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Abstract: Zanthoxylum (Sichuan pepper), with its rich cultivars, has long been widely cultivated in
China for its unique seasoning and medicinal uses, but most of its cultivars have similar morphologi-
cal characteristics. Therefore, we hypothesized that the genetic diversity of Zanthoxylum cultivars is
low because of their apomixis and long cultivation history. In this study, we aimed to investigate
the genetic diversity of three Zanthoxylum species on the cultivar level based on express sequence
tag–simple sequence repeat (EST-SSR) primers. In total, 121 samples of three Zanthoxylum species
(Z. bungeanum, Z. armatum and Z. piperitum) were collected from different areas in China for genetic
diversity analysis. A total of six specificity and polymorphism EST-SSR primers, which we selected
from among 120 primers based on two transcriptomes (Z. bungeanum, Z. armatum) in our earlier study,
were used to evaluate genetic diversity based on capillary electrophoresis technology. The results of
our analysis using the unweighted pair group method with arithmetic mean (UPGMA) indicated that
most of the samples are clustered in one clade in the UPGMA dendrogram, and the average genetic
distance was 0.6409. Principal component analysis (PCA) showed that Z. piperitum may have a closer
genetic relationship with Z. bungeanum than with Z. armatum. An analysis of molecular variation
(AMOVA) showed that the genetic variation mainly stemmed from individuals within populations;
the genetic differentiation coefficient (PhiPT) was 0.429, the gene flow (Nm) between populations was
0.333, and the differences among populations were not significant (p > 0.001). For the intraspecific
populations of ZB, the percentage of genetic variation was 53% among populations and 47% within
populations, with non-significant differences between populations (p > 0.001). The genetic differentia-
tion coefficient (PhiT) was 0.529, and the gene flow (Nm) was 0.223. For the intraspecific populations
of ZA, the results indicated that the percentage of genetic variation was 29% among populations and
71% within populations, with non-significant differences between populations (p > 0.001); the genetic
differentiation coefficient (PhiPT) was 0.293, and the gene flow (Nm) was 0.223. Through genetic
structure analysis (GSA), we predicted that these 121 samples belonged to two optimal subgroups,
which means that all the samples probably originated from two gene pools. Above all, this indicated
that the genetic diversity of the 121 Zanthoxylum samples was relatively low at both the species and
cultivar levels, a finding which was consistent with our initial assumptions. This study provides a
reference, with molecular-level data, for the further identification of Zanthoxylum species.
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1. Introduction

Sichuan pepper belongs to the genus Zanthoxylum (family Rutaceae), which includes a
wide variety of shrubs and trees. To date, more than 250 species of Zanthoxylum have been
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identified, most of which are distributed in tropical and subtropical Oceania, Africa, and
Asia [1–3]. In China, 41 species belonging to the genus Zanthoxylum have been identified,
25 of which are endemic [4]. In addition, several major species have been cultivated for
their aromatic, edible, and medicinal properties [5–8]. Cultivars of Zanthoxylum species are
currently being cultivated in China due to their economic and scientific value. Among these
species, Zanthoxylum bungeanum Maxim. and Zanthoxylum armatum DC. are the main species
of Sichuan pepper in mainland China [9]. However, an increasing number of cultivars of Z.
bungeanum and Z. armatum are being domesticated in China. Some species and cultivars can
be easily confused because of their similar morphological characteristics [10]. For instance,
“Qinghuajiao” in trade is often regarded as Z. schinifolium, but according to the research,
the majority of “Qinghuajiao” products are mostly Z. armatum [9,11]. Likewise, “Tengjiao”,
“Jinyang Qinghuajiao” and “Jiuye Qinghuajiao” are all cultivars of Z. armatum, although
they are generally treated as different species [12]. For most of the plants, their isolated
geographical environments and different climates usually lead to consolidated differences
between taxa. However, most Zanthoxylum species exhibit apomixis, in which differences
between cultivars may be negligible. Therefore, we hypothesized that the genetic diversity
of Zanthoxylum species is low on the cultivar level because of their apomixis and stable
genotypes, although they have many different names and are distributed in several different
areas [13,14].

