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Abstract: In recent decades, given the important role of gamma-aminobutyric acid (GABA) in human
health, scientists have paid great attention to the enrichment of this chemical compound in food
using various methods, including microbial fermentation. Moreover, GABA or GABA-rich products
have been successfully commercialized as food additives or functional dietary supplements. Several
microorganisms can produce GABA, including bacteria, fungi, and yeasts. Among GABA-producing
microorganisms, lactic acid bacteria (LAB) are commonly used in the production of many fermented
foods. Lactiplantibacillus plantarum (formerly Lactobacillus plantarum) is a LAB species that has a long
history of natural occurrence and safe use in a wide variety of fermented foods and beverages. Within
this species, some strains possess not only good pro-technological properties but also the ability to
produce various bioactive compounds, including GABA. The present review aims, after a preliminary
excursus on the function and biosynthesis of GABA, to provide an overview of the current uses of
microorganisms and, in particular, of L. plantarum in the production of GABA, with a detailed focus
on fermented foods. The results of the studies reported in this review highlight that the selection
of new probiotic strains of L. plantarum with the ability to synthesize GABA may offer concrete
opportunities for the design of new functional foods.
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1. Introduction

Gamma (γ)-Aminobutyric acid (GABA), also named 4-aminobutyric acid, is a four-
carbon non-protein amino acid that is widely distributed in an extensive variety of organ-
isms including algae, bacteria, fungi, animals, plants, and cyanobacteria [1–7].

Although GABA is present in many foods such as fruits, vegetables and grains, its
content in them is relatively low [8,9]. As a result, over the years many studies have been
devoted to the most suitable strategies to increase the amount of GABA in food [10,11] such
as through chemical synthesis [12], plant enrichment [13], or microbial fermentation [3].

Microbial synthesis of GABA may be much more promising than chemical synthesis
methods since the former is characterized by high specificity, environmental friendliness
and cost-effectiveness [3].

In addition, GABA production by beneficial and pro-technological microorganisms has
the potential to increase the functional effect of some fermented foods and beverages [11,14].
So far, various studies have confirmed that several microorganisms like fungi, bacteria, and
yeasts have the ability to synthesize GABA [3,15,16].

Lactic acid bacteria (LAB) are ubiquitous microorganisms and are often naturally
present in some traditional fermented foods as well. Many LAB species are used as starters
in some industrial food fermentations for their pro-technological properties [17,18].

Some LAB species are capable of producing high amounts of GABA [19–21] and could
be exploited for the production of GABA-fortified foods [14].
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Among GABA-producing LAB, Lactiplantibacillus plantarum (formerly Lactobacillus
plantarum) is a facultative heterofermentative species with high adaptability to many differ-
ent conditions, being isolated from various ecological niches including milk, fruit, cereal
crops, vegetables, bee bread, fresh meat [22–25] and fermented foods [26,27]. This bacterial
species L. plantarum is a normal inhabitant of the gastro-intestinal tract of insects, fish and
mammals, including humans [28–32] and is included in the QPS (Qualified Presumption of
Safety) and in GRAS (Generally Recognised as Safe) lists [33,34].

Because of many of its intrinsic properties, numerous strains belonging to this species
are proposed as animal and human probiotics [31,32,35–40].

L. plantarum is widely used as a starter culture in the fermentation of raw materials
from plant and animal origin, where it contributes to enhancing the sensorial quality and
shelf life of fermented products [38,39,41–44]. Some L. plantarum strains also increase
the functional properties of various fermented foods by producing a variety of bioactive
compounds, including GABA [19,45].

The present review aims, after a preliminary excursus on the function and biosynthesis
of GABA, to provide an overview of the current uses of microorganisms and, in particular,
of L. plantarum in the production of GABA, with a detailed focus on fermented foods.

2. GABA Function and Metabolism

GABA is produced by bacteria [3,46] fungi [47,48], plants [49,50], vertebrate animals
and invertebrates [51–53]. Furthermore, Archaea possesses enzyme genes involved in
GABA biosynthesis [54–56].

Due to this pervasive presence in biological kingdoms and ecosystems, we tend to
consider the GABA molecule more as a ubiquitous signaling molecule than as a specific
synaptic neurotransmitter [57,58].

GABA-mediated interregnum communication has been observed between algae and
invertebrates [59], plants and fungi [60], plants and insects [61], and plants and bacteria [62].

In plants, GABA is an endogenous signaling molecule involved in various physiologi-
cal and biochemical processes that promote plant growth and development, and mediate
responses to abiotic and biotic stresses, including pathogen and insect attacks [1,63,64]. In
addition, GABA improves photosynthetic processes, inhibiting the production of reactive
oxygen species (ROS), activating antioxidant enzymes, and regulating stomatal opening in
case of water stress [65].

In plants, GABA is synthesized from glutamate or arginine and transferred by GABA-
permease to mitochondria, where GABA is catabolized by GABA transaminase and succi-
nate semialdehyde dehydrogenase to succinate. The succinate enters the tricarboxylic acid
(TCA) cycle to maintain the C/N balance in cells [1].

Over the last several decades GABA has attracted great attention due to its many
positive effects on mammalian physiology [10,15,66].

As known, in fact, GABA is the most common inhibitory neurotransmitter in the
human central nervous system [67]. Furthermore, besides being an important antidepres-
sant [68], GABA also performs other functions including neuroprotective, anti-inflammatory,
antioxidant and antihypertensive effects [66], enhancement of immunity under stress condi-
tions [69], prevention of cancer cell proliferation [70], prevention of diabetic conditions [71],
and cholesterol-lowering effect [72].

In mammalian, GABA is synthesized from L-glutamate in the cytoplasm of neuronal
and glial cells by the enzyme glutamate decarboxylase (GAD; EC4.1.1.15) using pyridoxal
5′-phosphate (PLP) as an enzyme cofactor [73] (Figure 1). GABA can also be synthesized
through deamination and decarboxylation reactions of putrescine, spermine, spermidine,
ornithine, and L-glutamine [2].

As for mammalian species, in microorganisms, GABA is produced from L-glutamate
through a GAD enzyme-mediated decarboxylation [58] with PLP as a cofactor (Figure 1).
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Figure 1. GABA production from L-glutamate by glutamate decarboxylase (GAD) with pyridoxal-
5′-phosphate (PLP) as a cofactor. 

