulation of genes previously known in the
context of some of the conditions analyzed. Notably, risk variants in the OFCCI gene,
down-regulated in some of the analyzed Autism Spectrum Disorder datasets, have been pre-
viously linked to ASD and other neurobehavioral disorders such as Tourette syndrome [121].
It has also been suggested that the gene ATM (up-regulated in our study) shapes the de-
velopment of the GABAergic system, and its abnormal expression may affect the autistic
condition in animal models [122]. Furthermore, recent research proposes p53 DNA re-
pair mechanisms, in which ATM plays a role, as potentially being affected in pediatric
neurodevelopmental disorders [123].

GADD45b up-regulation was detected in some of the datasets of schizophrenia ana-
lyzed in our study. GADD45b has been proposed as a hub gene differentially expressed in
previous bioinformatic studies analyzing microarray datasets from patients with schizophre-
nia [124]. The overexpression of this GADD45 (growth arrest and DNA-damage-inducible)
family member has been found to intensify neuronal loss and cognitive impairments in
mice [125], suggesting a possible role of DNA damage response mechanisms in the origin
of schizophrenia [126]. Another finding of interest is the up-regulation of PDHA1 in our
data. Anti-PDHA1 antibodies have been found in the sera of patients with schizophre-
nia, pointing to the mitochondrial dysfunction as a consequence that may underlie the
pathogenesis of this condition [127]. Further, CCDC91 (up-regulated in our analyses) has
been proposed as a potential protein biomarker of schizophrenia in a recent proteome-wide
association study (PWAS) [128].

VWAS8 and SNAP29 were significantly up-regulated in our analysis of the bipolar
disorder datasets using the CASh method. VIWWAS has been linked to neurological disorders
such as autism and bipolar disorder in various genome-wide associated studies [129], while
SNAP29 has been proposed as a candidate of genetically based psychiatric disorders such
as schizophrenia and bipolar disorder in previous studies [130,131]. AQP4, a well-known
drug target for the treatment of bipolar disorder [132], was dysregulated in the analyzed
datasets included in our study. Recent studies have reported changes of the protein encoded
by AQP4 in the cerebellum of patients with bipolar disorder, which may provide novel
insights into the pathophysiology mechanisms linked to this condition [133].

Regarding the major depression-related genes detected in our study, EXOSC2 has
been proposed as a potential molecular biomarker of major depressive disorder through
bioinformatics analysis [134]. To the best of our knowledge, the role of DPP10 gene
in major depression has not been elucidated yet. However, some studies link SNPs in
DPP10 with loneliness and suicidal behaviors, often associated with major depressive
disorder [135-137]. Moreover, overexpression of GSTM5 protein was found to be significant
in a rat model of depression [138]. Finally, ZNF184 has been previously proposed as a
key gene in the genetic architecture underlying major depressive disorder in GWAS and
meta-analysis studies [139,140]. All the mentioned genes were found to be overexpressed
in our major depression datasets.

Interestingly, we were able to find some DEGs with a consistent dysregulation across
different neuropsychiatric disorders. Peroxiredoxin 6 (Prdx6) is an enzyme encoded by
the PRDX6 gene, which was a DEG detected in the bipolar disorder, schizophrenia and
major depression datasets. It is well known that Prdx6 possesses antioxidant activity, with
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a role in the maintenance of lipid peroxidation repair, cell metabolism and inflammatory
signaling. The altered activity of this enzyme has been associated with central nervous
system disorders, and its neuroprotective role of this protein through the inhibition of
neuron apoptosis has been reported in animal models [141-143] . Little is known about
the role of Prdx6 in ASD and bipolar disorder. However, some studies have confirmed
its differential expression in both animal models and human samples of schizophrenia
and major depression [144-147] . SLC4A4 and Y RNA were significantly dysregulated in
the ASD, schizophrenia and major depression datasets. Recently, it has been described
that Slc4a4 is required for normal astrocyte complexity at morphological level and a
normal function of the blood-brain barrier [148]. Further, mutations in this gene have been
associated with neurological disorders [149,150] and it has been described as a key gene
in schizophrenia through bioinformatics strategies [151]. Regarding Y RNA gene, it is a
small non-coding RNA playing an important role in a range of cellular processes [152].
To the best of our knowledge, there are few reports on the role of these molecules in
neurological functions, however some authors have proposed a link between Y RNAs
and nervous system disorders [153-155]. Finally, a differential expression of RAD23B and
PIAS1 was detected in the ASD, schizophrenia and bipolar disorder datasets. Deficiency of
RAD23B may affect the normal functioning of motoneurons, which has further implications
in the context of Amyotrophic Lateral Sclerosis [156,157]. Regarding PIAS1, a protective
role against Huntington’s Disease and cerebral infarction has been described through the
reduction of associated inflammation and apoptosis [158-161], and PIAS genes have been
proposed as disease markers in bipolar disorder [162]. However, as far as our knowledge
is concerned, the impact of the dysregulation of RAD23B and PIASI in the neurological
disorders analyzed in our work is still to be determined.