Unfortunately, the published literature on the genetic diversity of Zanthoxylum species
and the relationship between their morphological traits and genetic diversity is lacking.
The existing studies have mainly focused on traditional uses such as medicine [15–17],
phytochemical constituents [18–20] and antioxidant activities [21–23]. However, there are
few studies on genetic diversity. Medhi et al. (2014) utilized random amplified polymor-
phic DNA (RAPD) and inter-simple sequence repeat (ISSR) analysis to explore the genetic
diversity of three Zanthoxylum species, and the results revealed the presence of a significant
variability within and between the different Zanthoxylum species [24]. Sun et al. (2010)
investigated Z. schinifolium ecotypes using the common primers of the ITS region [25].
Feng et al. (2020) investigated the genetic diversity, population structure and evolutionary
history of Zanthoxylum, and the results indicated that the Z. bungeanum found in China
most likely originated from southeastern Gansu Province [26]. Kim et al. (2017) devel-
oped microsatellite markers as tools for the investigation of Z. schinifolium. They found
15 polymorphic and 3 monomorphic microsatellite markers for the genetic study of Z.
schinifolium. Furthermore, 3 of the 11 cross-amplified primers could distinguish between
two Zanthoxylum species [27]. Su et al. (2022) investigated the developmental mechanism
of Z. bungeanum prickles via morphological and multiomic analyses. The results showed
that nine differentially expressed genes related to prickle development were screened and
validated [28]. Hence, it is highly important to develop a reliable method for detecting the
genetic diversity of Zanthoxylum species and cultivars.

The EST-SSR marker with conserved sequences has been utilized to design primers
with a combination of SSR and transcriptome techniques. This method can be used to
conveniently and rapidly screen samples by relying on more accurate and specific primers
for genetic diversity, classification and fingerprinting [29]. Moreover, this approach has
previously been used for various species, such as wheat [30], grape [31], rice [32], soy-
bean [33] and orange [34]. Such studies on Zanthoxyum have also been reported, in which
similar techniques based on the transcriptome were applied, but with different aims [35–37].
Therefore, we sequenced transcriptomes of both Z. bungeanum and Z. armatum, hoping
to screen EST-SSR primers for a genetic diversity analysis of the Zanthoxylum cultivars
examined in our previously published article [38]. A total of 36.76 G high-quality clean data
were screened for the subsequent analysis, while 64,944 and 75,669 unigenes were obtained
from Z. bungeanum and Z. armatum, respectively. In total, 12,746 SSR loci were identified in
10,595 unigenes of Z. bungeanum, and 15,096 SSR loci were identified in 12,612 unigenes
of Z. armatum. A total of 60 pairs of EST-SSR primers were randomly selected from both
Z. armatum and Z. bungeanum, respectively. Six pairs showed significant specificity and
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polymorphism in 12 samples [38]. In this study, these six selected EST-SSR primers were
used to investigate the genetic diversity of 121 Zanthoxylum cultivars based on the UPGMA,
PCA, AMOVA and GSA. We aimed to reveal the genetic diversity among these Zanthoxylum
cultivars through the EST-SSR method.

2. Materials and Methods
2.1. Materials

The 121 Zanthoxylum samples (dried pericarp or fresh leaves), which were collected
from different provinces in China from 2015 to 2017, were tested for genetic diversity
(Figure 1). These 121 samples included 67 Z. bungeanum (ZB) samples, 47 Z. armatum
(ZA) samples and 7 Zanthoxylum piperitum De Candolle (ZP) samples [39] (Supplementary
Table S1). All samples were authenticated by Professor Meng Ye, Professor of College
of Forestry, Sichuan Agricultural University. In particular, samples ZB-HCDHP (Irr)-1,
ZB-HCDHP (Irr)-2, and ZB-HCDHP (Irr)-3 (Accession: 9–11) were irradiated; sample ZB-X
(MF) (Accession: 67) only had male flowers. All samples were selected at random with
three replicates, frozen in liquid nitrogen and stored at −80 ◦C after being returned to the
laboratory.