Through a well-established pathway of enzymes known as GABA shunt (Figure 2), 
some bacteria catabolize GABA [74,75]. The GABA shunt is characterized by a group of 
enzymes that convert GABA to succinate to fuel the tricarboxylic acid (TCA) cycle in the 
production of energy and essential metabolic intermediates as carbon skeletons for the 
cell. In the shunt of GABA, microbial enzymes such as GABA transaminase and succinic 
semialdehyde dehydrogenase have an optimal pH in the alkaline range of around 8. These 
observations have led some scholars to advance the hypothesis that the GABA shunt, in 
addition to representing the link between nitrogen and carbon metabolism, has an im-
portant function in the maintenance of pH homeostasis in acidic environments [75,76]. 

 
Figure 2. Metabolic pathway of GABA production from the TCA cycle (adapted from Sahab et al. 
[11]). For higher clarity, this scheme reports only enzymes and relevant substrates/products, omit-
ting coenzymes and other compounds involved in the reactions showed. Abbreviations: PDH, py-
ruvate dehydrogenase; GDH, glutamate dehydrogenase; GAD, glutamate decarboxylase; GABA-T, 
GABA transaminase; SSADH, succinic semialdehyde dehydrogenase. 

As reported above, microbial GABA synthesis is strictly dependent on the GAD en-
zyme which is encoded by gadA or gadB genes in bacterial cells. Glutamate is transported 
into a cell through an antiporter, and then decarboxylation occurs. Finally, the GABA 
product is secreted from the cell by the glutamate/GABA antiporter, which is encoded by 
the gadC gene [77]. 

In recent years, many researchers have studied L. plantarum for its ability to synthe-
size GABA using the GAD system. 

Only Levilactobacillus brevis possesses two GAD genes that produce isozyme GADs 
among the LAB examined so far [78,79]. The glutamic acid decarboxylase (GAD) system 

Figure 1. GABA production from L-glutamate by glutamate decarboxylase (GAD) with pyridoxal-5′-
phosphate (PLP) as a cofactor.

Through a well-established pathway of enzymes known as GABA shunt (Figure 2),
some bacteria catabolize GABA [74,75]. The GABA shunt is characterized by a group of
enzymes that convert GABA to succinate to fuel the tricarboxylic acid (TCA) cycle in the
production of energy and essential metabolic intermediates as carbon skeletons for the
cell. In the shunt of GABA, microbial enzymes such as GABA transaminase and succinic
semialdehyde dehydrogenase have an optimal pH in the alkaline range of around 8. These
observations have led some scholars to advance the hypothesis that the GABA shunt,
in addition to representing the link between nitrogen and carbon metabolism, has an
important function in the maintenance of pH homeostasis in acidic environments [75,76].
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Figure 2. Metabolic pathway of GABA production from the TCA cycle (adapted from Sahab et al. [11]).
For higher clarity, this scheme reports only enzymes and relevant substrates/products, omitting
coenzymes and other compounds involved in the reactions showed. Abbreviations: PDH, pyruvate
dehydrogenase; GDH, glutamate dehydrogenase; GAD, glutamate decarboxylase; GABA-T, GABA
transaminase; SSADH, succinic semialdehyde dehydrogenase.

As reported above, microbial GABA synthesis is strictly dependent on the GAD
enzyme which is encoded by gadA or gadB genes in bacterial cells. Glutamate is transported
into a cell through an antiporter, and then decarboxylation occurs. Finally, the GABA
product is secreted from the cell by the glutamate/GABA antiporter, which is encoded by
the gadC gene [77].

In recent years, many researchers have studied L. plantarum for its ability to synthesize
GABA using the GAD system.

Only Levilactobacillus brevis possesses two GAD genes that produce isozyme GADs
among the LAB examined so far [78,79]. The glutamic acid decarboxylase (GAD) system
encoded by the gad operon is responsible for glutamate decarboxylation and GABA secre-
tion in bacteria and consists of two important elements: Glu/GABA antiporter gadC and
the glutamate decarboxylase enzyme encoded either by gadA, gadB genes [80]. This system
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converts glutamate into GABA and while doing so consumes protons thus maintaining
cytosolic pH homeostasis [79].

Unlike L. brevis, L. plantarum has only one GAD coding enzyme in its genome, the
gadB and there may not be a specific glutamate/GABA antiporter (gadC) gene [80].

In a study conducted by Nakatani et al. on the genome of L. plantarum KB1253, it was
found that this strain contains two gadB genes coding for glutamate decarboxylase [81].

Many studies showed that L. plantarum can produce appreciable amounts of GABA,
so there must be a transporter responsible for transporting glutamate and GABA in and
out of the cell. A glutamate/gamma-aminobutyrate transporter family protein coded by
the yjeM gene can be the best candidate for such a transporter [82].

Further investigation, conducted by Surachat et al. indicates that L. plantarum is a key
GABA-producing species in nature since almost all strains encoded the GAD operon in
their genome [83].

3. Production of GABA by Microorganisms

GABA can be obtained not only from natural sources but also through plant enrich-
ment, chemical synthesis, enzymatic process and microbial metabolism [15,84]. Due to the
low GABA content in natural animal- and plant- associated food products, high GABA-
producing microorganisms are of great importance to produce food-grade GABA and
GABA-rich fermented foods via fermentations [85].

The biosynthesis of GABA by microorganisms is safe and eco-friendly and provides
the possibility of production of new naturally fermented health-oriented products [16,86].

3.1. Production of GABA by Fungi

Other than bacteria, various yeasts and molds that belong to the kingdom of fungi,
have also been reported to as able to produce GABA.

Some Rhizopus oligosporus and Rhizopus oryzae strains have been shown to produce
GABA during tempeh fermentation (fermented soybean) [87].

Similarly, Rhizopus monosporus strain 5351 has been reported to increase GABA content
in soybean and mung bean [88,89].

Marine yeasts Pichia guilliermondii and Pichia anomala isolated from the Pacific Ocean
off Japan have high GABA-producing abilities [90,91].

Actinomucor elegans AS 3.227 has been reported to increase the GABA concentration
in sufu (traditional fermented soybean food from China) manufacturing using solid-state
fermentation [92].