Concerning the gene set enrichment analysis of the DEGs identified using the CASh
method, we were able to confirm previous findings on the molecular bases of the neurolog-
ical pathologies studied. For instance, processes related to cardiac muscle cell development
in ASD samples are directly linked to vascular abnormalities observed in patients with
this phenotype [163]. In Schizophrenia, the regulation of primary metabolic processes
and glycine-tRNA ligase activity emerged as significant processes, which are particularly
relevant given the metabolic issues associated with this disorder [164]. Similarly, Bipolar
Disorder was linked to several key findings in our study, including the positive regulation
of lipoprotein lipase activity and synapse and phosphatidylcholine-sterol O-acyltransferase
activator activity, which align with the known association of this disorder with altered fatty
acids [165]. For Major Depressive Disorder, characterized by inflammation and neurological
damage, we identified processes such as “wound healing spreading of cells” and “growth
cone” as significant in the context of differential gene expression.

5. Conclusions and Limitations

This study highlights the power of Comparative Analysis of Shapley values (CASh) in
revealing complex genetic insights into neurological disorders such as Autism Spectrum
Disorder (ASD), Schizophrenia, Bipolar Disorder, and Major Depressive Disorder. CASh has
been proven as highly effective in identifying differentially expressed genes, many of which
are missed by traditional statistical methods, offering a more nuanced understanding
of the molecular mechanisms underlying these conditions. These findings open new
opportunities for developing innovative diagnostic and therapeutic strategies that may
shed light on the etiology of these complex conditions.

However, several limitations should be considered. The inherent complexity of mi-
croarray data—such as noise, batch effects, and variability in sample quality—can introduce
biases that affect the accuracy of gene expression analysis, despite the rigorous preprocess-
ing and normalization applied. Additionally, the reliance on public datasets may bring
biases related to differences in data collection methods, patient selection, and experimental
design, potentially limiting the generalizability of our results. To mitigate these issues,
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future studies should be conducted to validate the findings by using more diverse cohorts
of patients.

Looking ahead, integrating CASh with complementary omics technologies, such as
proteomics and metabolomics, promises a more comprehensive view of the pathophysio-
logical processes in brain diseases. This combined approach could significantly improve the
development of multi-marker panels, enhancing diagnostic accuracy. Longitudinal stud-
ies using CASh could also track disease progression and treatment responses, providing
insights into how gene expression evolves over time in relation to disease states.

A further challenge is the computational intensity of CASh, particularly with large
datasets. The method requires substantial computational resources, and interpreting Shap-
ley values may be complex. Simplifying the approach—through algorithm optimization
or data reduction—would make CASh more accessible for routine clinical and research
applications. Additionally, CASh does not account for post-transcriptional modifications
or protein-level interactions, which are critical for a complete understanding of disease
mechanisms. Future work could address this by integrating CASh with proteomic and
metabolomic data to offer deeper insights at the protein level.

Another key limitation is the lack of experimental validation of the identified dif-
ferentially expressed genes. To confirm the biological relevance of these findings, future
studies should incorporate in vitro functional assays, such as gene knockdown or overex-
pression experiments. Moreover, in vivo studies in animal models would help to further
elucidate the roles of these genes in disease mechanisms and assess their potential as
therapeutic targets.

Achieving the full potential of CASh will require strong interdisciplinary collaboration.
Geneticists, neurologists, oncologists, and bioinformaticians must work together to conduct
large-scale studies that validate and refine the gene signatures identified, translating these
discoveries into practical clinical applications. By advancing our understanding of the
genetic basis of neurological disorders, this research contributes to precision medicine
approaches, which ultimately improves patient outcomes and reduces the global burden of
these conditions.
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www.mdpi.com/article/10.3390/cimb46120812 /51, Figure S1: Exploratory analysis results: Principal
Component Analysis (PCA) showing the distribution of gene expression patterns across all the
datasets. HPC: hippocampus, PFC: pre-frontal cortex, STR: striatum; Figure S2: Exploratory analysis
results: side-by-side volcano plots showing the comparison between the different tests statistics
applied to each dataset. HPC: hippocampus, PFC: pre-frontal cortex, STR: striatum; Figure S3:
Exploratory analysis results: heatmap showing the distribution of the differentially expressed genes
identified by different methods across all the datasets. HPC: hippocampus, PFC: pre-frontal cortex,
STR: striatum; Table S1: Technical description of the datasets analyzed in the present study. HPC:
hippocampus, PFC: pre-frontal cortex, STR: striatum, BD: bipolar disorder, SCH: schizophrenia,
MDD: major depressive disorder; Table S2: Differentially expressed genes obtained for each dataset
after statistical analyses. HPC: hippocampus, PFC: pre-frontal cortex, STR: striatum; Table S3:
Functional enrichment analysis of the differentially expressed genes obtained in each dataset through
the application of Comparative Analysis of Shapley values with raw p-values 0.01 and 0.05. HPC:
hippocampus, PFC: pre-frontal cortex, STR: striatum, BD: bipolar disorder, SCH: schizophrenia,
MDD: major depressive disorder.
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