Figure 1. Map showing the sites from which 121 Zanthoxylum samples were collected for genetic
diversity analysis. (A): Distribution of sampling sites throughout China. Scale bar = 0–2160 km.
(B): Distribution of sampling points in locally zoomed maps. Scale bar = 0–400 km. ZB (67), ZA (47),
ZP (7). ZB: Zanthoxylum bungeanum. ZA: Zanthoxylum armatum. ZP: Zanthoxylum piperitum. Green
pot: sample collection location. a: Three samples, Z. bungeanum (cultivars, accession: 9–11). b: Sixty-
three samples, Z. bungeanum: (56 cultivars, accession: 12–67); Z. piperitum (7 cultivars, accession:
115–121). c: One sample, Z. bungeanum (cultivar, accession: 8). d: Fourteen samples, Z. armatum
(14 cultivars and 3 wild-type, accession: 68–81). e: Two samples, Z. bungeanum (cultivars, accession:
4–5). f: Three samples, Z. armatum (wild-type, accession: 82–84). g: Ten samples, Z. armatum (cultivars,
accession: 86–88, 98–104). h: Nine samples, Z. armatum (cultivars, accession: 89–97). i: Three samples,
Z. bungeanum (2 cultivars, accession: 6–7); Z. armatum (1 cultivar, accession: 85). j: One sample,
Z. bungeanum (cultivar, accession: 1). k: 1 sample, Z. bungeanum (cultivar, accession: 2). l: Two
samples, Z. bungeanum (1 cultivar, accession: 3); Z. armatum (1 cultivar, accession: 113). m: One
sample, Z. armatum (cultivar, accession: 112). n: Seven samples, Z. armatum (cultivars, accession:
105–111). o: One sample, Z. armatum (cultivar, accession: 114). All sample information is shown in
Supplementary Table S1.



Curr. Issues Mol. Biol. 2023, 45 7186

2.2. DNA Isolation, PCR Amplification and Capillary Electrophoresis Fluorescence

Tissues (100 mg) of the 121 Zanthoxylum samples were used to extract DNA in accor-
dance with the protocol of the DNA Secure Plant Kit (Tiangen Biotech (Beijing) Co., Ltd.,
Beijing, China, DP320-02). The DNA was tested via 1% agarose gel electrophoresis under a
voltage of 120 V for 15 min.

The 20 µL reaction mixtures used for PCR amplification (Bio-Rad C1000 Touch, Her-
cules, CA, USA) comprised the following components: 14.8 µL of ddH2O, 0.4 µL of dNTPs,
2 µL of buffer, 0.3 µL of forward primer (20 µM), 0.3 µL of reverse primer (20 µM), 0.2 µL
of DNA and 0.2 µL of Taq polymerase. The PCR program used was as follows: predenatu-
ration at 94 ◦C for 5 min; 35 cycles of denaturation at 94 ◦C for 30 s, renaturation at 55 ◦C
for 35 s and extension at 72 ◦C for 40 s; and a final extension at 72 ◦C for 3 min, followed by
storage at 4 ◦C.

After mixing the formamide with the molecular weight internal standard at a volume
ratio of 100:1, 9 µL was taken and added to the upper sample plate, and then 1 µL of
10-fold-diluted PCR product was added. Then, capillary electrophoresis fluorescence was
carried out using an ABI PRISM 3730XL sequencer.

2.3. Polymorphism Assessment of Primers

The polymorphism of the six pairs of primers, including Nei’s gene diversity (h) [40],
Shannon’s information index (I) [41] and the percentage of polymorphic loci, was deter-
mined using POPGENE32 VERSION1.31 software. Nei’s standard genetic distance was
determined using the following formula [40]:

Jx =
r

∑
i=1

k

∑
j=1

X2
ij/n,

Jy =
r

∑
i=1

k

∑
j=1

Y2
ij/n,

Jyx =
r

∑
i=1

k

∑
j=1

XijYij/n

Xij, Yij: gene frequency of the k-th allele on locus r in populations X and Y.

2.4. Genetic Distance Calculation, UPGMA and PCA

The raw data obtained using the ABI PRISM 3730XL sequencer were analyzed using
Fragment (Plant) analysis VERSION 1.81 software in Gene Marker 2.2, and the fragment
sizes obtained were analyzed by comparing and analyzing the position of the molecular
weight internal standard in each lane with the position of the peak of each sample.

After the fragment sizes were confirmed, all the fragments were converted into a matrix
of “0” and “1”, representing no production and substantial production, respectively. Based
on the matrix of “0” and “1”, the genetic distances were calculated using NTSYSpc 2.11
software. The unweighted pair group method with arithmetic mean analysis (UPGMA) was
performed using MEGA7.0 software. Principal component analysis (PCA) was performed
using Canoco 4.5 software.