Glutamic acid decarboxylase has also been identified in yeasts such as Saccharomyces
cerevisiae and Kluyveromyces marxianus isolated from fermented products [93–95].

Other yeasts belonging to the species Kazachstania unispora, Sporobolomyces carnicolor,
Sporobolomyces ruberrimus, Nakazawaea holstiiand, and Pichia scolyti, isolated from wild
flowers, also have GAD activity [96].

Aspergillus oryzae NSK is a GABA-generating mold used as a starter culture to ferment
rice koji for sake production and soy sauce koji [97–101].

Cai et al. demonstrated that oats fermented by A. oryzae var. effuses 3.2825, A. oryzae
3.5232 and R. oryzae 3.2751 can be recommended as tempeh-like functional foods with
higher GABA [102].

In other studies, fermentations by Monascus pilosus IFO 4520 [103] and Monascus
purpureus CCRC 31615 [104] increase the content of γ-aminobutyric acid (GABA) in the
beni-koji and in the fermented rice.

3.2. Production of GABA by Bacteria

GABA is naturally synthesized by several bacteria. Indeed, not all strains within one
species can produce GABA, as the ability depends on the presence of GAD genes and
glutamate/GABA antiporter [74].
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Bacillus is a commonly reported bacteria that can produce GABA [105,106]. Besides
Bacillus, Corynebacterium glutamicum was found to produce endogenous L-glutamate [107],
Streptomyces bacillaris and Streptomyces cinereus were reported to increase the GABA content
in fermented tea [108]. Otaru et al. have shown that human intestinal Bacteroides are able to
synthesize GABA [109].

Recent studies revealed that the increased level of GABA in the human gut could
be derived from the ability of the intestinal microbiota or ingested probiotics, such as
Bacteroides, bifidobacteria, and some LAB (lactobacilli), to metabolize dietary monosodium
glutamate [109–111]. Therefore, numerous research has been directed towards isolating
and characterizing GABA-producing bacteria to be used as starters for the production of
GABA-enriched fermented food [3].

Because of their GRAS status, some LAB are widely used in the production of fer-
mented foods [18] and act as potential probiotic cultures. Actually, in addition to pro-
technological functions, LAB also offer beneficial functions such as antioxidant and antimi-
crobial activities, as well as the formation of bioactive compounds such as GABA [112,113].

Therefore, the use of GABA-producing LAB has been considered a promising possibil-
ity in order to increase the nutritional, functional, sensory and technological properties of
some fermented food products [10,19,114].

GABA can be biosynthesized by various LAB strains mainly belonging to the genera of
Lactobacillus, Lactococcus, Pediococcus, Leuconostoc, Enterococcus, Streptococcus, Weissella, Lacticas-
eibacillus, Lactiplantibacillus and recently, Levilactobacillus and Secundilactobacillus [21,115–121].

Nowadays, Lactiplantibacillus plantarum (formerly classified as Lactobacillus plantarum)
is among the main LAB species proposed to be used as probiotic starter cultures to produce
GABA in the fermented food and beverage industry [35,122,123].

4. Production of GABA by L. plantarum

The production of GABA varies among various LAB strains and is affected by several
factors such as pH, fermentation temperature, fermentation time, L-glutamic acid concentra-
tion, media additives, and carbon and nitrogen sources [3,85,114,124]. The optimization of
these parameters could maximize the amount of GABA contained in some LAB-fermented
foods [3,112].

In recent years, many researchers have studied L. plantarum, in particular, for its ability
to synthesize GABA in different substrates and growing conditions.

Table 1 summarizes the results of studies investigating the ability of different strains
of L. plantarum to produce GABA in different growing media.

Table 1. GABA production by Lactiplantibacillus plantarum (previously Lactobacillus plantarum) in
different culture media.

Microorganism Isolation
Source Culture Medium GABA

Production Comments Refs.

L. plantarum C48 cheese MRS 16.0 mg/kg Survival and GABA production in simulated
GI conditions [115]

L. plantarum
CCARM 0067 CCARM CDM ≈700 mM

(48 h)
Anti-proliferative and anti-metastatic activity in

HT-29/5FUR cell line [70]

L. plantarum DM5 Marcha of Sikkim MRS + 100
mM MSG not quantified GABA production has been qualitatively

identified by the TLC [125]

L. plantarum KCTC
3103 Unknown MRS modified 0.67 g/L Two-stage fermentation: cell grown (stage 1);

GABA production (stage 2) [126]

L. plantarum K154 kimchi
broth fortified with
skim milk and 2%

MSG
15.53 mg/mL Co-culture with Ceriporia lacerata [127]

L. plantarum EJ2014 Rice bran SM 19.8 g/L Optimization of production by the addition of
yeast extract [124]
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Table 1. Cont.

Microorganism Isolation
Source Culture Medium GABA

Production Comments Refs.

L. plantarum K154 kimchi MRS + 30 g/L MSG 0.2 g/L
Potential probiotic: good resistance to

vancomycin and polymyxin B, tolerance to bile
juice and low pH

[128]

L. plantarum
Taj-Apis362

honeycomb and
stomach of
honeybee

MRS + 50 mM MSG 7.15 mM culture temperature of 36 ◦C, initial pH of 5.31
and incubation time of 60 h [129]

L. plantarum 45a cambodian
fermented foods MRS + 2% MSG 20.34 mM

Two other strains of L. plantarum capable of
synthesizing GABA have been identified: 44d
(16.47 mM GABA) and 37e (5.63 mM GABA)

[130]

L. plantarum FNCC
260

indonesian
fermented foods

MRS + 25–100 mM
MSG 809.2 mg/L MSG, PLP, and pyridoxine were shown

to positively affect GABA production [131]

L. plantarum BC114
Sichuan paocai

(fermented
vegetable)

MRS + 20 g/L MSG 3.45 g/L
L. plantarum BC114

highlighted the ability to produce GABA and
reduce nitrates

[132]

L. plantarum LSI2-1 Thailand
fermented food GYP + 3% MSG 22.94 g/L

Only the gadA as
glutamate decarboxylase

(GAD) was found in the genome
[133]