2.5. Analysis of Molecular Variance (AMOVA) and Genetic Structure Analysis (GSA)

Based on the fragment sizes of the PCR products, GenAlex 6.5 software [42] was
used to perform an analysis of molecular variance (AMOVA) in order to calculate the
genetic variation among the species and the coefficient of genetic differentiation (PhiPT),
thus revealing the genetic component of the population. For the entire individual genetic
structure analysis (GSA), a genetic structure calculation was performed using STRUCTURE
VERSION 2.3.4. based on the Bayesian algorithm method [43,44]. At the beginning of
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the procedure, the number of Markov chain Monte Carlo (MCMC) iterations was set to
100,000 based on the admixture–mixture model, while it was set to 100,000 iterations during
the burnin period and then 500,000 after the burnin period. Furthermore, the K-value
was set at 1–3, and each K-value iteration was run 10 times. The STRUCTURE results
were further processed using the Structure Harvester online tool and CLUMMP VERSION
1.1.2 software [45], and the final results were calculated and graphically presented using
EXCEL 2019.

3. Results
3.1. Primers Showed Excellent Specificity and Polymorphism

In our previous study, six primer pairs showed significant specificity and polymor-
phism in 12 samples. Therefore, the same six pairs of EST-SSR primers were used in this
trial to analyze 121 samples of Zanthoxylum species based on capillary electrophoresis
technology. Two pairs of primers originated from Z. armatum, whereas the other four
were derived from Z. bungeanum (Supplementary Table S2). We succeeded in amplifying
51 allelic loci, with a mean number of 8.5 polymorphic loci, using these primer pairs. The
average number of amplified allelic genes (Na) was two, the average number of effective
alleles (Ne) was 1.3323, the average Nei’s genetic diversity (h) was 0.2069, and the Shannon
information index (I) was 0.3273. These values clearly indicated that the EST-SSR primers
derived from the Zanthoxylum species themselves showed excellent specificity and poly-
morphism for the 121 samples used in this study. Among these primers, primer ZB26 (SSR
sequence: 5′-(GGA)5(GGT)5)-3′) showed better characteristics. Specifically, its number of
amplified allelic genes (Na) was two, its number of effective alleles (Ne) was 1.2738, the
Nei’s genetic diversity (h) was 0.1608, the Shannon information index (I) was 0.2543, and
the number of polymorphic loci was 13. Furthermore, polymorphisms of six primers for
every single species were investigated. Specifically, for Z. bungeanum, the mean number of
polymorphic loci was 6.8, the average number of amplified allelic genes (Na) was 1.8338,
the average number of effective alleles (Ne) was 1.3280, the average Nei’s genetic diversity
(h) was 0.1980, and the Shannon information index (I) was 0.3062. For Z. armatum, the mean
number of polymorphic loci was 4.8, the average number of amplified allelic genes (Na) was
1.5733, the average number of effective alleles (Ne) was 1.2147, the average Nei’s genetic
diversity (h) was 0.1305, and the Shannon information index (I) was 0.2059. For Z. piperitum,
the average number of polymorphic loci was 3.7, the average number of amplified allelic
genes (Na) was 1.3210, the average number of effective alleles (Ne) was 1.1630, the average
Nei’s genetic diversity (h) was 0.0954, and the Shannon information index (I) was 0.1466.

3.2. Most Samples Are Clustered in Correct Clade in the UPGMA Dendrogram

As shown in Figure 2, on the basis of genetic distances and the UPGMA method,
six pairs of primers were successfully used to cluster three species of the Zanthoxylum
genus in this study, which also indicated that the EST-SSR primers originating from the
Zanthoxylum genus themselves could distinguish between the Zanthoxylum species more
clearly. In terms of clustering branches, the three species ZB, ZA and ZP were generally
distinguished. Specifically, the whole samples were divided into three branches: one branch
contained mostly ZB samples, one branch included all the ZA samples, and the final branch
included all the ZP samples and coupled ZB samples [ZB-JLHJ, ZBYXGJ, ZBHYDHP(Sti),
ZB-LWHJ(Sti) and ZB-HCDHP(LN)-1]. The genetic distances of the 121 samples used in
this study ranged from 0 to 2.3811, with a mean of 0.6409. From an interspecies perspective,
the average genetic distance between ZB and ZA was 0.7856, that between ZB and ZP was
0.8147, and that between ZA and ZP was 1.8888. Within a species, the average genetic
distance was 0.5104 for all the ZB samples, 0.2333 for all the ZA samples, and 0.6481 for
all the ZP samples. The genetic distances of some samples were even 0, especially for the
ZA-TJ series. These data indicated that the genetic diversity of the Zanthoxylum samples in
this study was not high, and the genetic differentiation of the intraspecific cultivars was
relatively low, indicating that EST-SSR did not significantly discriminate between cultivars.
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All the ZP samples and several ZB samples (ZB-YXGJ, ZB-HCDHP(LN), ZB-LWHJ(STI)-1,
ZB-HYDHP(STi) and ZB-(JLHJ)) were clustered close together, even within one branch,
and the average genetic distance between the ZB and ZP samples was 0.8147, whereas
that between the ZA and ZP samples was 1.1888. This indicated that ZP and ZB may have
closer kinship with each other than with ZA, respectively.

Figure 2. Zanthoxylum clustering dendrogram of 121 samples based on the genetic distance and the
UPGMA method using NTSYSpc 2.11 software and MEGA7.0 (tree scale: 0.1). ZB: Zanthoxylum
bungeanum. ZA: Zanthoxylum armatum. ZP: Zanthoxylum piperitum. Red fonts: ZB samples in the clade.
Yellow fonts: ZP samples in the clade.

3.3. The Distribution Areas of ZA Were Separated while ZP and ZB Were Well-Overlapped Based
on PCA

As shown in Figure 3, the results revealed that the PCA method could clearly be used
to investigate the relationships of ZA with ZB and ZP species. The distribution areas of
ZP and ZB were relatively well-overlapped, suggesting that ZP and ZB may have a closer
genetic relationship similar to that indicated by the results of the dendrogram. On the one
hand, the ZB samples were more dispersed, and the ZA samples were more compactly
distributed. On the other hand, the samples of both ZB and ZA were concentrated, and
some samples overlapped, indicating that the intraspecific genetic diversity of both ZB and
ZA was not high.

3.4. The Interspecific and Intraspecific Gene Flows Were Low

As shown in Table 1, the results of the AMOVA showed that the genetic variation
among and within all the populations of Zanthoxylum in this study was 43% and 57%,
respectively, and the differences among populations were not significant (p > 0.001). Fur-
thermore, the genetic differentiation coefficient (PhiPT) was 0.429, and the gene flow
between populations (Nm) was 0.333. For the intraspecific populations of ZB, the AMOVA
showed that the percentage of genetic variation was 53% among populations and 47%
within populations, with non-significant differences between populations (p > 0.001). The
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genetic differentiation coefficient (PhiT) was 0.529, and the gene flow (Nm) was 0.223. For
the intraspecific populations of ZA, the results indicated that the percentage of genetic
variation was 29% among populations and 71% within populations, with non-significant
differences between populations (p > 0.001), that the genetic differentiation coefficient
(PhiPT) was 0.293, and the gene flow (Nm) was 0.223. The percentage of genetic variation
within populations was 71%, the difference between populations was highly insignificant
(p > 0.001), the genetic differentiation coefficient (PhiPT) was 0.293, and the gene flow
(Nm) was 0.605. Overall, the genetic variation of the Zanthoxylum populations in this study
originated mainly within populations rather than among populations, and the interspecific
gene flows and intraspecific gene flows were not high.

Figure 3. Principal component analysis of 121 Zanthoxylum samples. ZB: Zanthoxylum bungeanum.
ZA: Zanthoxylum armatum. ZP: Zanthoxylum piperitum. PC1: Principal component 1. PC2: Principal
component 2.

Table 1. The molecular variance (AMOVA) for both interspecies and intraspecies variations.