L. plantarum MNZ fermented soybean MRS 3.96 mM 6% glucose, 0.7% ammonium nitrate, pH 4.5 and
temperature 37 ◦C. [134]

L. plantarum K255 kimchi MRS + 3% MSG 821.2 µg/mL the K255 strain was incubated at 37 ◦C for 18 h. [135]

L. plantarum
FBT215 kimchi

MRS modified (1%
fructose; 2% tryptone,

50 mM MSG)
103.7 µg/mL PLP is a major factor influencing

GABA production [123]

L. plantarum B-134 Makgeolli MRS + 3% MSG 25 mM optimum culture condition: 37 ◦C, pH 5.7
without NaCl [136]

L. plantarum N1-2 Nham MRS + 5% MSG 0.13 mg/10 g pH of 5.7, without NaCl [137]

L. plantarum Y7 kimchi
MRS modified (2%

fructose, 2% peptone
and 175 mM MSG)

4.9 µg/mL culture conditions: 37 ◦C,
pH 6.5, and 48 h. [138]

L. plantarum L10-11 Plaa-som MRS + 4% MSG 15.74 g/L addition of NaCl by up to 7% (w/v)
did not suppress GABA production [139]

L. plantarum FRT7 Paocai MRS 3% MSG and 2
mmol/L of PLP 1158.6 mg/L 40 ◦C; pH of 7.0 for 48 h [140]

L. plantarum
HUC2W MRS + 4% MSG 3.92 g/L at 37 ◦C for 24 h [141]

Abbreviations: MRS, de Man, Rogosa and Sharp medium; GI, gastrointestinal; CCARM, Culture Collection of
Antimicrobial Resistant Microbes; CDM, chemical defined medium; HT-29/5FUR, human colon adenocarcinoma
cell line (HT-29) resistant to 5-fluorouracil (5-FU); MSG, mono-sodic glutamate; TLC, thin layer chromatography;
SM, synthetic medium (consisting of 100 g/L Yeast extract, 10 g/L dextrose, and 22.5 g/L MSG); PLP, pyridoxal
5′-phosphate; GYP, Glucose-yeast extract-peptone; GAD, glutamic decarboxylase.

The most commonly used culture medium is MRS (de Man, Rogosa and Sharp), a
standard substrate designed to promote LAB growth [142]. Monosodium glutamate (MSG),
as a source of L-glutamine, is usually supplemented directly into MRS to enhance GABA
synthesis from L. plantarum strains [82].

However, the optimal concentration of MSG depends on the bacterial strain. For
example, Yogeswara et al. investigated the GABA production from L. plantarum FNCC
260 strain using a wide range of MSG concentrations. The results showed a maximum
GABA production (1226 mg/L) by adding 100 mM of MSG to the MRS medium and then
incubating at 37 ◦C for 108 h [131].

In another study, after 18 h at 34 ◦C, L. plantarum K74 produced 134.52 µg/mL of
GABA in MRS broth containing 1% MSG, 212.27 µg/mL of GABA in MRS broth containing
2% MSG, and 234.63 µg/mL of GABA in MRS broth containing 3% MSG [135].

Gomaa et al. examined the effect of MSG and PLP on GABA production from L. brevis
and L. plantarum strains, isolated from Egyptian dairy products. The culture medium
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used was the following composition: 50 g/L glucose; 25 g/L soya peptone; 0.01 g/L
MnSO4C4H2O and 2 mL Tween 80. The results of the aforementioned study show that
the amount of extracellular GABA produced is proportional to the amounts of MSG
and PLP added. Co-culture of L. brevis and L. plantarum produced the highest amount
of GABA, 160.57 mM and 224.69 mM, in the presence of 750 M MSG and 200 µM PLP,
respectively [143].

Park et al. have obtained high amounts of GABA (19.8 g/L) at 30 ◦C from L. plantarum
EJ2014 using the following culture medium: 100 g/L Yeast extract, 10 g/L dextrose, and
22.5 g/L (w/v) MSG [124].

In a study conducted by Shan et al. L. plantarum NDC75017 produced 3.2 g/kg of
GABA, at 30 ◦C for 48 h, in skimmed milk with 80 mM MSG and 18 µM PLP [144].

As evidenced in all the studies mentioned above, the amount of monosodium gluta-
mate initially available is an important factor in the production of GABA [145].

In fact, as also confirmed in other studies cited below, an initial excessive concentration
of MSG may inhibit cell growth or inhibit GABA production due to osmotic stress, while a
low concentration of MSG may not meet the requirements of high GABA production [146].
As far as the incubation time is concerned, we have observed that the amount of GABA after
reaching the maximum amount after a certain period of time, tends to decrease subsequently.
This effect may be caused by a lower availability of precursors (e.g., MSG) but also be
linked to degradation, by GABA aminotransferase, of GABA to succinic semialdehyde,
which is subsequently converted by succinic semialdehyde dehydrogenase for entry into
TCA [11].

Temperature and pH have been reported as the main environmental factors that can
modulate gad gene expression [147]. Therefore, adjusting pH and temperature during
fermentation is a very effective way to increase microbial GABA production.

LAB employ a complex but efficient combination of different acid resistance sys-
tems [148].

Among the various types of tolerance mechanisms to the acidic environment, the GAD
system is considered one of the most effective acid mitigation pathways.

In this system, intracellular protons are consumed through decarboxylation of gluta-
mate in the cytoplasm [74].

Shin et al. showed that 40 ◦C and a pH of 4.5 were the best parameters for the
expression of gadB gene encoding GAD from L. plantarum ATCC 14,917 in E. coli BL21
(DE3) [149].

Variation in pH enhances activation of the GAD pathway since it is considered one of
the mechanisms that preserve cell homeostasis [150]. Wu et al. evaluated the performance
of the GAD pathway in comparison with other acid resistance mechanisms and highlighted
how the GAD system is an essential mechanism to maintain metabolic activity under intra-
and extracellular acidity [79].

Therefore, the pH of the environment is crucial for the synthesis of GABA. However,
it seems that this depends on the bacterial strain [149].

Zhang et al. tested how initial pH affects GABA production by L. plantarum BC114. The
best concentration of GABA was detected at pH 5.5, obtaining double the amount of GABA
yielded at pH 4.0 [132]. Similar results have been obtained in other studies [129,139,140].