Source of Variation Degrees of
Freedom (df) Statistics (SS) Mean Square

(MS) Est. Var.
Percentage of

Variance
Component

p-Value

Among
Populations

(AP)

Interspecific populations of
ZB, ZA and ZP 2 149.543 74.771 2.224 43% p > 0.001

Intraspecific populations of ZB 21 130.700 6.224 1.721 53% p > 0.001

Intraspecific populations of ZA 9 29.320 3.258 0.523 29% p > 0.001

Within
Populations

(WP)

Interspecific populations of
ZB, ZA and ZP 118 349.854 2.965 2.965 57% \

Intraspecific populations of ZB 38 58.333 1.535 1.535 47% \

Intraspecific populations of ZA 29 36.706 1.266 1.266 71% \

Total

Interspecific populations of
ZB, ZA and ZP 120 499.397 \ 5.189 100% \

Intraspecific populations of ZB 59 189.033 \ 3.256 100% \

Intraspecific populations of ZA 38 66.026 \ 1.789 100% \

Genetic
differentiation

coefficient
(PhiPT)

Interspecific populations of ZB, ZA and ZP 0.429

Intraspecific populations of ZB 0.529

Intraspecific populations of ZA 0.293



Curr. Issues Mol. Biol. 2023, 45 7190

Table 1. Cont.

Source of Variation Degrees of
Freedom (df) Statistics (SS) Mean Square

(MS) Est. Var.
Percentage of

Variance
Component

p-Value

Gene flow
(Nm)

Interspecific populations of ZB, ZA and ZP 0.333

Intraspecific populations of ZB 0.223

Intraspecific populations of ZA 0.605

PhiPT = AP/(WP + AP) = AP/Total; Nm = [(1/PhiPT) − 1]/4; AP = Est. Var. Among Pops, WP = Est. Var.
Within Pops.

3.5. Three Zanthoxylum Species Divided into Two Genetic Structures

As shown in Figure 4, the GSA indicated that the optimal population of these 121 sam-
ples could be divided into two subgroups (the K-value was 2) (Figure 4a) and could more
clearly distinguish between ZB, ZA and ZP. There was a greater similarity between ZP
and ZB, which aligned with the results of the clustering analysis and PCA. In addition,
some samples of ZB exhibited a degree of difference based on the GSA results, showing
that the genetic diversity of some samples of ZB was higher than that of ZA. This may
have been due to a higher number of samples and the distribution of sampling sites for
ZB. In comparison, the similarity of the ZA samples was higher. There was less genetic
differentiation within species, and the genetic diversity was lower. Among the seven ZP
samples, the overall degree of difference was not significant, with only the ZP-PTSJ sample
being slightly different from the other six samples. The other six samples consisted of three
cultivars, with one sample of ZP-PTSJ, three samples of ZP-CCSJ and three samples of
ZP-JLSJ. It is possible that the one sample of ZP-PTSJ differs from the three samples of the
other two cultivars, but the presence of only one sample indicated that the findings could
simply be due to an experimental error.

Figure 4. Genetic structure and K-value analysis of all samples. (a) Reasonable number of subgroups
for all samples according to K-value analysis. (b) Genetic structure analysis of all Zanthoxylum samples
in this study. ZB: Zanthoxylum bungeanum. ZA: Zanthoxylum armatum. ZP: Zanthoxylum piperitum.



Curr. Issues Mol. Biol. 2023, 45 7191

4. Discussion
4.1. EST-SSR Validation

Different kinds of molecular markers are now universally used to analyze genetic
diversity for many species rapidly and efficiently. Examples include SSR in grape [46,47],
chickpea [48], and Prunus armeniaca [49]; RAPD in grape [46], Apiaceae [50] and Piper-
aceae [51]; And CAPS in Citrus [52], cotton [53] and Camellia sinensis [54]. Although the
species of Zanthoxylum are economically important trees in China [55], relatively few stud-
ies have focused on their genetic diversity [56]. In our published study, we sequenced the
transcriptomes of Z. bungeanum and Z. armatum using the Illumina-Hiseq sequencing plat-
form, which provided a good basis for the screening of EST-SSR markers and the detection
of genetic diversity [38]. The benefit of obtaining EST-SSR primers using RNA-seq is that
these markers have better specificity and polymorphism compared to conventional primers,
because EST-SSR is derived from cDNA and is conserved [57]. These properties are consid-
ered ideal properties for molecular markers; thus, it is best to use EST-SSR for classification
and identification. However, to date, only a few studies have detected the transcriptome of
Zanthoxylum. Zhao et al. [58] reported the results of a germination analysis of Z. piperitum
based on its transcriptome. Meanwhile, Feng et al. [37] employed a de novo transcriptome-
developed SSR of Z. bungeanum. In addition, Fei et al. [14] investigated the mechanism of
the apomixis of Z. bungeanum using an miRNA-based technique. However, the majority
of previous studies only focused on one species, with no comparisons being performed.
On the interspecies level, numerous published studies have proved that EST-SSRs have
shown accurate and clear results with respect to the identity and genetic diversity of crop
plants, such as Triticum [59], Hordeum vulgare [60] and Citrus [61]. On the cultivar level, this
technique is more likely to fail to yield distinct results, as in the case of Zanthoxylum [62]. In
this study, the six EST-SSR markers derived from two Zanthoxylum species showed signif-
icant availability and polymorphism for the three Zanthoxylum species samples, though
it seemed that they were not able to definitively identify cultivars of Zanthoxylum clearly,
suggesting that this technique may be more appropriate for species-level identification
than cultivar-level identification. Additionally, the polymorphism for Z. piperitum was not
as good as that for Z. bungeanum and Z. armatum. One possible reason is that there were no
EST-SSR primers from Z. piperitum; another is that the number of samples was probably
too low.

4.2. Genetic Diversity Assessments

In the present study, 121 samples were shown to belong to three species of the Zan-
thoxylum genus. Among the different analytical methods used in this study, the K-value
analysis of the genetic structure, in particular, showed that the most suitable subgroup num-
ber for these samples was two. This indicated that the genetic diversity of the Zanthoxylum
genus is not high. This finding may be attributed to several reasons. First, although the total
number of samples in this study was large, many of the samples were cultivars. Second,
only six primer pairs were used in this study, and while it was possible to clearly identify
three Zanthoxylum species, the identification of intraspecific cultivars was relatively difficult,
which indicated that the ability of the EST-SSR primers to identify intraspecific cultivars
was somewhat limited. Third, the genus Zanthoxylum has a mainly reproductive mode of
apomixis and thus has a stable phenotype [13,14]. Above all, the genetic differentiations
were minimal, and the phenotypes were stable.

Additionally, we compared the morphological characteristics of Z. bungeanum, Z. armatum
and Z. piperitum based on previously reported research (Supplementary Table S3) [9,63,64].
Z. piperitum is a special and stingless pepper that comes from Japan, which can be clearly
differentiated from other Sichuan peppers [63,64]. There are few articles about Z. piperitum
species regarding morphology and molecular biology, and there are no available EST
databases. In this study, the ESR-SST primers for Z. bungeanum and Z. armatum were used
to analyze the genetic diversity of Z. piperitum. The results indicated that Z. piperitum may
be closer to Z. bungeanum than to Z. armatum. However, the lack of appropriate primers
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and the sample size may have had a certain impact on the results for Z. piperitum, and we
will make improvements in future research.

Sample ZB-X (MF), a sample with only male flowers, did not show any significant
differences from the rest of the samples in terms of clustering, PCA or genetic structure,
probably because only one sample was analyzed. Three samples of ZB-HCDHP (Irr) were
irradiated, and the clustering results revealed that these three samples did not show any
significant differences when compared with the other samples. In addition, there was
no genetic difference between the three samples. Furthermore, the PCA and GSA results
revealed that these three samples showed no distinctive results. Irradiation mutation
breeding is an approach used to induce gene mutations, promote gene recombination
and improve the recombination rate [65–67]. Neither extraterrestrial radiation nor male
flower production were found to play an important role in the genetic structure of these
species, for which we could not detect differences based on the EST-SSR analysis. Since
there were too few of the two specimen types, no statistically significant differences were
identified between the individual samples. None of the ZB-DHP series samples, which
were more widely distributed in the ZB branch, were particularly concentrated, suggesting
the existence of some differences in ZB-DHP on the molecular level in different regions.
In Figure 2, one of the clades included all the samples of ZP and several samples from ZB.
Among them, ZB-JLHJ and ZB-YXGJY are both varieties with a long history of cultivation
in China. However, because they have been cultivated in mountainous areas for a long
time, there was less traffic, less foreign introduction and less exchange of genetic resources,
so this may be the reason why they are not classified in the same branch as other ZB
samples, or it may be the result of the chance of the experiments that and the results are
not informative.