Tajabadi et al. found that after 60 h L. plantarum Taj-Apis362 produces the highest
amount of GABA (7.15 mM; 0.74 g/L) at 36 ◦C in modified MRS: 497.97 mM glutamate,
pH 5.31 [129]. Tanamool et al. found that the highest GABA production (15.74 g/L) by L.
plantarum L10-11 cultured in MRS with 4% MSG at 30 ◦C was obtained within 48 h, with a
pH range of 5–6 [139].

Very recently, Cai et al. reported that L. plantarum FRT7 after 48 h produced approxi-
mately 1.2 g/L in MRS supplemented with 3% MSG and 2 mmol/L of PLP at 40◦ C with
an initial pH of 7.0 [140].

In a recent study conducted by Kim J et al., the optimal conditions for efficient
GABA production by L. plantarum FBT215 in modified MRS broth containing 50 mM
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MSG were investigated. Therefore, the optimal culture temperature for GABA production
(103.67 µg/mL) was 37 ◦C and this efficiency was highest at pH 7.5 and 8.5 and decreased
under acidic conditions [123].

Instead, Yogeswara et al. found that GABA production from L. plantarum FNCC
260 was greatly improved under acidic conditions (pH 3.8) in Pigeon pea (Cajanus cajan)
milk fermentation [151]. This result is in line with a previous study by Yogeswara et al.
where maximum GABA production from L. plantarum FNCC 260 in MRS was observed at
pH 4.0 [131].

Regarding the temperature, Yang et al. reported that GAD functionality is directly
related to an increase in temperature until it reaches an optimum, after which GAD activity
decreases until thermal inactivation [152]. Another study with L. plantarum showed an
increase in GAD activity up to 40 ◦C, achieving optimal GABA production at 35 ◦C [144].

Importantly, L. plantarum is a mesophilic bacterium with an optimal growth tempera-
ture of around 37 ◦C. This evidence explains why, in all the studies cited in this review, the
optimal temperatures for maximum GABA production were in the range of 30–40 ◦C.

GABA Production by L. plantarum in Fermented Foods

According to the available data, naturally occurring GABA in foods is usually
low [85,153]; therefore, the food industry has shown great interest in GABA-enriched
foods, through microbial fermentation.

Currently, L. plantarum is a LAB species commonly found in various fermented foods
and beverages. Therefore, some food scientists have proposed strains of L. plantarum as
starters in single culture (Table 2) or in co-culture with other microbial species (Table 3)
to enrich GABA in some traditional or innovative fermented foods, particularly from
plant-based sources.

Table 2 summarizes the results obtained from the use of L. plantarum as a single starter
in different fermented foods.

Table 2. GABA production by Lactiplantibacillus plantarum (previously Lactobacillus plantarum) in
different fermented foods.

Microorganism Isolation
Source

Fermented
Food

GABA
Production Comments Refs.

L. plantarum C48 cheese

buckwheat,
amaranth,

chickpea and
quinoa flours

504 mg/kg in bread Good organoleptic properties of bread
enriched of GABA [154]

L. plantarum
DSM19463 cheese grape must 8.9 g/kg in fermented

grape must
In vitro potential anti-hypertensive effect

and dermatological protection. [155]

L. plantarum
KB1253 pickles tomato juice 41 mM GABA-enriched fermented tomato juice [156]

L. plantarum KCTC
3105 Unknown soya milk 424.67 µg/g DW

Soya yogurt with high levels of GABA,
produced using a co-culture of
L. acidophilus, L. plantarum and

L. brevis strains

[157]

L. plantarum
NDC75017 fermented milk 12% skim milk

+ 80 mM MSG 314.56 mg/100 g Good flavor and texture of fermented
milk-based product [144]

L. plantarum
NTU102 cabbage pickles 8% skim milk +

1% (w/v) MSG 629 mg/L

together with GABA, production of ACEI
was also found, suggesting a possible use

of fermented products as potential
functional food (hypertension regulation)

[158]

L. plantarum C48 cheese wholemeal
wheat flour 100 mg/K low ACE inhibitory activity (15%) due to

synthesis of ACEI [159]

L. plantarum
GB01-21

cassava
powder

80.5 g/L
2.68 g/L h (productivity)

two-step production with Corynebacterium
glutamicum G01 (to produce

glutamate) and L. plantarum GB01-21
[152]
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Table 2. Cont.

Microorganism Isolation
Source

Fermented
Food

GABA
Production Comments Refs.

L. plantarum
Dad-13 FNCC pigeon pea

milk 5.6 g/L
The supplementation of sucrose, MSG,

and whey isolate significantly increased
GABA levels in fermented pigeon pea

[151]

L. plantarum NRRL
B-59151

FOE and
HFOE
(oat)

GABA content:
7.35 mg/100 g in FOE

and 8.49 mg/100 g
in HFOE

Fermented oat
demonstrated antidiabetic

effects
[160,161]

Lactobacillus
plantarum
HU-C2W

litchi juice 134 mg/100 mL Fermentation condition: 37 ◦C for 40 h [141]

L. plantarum DW12 fermented red
seaweed

red seaweed +
1% MSG 4 g/L

Fermentation at 30 ◦C after 60 days.
Substrate composition: red seaweed, cane

sugar and potable water in a ratio of
3:1:10, pH 6

[162]

L. plantarum DW12 fermented red
seaweed

red seaweed +
0.5% MSG 1284 mg/L

Fermentation at 30 ◦C after 60 days.
Substrate composition: red seaweed, cane

sugar and potable water in a ratio of
3:1:10, pH 6

[163]

L. plantarum DW12 fermented red
seaweed

MCW + 0.5%
MSG 12.8 mg/100 mL

MCW supplemented with 0.5% MSG and
1% sugarcane, pH 6 after 72 h of

fermentation
[164]

Abbreviations: DW, dry weight; MSG, mono-sodic glutamate; ACEI, angiotensin converting enzyme inhibitor;
ACE, angiotensin converting enzyme; FNCC, Food and Nutrition Culture Collection; HFOE, fermented oat +
honey; FOE, Fermented Oat; MCW, mature coconut water.

In a recent study [151], it has been proposed a drink prepared from germinated pigeon
pea (Cajanus cajan) and fermented using probiotic L. plantarum Dad-13, isolated from dadih,
fermented buffalo milk [165]. C. cajan commonly known as pigeon pea, red gram or gungo
pea is an important grain legume crop, particularly in rain-fed agricultural regions in the
semi-arid tropics, including Asia, Africa and the Caribbean [166].

Additional nutrients such as MSG 1%, whey 4%, and sucrose 3% were added to pigeon
pea extract and fermentation was carried out in a closed container at 30 ◦C for 48 h without
shaking. Maximum GABA production (5.6 g/L) was obtained after 12 h of fermentation.

Wang et al. have shown that it is possible to increase the production of GABA in
fermented lychee juice by L. plantarum HU-C2W [141]. Litchi (Litchi chinensis Sonn.) is a
well-known tropical fruit originating from Asia [167]. After 40 h at 37 ◦C, a GABA content
of 134 mg/100 mL was observed [141].

In various studies, L. plantarum DW12, isolated by Ratanaburee et al. from a fer-
mented red seaweed, has been successfully used as probiotic and starter culture to pro-
duce fermented foods and beverages due to its safety aspects and ability to produce
GABA [83,162–164].

The results obtained in [162] reported that L. plantarum DW12 produces 4 g/L GABA
in red seaweed fermentation (red seaweed-cane sugar-potable water = 3:1:10, w/w/v) at
30 ◦C after 60 days. The red seaweed Gracilaria fisheri is commonly found along the coast of
south-east Asian countries and used as a fresh vegetable and as a dried product [168].

In another study conducted by Hayisama-Ae et al., a novel functional beverage was
produced from red seaweed Gracilaria fisheri (known as Pom Nang seaweed in Thailand),
using L. plantarum DW12 as a starter culture [163]. Fermented red seaweed beverage was
produced as follows: red seaweed, cane sugar and potable water in a ratio of 3:1:10 with an
addition of 0.5% of MSG and an initial pH of 6.0. After 60 days the fermented red seaweed
beverage (FSB) contained 1.28 g/L GABA.

A study conducted by Kantachote et al. aimed to add value to mature coconut
water by using the probiotic L. plantarum DW12 for the production of GABA-enriched
fermented beverages. Coconut water, with an initial pH of 5.0, was supplemented with
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0.5% monosodium glutamate and 1% sugarcane and fermented from L. plantarum DW12.
After 48 h, the fermented product contained 128 µg/mL of GABA [164].

Coconut (Cocos nucifera L.) is an important fruit tree found in tropical regions and its
fruit can be made into a variety of foods and beverages [169].

Zarei et al. investigated the potential of GABA production by a L. plantarum strain in
whey protein beverage [170], building on previous research, in which this strain, isolated
from traditional doogh (yogurt, herbs and water) from west region of Iran, have shown
a high concentration of GABA production (170.492 ppm) in MRS broth [171]. The best
growing conditions that caused the highest GABA production were temperature 37 ◦C,
pH 5.19, glutamic acid 250 mM, and time 72 h. The highest amount of GABA (195.5 ppm)
after 30 days of storage was detected in whey protein drinks containing banana concentrate
and stored at 25 ◦C.

L. plantarum NDC75017 (isolated from a traditional fermented dairy product from
Inner Mongolia, China) was used as a starter for fermentation at 36◦of Skim Milk and
80 mM L-MSG and 18 µM PLP. Under these conditions, GABA production was about
310 mg/100 g [144].

In a study conducted by Di Cagno et al., the use of L. plantarum DSM19463 (formerly L.
plantarum C48) for the production of a functional grape-based beverage was evaluated [155].
The grape must, diluted with water, was enriched with yeast extract and 18.4 mM of L-
glutamate and left to ferment at 30 ◦C. After 72 h L. plantarum DSM19463 synthesizes
4.83 mM of GABA [155].

In another study, the L. plantarum C48 has been used in sourdough fermentation [154].
The use of a blend of buckwheat, amaranth, chickpea and quinoa flours (ratio 1:1:5.3:1)

subjected to sourdough fermentation by L. plantarum C48 allowed the manufacture of a
bread enriched with GABA (504 mg/kg) [159]. The sourdough starter obtained with L.
plantarum C48 had GABA concentrations of 12.65, 100.71 and 44.61 mg/kg for white, whole
wheat and rye flours, respectively [159].

In another recent study, L. plantarum VL1 was used for the production of Nem Chua
(traditionally Vietnamese fermented meat product). Fresh pork without fat was minced
and mixed with 5% salt, 20% sugar, and 1% sodium glutamate. L. plantarum VL1, was
added to the mixture and after 72 h of fermentation at 37 ◦C the meat mixture (pH 4.59)
contained 1.1 mg/g of GABA [172].

In a study conducted by Nakatani et al. L. plantarum KB1253, isolated from Japanese
pickles, is used in GABA-enriched tomato juice production [156]. This strain produces
41.0 mM GABA from 46.8 mM glutamate in tomato juice (pH 4.0, 20◦Bx) incubated for 24 h
at 35◦.

In another study conducted by Rezaei et al., the GABA-producing strain L. plantarum
IBRC (10817) was used in the production of a probiotic beverage made from black grapes.
After 21 days, the fermented beverage had a concentration of 117.33 mg/L GABA [173].

L. plantarum K16 isolated from kimchi has been used to valorize some agri-food by-
products [174], obtained from tomatoes, apples, oranges and green peppers. The agri-food
by-products were enriched with 25 g/L of glucose, 12 g/L of yeast extract and 500 mM
of MSG. Subsequently, the pH was adjusted to 5.5, and the media were inoculated with L.
plantarum K16 and incubated at 34 ◦C for 96 h. L. plantarum K16 produced the following
concentrations of GABA: 1166.81 mg/L, 1280.01 mg/L, 1626.52 mg/L and 1776.75 mg/L in
apple, orange, green pepper and tomato by-products, respectively [122].

GABA is an important molecule naturally present in food matrices of plant and animal
origin. However, plant-based foods contain a comparatively lower amount of GABA than
animal-based foods [8,175].

Considering its potential health benefits, the studies mentioned above have shown that
it is possible to increase the amount of GABA not only in some animal products but also in
some fermented plant-based foods and beverages, improving their functional properties.
In particular, it has been shown that through the use of L. plantarum as a single starter, it
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has been possible to produce fermented foods from legumes, cereals, fruit juices and some
agri-food by-products containing high amounts of GABA.