The ZA-Ws were wild Z. armatum samples, whereas the ZA-TJs were a Z. armatum
cultivar. The genetic distance results and dendrogram demonstrated that these two types
of samples were relatively genetically remote, indicating that the wild Z. armatum type and
the cultivars used in this study differed to some extent. Meanwhile, the clustering, PCA
and GSA results revealed that all the ZA-TJ samples showed an extremely close genetic
relationship; the genetic distances of some samples were almost 0, indicating the very
limited genetic differentiation of the cultivar. This may be because the ZA-TJ samples
collected in this study were derived from Sichuan Province, where the sampling was
performed within a small area. Thus, based on the genetic distance results, Zanthoxylum’s
apomixis and the small sampling areas, it is likely that the samples may have originated
from a single gene pool.

AMOVA is an important tool for studying genetic diversity among the populations of
species. In this study, for the entire Zanthoxylum genus, interspecies variation accounted for
43% of the total variation, and intraspecies variation accounted for 57%, indicating that the
population variation in the three Zanthoxylum samples in this study mainly originated from
within the populations. Specifically, 53% of the inter-population variation was accounted
for in ZB, suggesting that this variation mainly originated from among populations, which
may be due to the fact that a larger number of ZB samples were collected in the present
study and that the collection was performed using a wide range of regional sources. The
genetic differentiation coefficient (PhiPT) and gene flow (Nm) are important indicators
for analyzing the genetic structure of populations. According to Wright et al. (1990), if
the genetic differentiation coefficient (PhiPT) ranges from 0 to 0.05, this indicates that no
differentiation exists between populations; if it is 0.05–0.15, this indicates that there is
moderate differentiation between populations; and if it is 0.15–0.25, this indicates high
differentiation. If the PhiPT is greater than 0.25, this indicates extremely differentiated
populations [68]. According to the results, it can be seen that the PhiPT was greater than 0.25,
whether between the three species, within the ZB populations or within the ZA populations,
which indicated that there was a great deal of genetic differentiation between the different
Zanthoxylum species and also between the intraspecific populations in the current study.
Ellstrand et al. suggested that the proportion of genetic variation among populations
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of asexual plants increases greatly when there are large barriers to gene flow among the
populations [69]. Most of the Zanthoxylum species reproduce via apomixis, similar to
asexual lineages; thus, it is reasonable to infer that the variation among populations is
relatively large. According to Buso et al.’s research, a gene flow (Nm) > 1 results in a high
degree of gene exchange and that of 0.250 < Nm < 0.999 results in a moderate degree of
gene exchange [70]. None of the gene flow (Nm) values in this experiment were beyond 1;
therefore, the degree of gene exchange was not high, probably because of the apomixis
reproduction.

The Zanthoxylum market in China mostly consists of ZB and ZA species. Due to
the different climatic conditions in China, Z. bungeanum is cultivated in the north and
Z. armatum is cultivated in the south [9]. Therefore, as Z. bungeanum, Z. armatum and
their cultivars are the main types of Sichuan pepper commercially grown in China, it is
vital to make considerable efforts to maintain the diversity of Zanthoxylum with respect to
characteristics such as its aroma, stinglessness and pungency.

5. Conclusions

In this research, we used six EST-SSR primers to detect the genetic diversity of three
Zanthoxylum species, with 121 samples, using capillary electrophoresis technology. Ac-
cording to the UPGMA and PCA, the 121 samples were divided into three clades, and
Z. piperitum and Z. bungeanum were more closely related to each other than either was to
Z. armatum. On the basis of STRUCTURE, all the samples probably originated from two
gene pools. Additionally, the AMOVA indicated that the differences among interspecies
and intraspecies populations were not significant. Above all, the Zanthoxylum samples
examined in this study showed relatively low genetic diversity at the cultivar level, which
was consistent with our initial assumptions. However, we found that the EST-SSR primers
can distinguish between the different species of Zanthoxylum but cannot clearly identify
large numbers of cultivars; this topic requires further research. This study provides a
reference, with molecular-level data, for further examination of the identity of Zanthoxylum.

Supplementary Materials: The following supporting information can be downloaded at:
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results; Table S3: Table of Morphology characteristics of Z. bungeanum, Z. armatum and Z. piperitum.
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ZB Zanthoxylum bungeanum
ZA Zanthoxylum armatum
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