Besides its use as a single culture, the use of L. plantarum in co-culture (co-fermentation
or two-stage fermentation) with other microbial strains belonging to different species is
gaining increasing interest. Table 3 summarizes the relevant reports in this field.

In a study conducted by Hussin et al. [146], the effect of different carbohydrates
was investigated on enhancing GABA production in yogurt cultured using a mixture of
UPMC90 and UPMC91, self-cloned LAB strains (L. plantarum Taj-Apis362, previously iso-
lated from the stomach of honeybee Apis dorsata and engineered by Tajabadi et al. [129,176]).
Glucose induced more GABA production (58.56 mg/100 g) compared to inuline, FOS
e GOS as prebiotics (34.19–40.51 mg/100 g), and the control sample with added PLP
(48.01 mg/100 g) [146].

In other similar study, conducted by Hussin et al., self-cloned and expressed L. plan-
tarum Taj-Apis362 recombinant cells, UPMC90 and UPMC91 were used to improve the
GABA production in yogurt. Fermentation of skimmed milk added with glutamate
(11.5 mM) after 7.25 h at 39.0 ◦C produced GABA-rich yogurt (29.96 mg/100 g) [177].

While many studies reported the use of single-strain LAB to generate GABA, only a
few reported the production of GABA by co-culturing different bacterial strains [178].

Table 3. GABA production by Lactiplantibacillus plantarum (previously Lactobacillus plantarum) in
co-culture with other microbial species.

L. plantarum Strains Cooperative Species/Strain Food or
Culture Medium

GABA
Production Notes Refs.

L. plantarum EJ2014 B. subtilis HA pumpkin 1.47% Two-step
fermentation [179]

L. plantarum K154 B. subtilis HA
turmeric (Curcuma

longa)/roasted soybean
meal mixture + 5% MSG

1.78% Two-step
fermentation [180]

L. plantarum K154 B. subtilis HA
defined medium fortified

with glutamate and
skim milk

4800 µg/mL Two-step
fermentation [181]

L. plantarum K154 Leuconostoc mesenteroides SM Water dropwort 100 mM Two-step
fermentation [182]

L. plantarum BC114 S. cerevisiae SC125 mulberry beverage brewing 2.42 g/L Co-fermentation [93]

L. plantarum GB01-21 C. glutamicum G01 cassava powder 80.5 g/L Two-step
fermentation [152]

L. plantarum
Taj-Apis362

Streptococcus thermophilus and
Lactobacillus delbrueckii ssp. bulgaricus

Skim milk + 2% glucose
and 11.5 mM MSG 59.0 mg/100 g Co-fermentation [177]

L. plantarum K154 Ceriporia lacerata broth fortified with skim
milk and 2% MSG 15.53 mg/mL Two-step

fermentation [127]

L. plantarum
(KCTC 3105)

Lactobacillus brevis OPY-1
L. acidophilus
KCCM 40265

Soya milk 424.67 µg/g Co-fermentation [157]

L. plantarum L10-11 Lactococcus lactis spp. lactis and
Lactococcus lactis spp. cremonis milk 11.3 mg/100 mL Co-fermentation [183]

L. plantarum JLSC2-6 Levilactobacillus brevis YSJ3 cauliflower stems 35.00 mg/L Co-fermentation [184]

L. plantarum MCM4 Lactococcus lactis subsp. lactis whey-based formulate 365.6 mg/100 mL Co-fermentation [185]

L. plantarum DSM749 L. brevis
NM101-1 PM 224.69 mM Co-fermentation [143]

L. plantarum C48

Lactobacillus paracasei 15N,
Streptococcus

thermophilus DPPMAST1,
Lactobacillus delbruecki subsp.

bulgarigus DPPMALDb5

Milk + 100 or mg/L of olive
vegetation water phenolic

extract
67 mg/L Co-fermentation [186]

Abbreviations: MSG, mono-sodic glutamate; PM, production medium (50 g/L glucose; 25 g/L peptone; 0.01 g/L
MnSO4. 4 H2O; 2 mL Tween 80; 200 µM PLP); PLP, pyridoxal 5-phosphate.
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In a study carried out by Lim et al., the co-fermentation of turmeric (Curcuma longa)/roasted
soybean meal mixture, containing 5% MSG, was optimized to fortify it with bioactive com-
pounds including GABA [180]. Bacillus subtilis HA was used for the first fermentation and
L. plantarum K154 isolated from fermented kimchi was used for the second fermentation.
The results showed that the amount of GABA increased from 0.01% before fermentation to
1.78% after the second fermentation [128].

In a further study, a two-step fermentation of pumpkin (Cucurbita moschata) was
performed using B. subtilis HA and L. plantarum EJ2014, with the aim of producing a novel
food ingredient enriched with GABA [179]. Bacillus subtilis HA (KCCM 10775P) strain was
isolated from cheonggukjang (traditional Korean fermented soybean) while L. plantarum
EJ2014 (KCCM 11545P) was isolated from rice bran [187]. The co-fermented pumpkin
contained 1.47% GABA. Bacillus subtilis HA was also used in a two step-fermentation
with L. plantarum K154, obtaining a high level of GABA production (about 4800 µg/mL)
in a defined medium fortified with glutamate and skim milk [181]. Instead, Yang et al.
proposed a two-step method to produce GABA from cassava powder using C. glutamicum
G01 and L. plantarum GB01-21 [152]. In this study, glutamic acid was first obtained from
cassava powder by saccharification and simultaneous fermentation with C. glutamicum
G01, followed by biotransformation of glutamic acid into GABA with resting cells of L.
plantarum GB01-21. C. glutamicum G01 was isolated from soil and L. plantarum GB01-21
was obtained through multi-mutagenesis as described in our previous study [188]. After
optimizing the reaction conditions (35 ◦C, pH 7), the maximum concentration of GABA
reached 80.5 g/L [152].

In another study, two self-cloned L. plantarum Taj-Apis362 strains possessing high
intracellular GAD activity (UPMC90) and high extracellular GAD activity (UPMC91) and a
wild-type L. plantarum Taj-Apis362 (UPMC1065) were co-cultured with a starter culture (a
mixture of Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus) to produce
GABA-rich yogurt [129].

The wild-type L. plantarum Taj-Apis362 (UPMC1065) was previously isolated from the
stomach of a honeybee Apis dorsata [176] and used as a host for GAD gene overexpression
to produce UPMC90 and UPMC91 strains. After 7 h of fermentation at 39.0 ◦C, the starter
co-culture in skim milk with 2% glucose and 11.5 mM glutamate produces 59.00 mg/100 g
of GABA.

Water dropwort (Oenanthe javanica DC), a common aquatic perennial plant widely cul-
tivated in most Southeast Asian countries, was co-fermented with Leuconostoc mesenteroides
SM and L. plantarum K154 to produce a novel functional food ingredient enriched with
GABA (100 mM) [182]. The acidity of the fermented broth, the low concentration of sugar
remaining for the second fermentation and the presence of nitrogen sources, stimulated
L. plantarum K154 to produce GABA. These data seem to confirm that the production of
GABA by bacteria is a bacterial mechanism of response towards acid stress [74].

Woraratphoka et al. used a co-culture of L. plantarum L10-11, Lactococcus lactis spp.
lactis and L. lactis spp. cremonis in fresh cheese production [183]. L. plantarum L10-11
which was isolated from Thai fermented fish (Plaa-som) while Lactococcus lactis spp. lactis
and L. lactis spp. cremonis they were commercial strains (Lyofast MWO030, SACCO,
Italy). After 18 h the fermented milk by single-L10-11 and co-L10-11 contained 1.21 and
11.30 mg/100 mL of GABA, respectively. Thus, this suggested that in the co-culture test,
by transforming lactose into lactic acid, the commercial strains decreased the pH value,
creating a favorable condition for the enzymatic activity (GAD) of L. plantarum L10-11 that
catalyzes the conversion of glutamate to GABA. Therefore, co-fermentation by L. plantarum
L10-11 with other LAB strains could possibly increase the rate of GABA production [183].

In a previous study, it was reported that L. plantarum L10-11 was clearly involved in
the conversion of MSG to GABA and the highest GABA production was obtained when
the initial pH of MRS was in the range of 5.0–6.0 [139].

The data emerging from the above studies confirm that the optimal pH for GABA
production by L. plantarum is placed in an acidic pH range of 4–6 [3].
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Zhang et al. evaluated the effects on GABA production by co-culture of Levilactobacillus
brevis YSJ3 and L. plantarum JLSC2-6. The results indicate that co-culturing these two strains
can improve GABA yield (35.00 ± 1.15 mg/L) in fermented cauliflower stems (Brassica
oleracea L. var. botrytis) [184].

Functional milk-based beverages enriched with 100 mg/L and 200 mg/L of olive
vegetation water phenolic extract (OVWPE) were obtained via fermentation at 40 ◦C using
L. plantarum C48, L. paracasei 15N, S. thermophilus DPPMAST1 and L. delbruecki subsp.
bulgarigus DPPMALDb5. The highest amount of GABA (67 mg/L) was detected after
30 days at 4 ◦C [186].

The results obtained from the above studies have shown that co-culture fermentation
using L. plantarum with other bacterial species is a novel technology to improve fermen-
tation quality and promote GABA synthesis. The increase in GABA production by L.
plantarum in co-culture with other bacteria may be related to the greater availability of
nutrients released by the metabolism of the bacterium used in co-cultures [152,182] which
also generates acidic end products of fermentation, which accumulate in the extracellular
environment, increasing its acidity and thus promoting GABA synthesis [182–185].

Other studies, cited below, have shown that some L. plantarum strains improve GABA
production even when used in co-culture with fungi.

Co-fermentation of L. plantarum K154 and fungus Ceriporia lacerate efficiently produced
GABA (15.53 mg/mL) in a defined medium containing 3% glucose, 3% soybean flour, 0.15%
MgSO4, and 5% rice bran for 7 days at 25 ◦C [127].

The increase in GABA production in co-culture could be related to the fact that C.
lacerate, thanks to its enzymatic activities (protease, α-amylase, cellulase, β-1,3-glucanase
and phosphatase) [189], increased the availability of nutrients useful for the growth and
survival of L. plantarum.

In a study conducted by Zhang et al., S. cerevisiae SC125 and L. plantarum BC114 were
used in co-culture to ferment mulberry (Morus alba L.) and produce a functional beverage
enriched with GABA [93]. L. plantarum BC114 and S. cerevisiae SC125 were inoculated in
pasteurized mulberry substrate with 5 g/L L-glutamate and incubated at 30 ◦C for 72 h.

Compared to single fermentations with L. plantarum BC114 and S. cerevisiae SC125,
which resulted in low GABA production (1.45 g/L and 1.03 g/L, respectively), co-culture
produced a higher amount of GABA (2.42 g/L) [93].

The results obtained in this study confirm that the increased ability of L. plantarum
to synthesize GABA could be linked to an increased availability of nutrients produced by
yeasts, in particular, amino acids [190].

Therefore, co-cultures of selected fungi with GABA-producing strains belonging to
L. plantarum species may be a promising approach for the production of GABA-enriched
foods, and therefore, this biotechnological application would also merit further scientific
investigation.

5. Conclusions and Future Perspectives

In recent decades, consumers’ needs in the field of food production have increased
significantly, not only in terms of organoleptic aspects but also in terms of health and
well-being. Among the various functional compounds contained in foods, GABA has
attracted more and more attention due to its multiple health benefits.

Although GABA is present in many foods such as fruits, vegetables and grains, its
content in them is relatively low. In this context, GABA-fortified foods have been signifi-
cantly considered by researchers for their important biological and functional properties.
At present, GABA can be synthesized using different methods, including chemical and
enzymatic synthesis, plant enrichment, and microbial production.

The numerous studies conducted on this topic highlighted that GABA production
from LAB can play an important role in the food industry. In particular, fermentation by
GABA-producing L. plantarum strains can be considered a promising possibility to increase
the nutritional, sensory and functional properties of specific fermented foods.
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The studies cited in this review have shown that the optimal conditions for GABA are
significantly influenced by substrate composition and environmental conditions. Therefore,
it is essential to optimize these parameters to improve the production of GABA, according
to the production process adopted to obtain a specific fermented food.

Considering that microbial fermentation is an important technology to increase the
GABA content in some fermented foods, we believe that the selection of new high-GABA-
producing strains belonging to the species L. plantarum should remain a focus of inter-
est in future research because it can offer concrete opportunities for the design of new
functional foods.
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