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Abstract: Osteoarthritis is a chronic inflammatory disease, and, due to the lack of fundamental
treatment, the main objective is to alleviate pain and prevent cartilage damage. Kalopanax pictus
Nakai and Achyranthes japonica Nakai are herbal plants known for their excellent anti-inflammatory
properties. The objective of this study is to confirm the potential of a mixture extract of Kalopanax
pictus Nakai and Achyranthes japonica Nakai as a functional raw material for improving osteoarthritis
through anti-inflammatory effects in macrophages and MIA-induced arthritis experimental animals.
In macrophages inflamed by lipopolysaccharide (LPS), treatment of Kalopanax pictus Nakai and
Achyranthes japonica Nakai mixture inhibits NF-κB and mitogen-activated protein kinase (MAPK)
activities, thereby inhibiting inflammatory cytokine tumor necrosis factor-alpha (TNF-α) and in-
terleukin 6 (IL-6), inflammatory factors PGE2, MMP-2, and MMP-9, and nitric oxide (NO) was
reduced. In addition, in an animal model of arthritis induced by MIA (monosodium iodoacetate),
administration of Kalopanax pictus Nakai and Achyranthes japonica Nakai mixture reduced blood levels
of inflammatory cytokines TNF-α and IL-6, inflammatory factors prostaglandin E2(PGE2), matrix
metalloproteinase-2(MMP-2), and NO. Through these anti-inflammatory effects, MIA-induced pain
reduction (recovery of clinical index, increase in weight bearing, and increase in area and width of the
foot), recovery of meniscus damage, loss of cartilage tissue or inflammatory cells in tissue infiltration
reduction, and recovery of the proteglycan layer were confirmed. Therefore, it is considered that
Kalopanax pictus Nakai and Achyranthes japonica Nakai mixture has the potential as a functional raw
material that promotes joint health.

Keywords: osteoarthritis; Kalopanax pictus Nakai; Achyranthes japonica Nakai; anti-inflammation; MMPs

1. Introduction

Osteoarthritis, the most common chronic inflammatory joint disease, leads to inflam-
mation and pain due to the progressive degradation of joint cartilage and underlying bone
tissue. This condition causes functional and mobility impairments, significantly reduc-
ing the quality of life [1–6]. One of the pathophysiological mechanisms of osteoarthritis
involves chronic inflammation, which is characterized by immune cell infiltration in the
synovium. As osteoarthritis progresses, the immune response initiated by T-cells leads
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to excessive proliferation and activation of synoviocytes, contributing to ongoing joint
degeneration through the activation of cartilage-degrading enzymes [7–9].

The synovium, covered by a thin layer of synoviocytes, exhibits various observa-
tions, such as synoviocyte proliferation, angiogenesis, inflammatory cell infiltration, the
expression of inflammatory cytokines, and protein-degrading enzymes in response to
immune reactions [10]. Inflammatory synovium is often accompanied by significant hy-
poxia, and changes in oxygen tension within the joint due to joint movement result in
hypoxia-reperfusion circulation. The metabolites and biochemical changes generated by
these processes play a crucial role in the pathogenesis of most inflammatory diseases,
directly causing oxidative damage to joint tissues and influencing the expression of various
proteins involved in immune-inflammatory responses [11–13].

Factors associated with the onset of osteoarthritis can be broadly classified into B
cells, T cells, and inflammatory cytokines. Proteolytic enzymes, cytokines, and nuclear
transcription factor kB (NF-κB) are transcription factors of several genetic factors involved
in immune and inflammatory responses. They promote the production of inflammatory
cytokines, such as TNF-alpha, IL-6, and IL-17, and play a central role in the degeneration
of cartilage tissue by damaging the collagen matrix that constitutes the cartilage tissue,
particularly through the expression of enzymes, such as vascular endothelial growth factor
(VEGF) and matrix metalloproteinases (MMPs) [14–17]. MMPs include collagenases (MMP-
1, MMP-8, and MMP-13), stromelysins (MMP-3, MMP-7, MMP-10, and MMP-11), and
gelatinases (MMP-2 and MMP-9), among which the gelatinase group rapidly increases its
activity in an animal model of MIA-induced osteoarthritis, promoting matrix degradation
of cartilage and subchondral bone [18–20].

Osteoarthritis is a chronic inflammatory disease characterized by pain, stiffness, and
swelling. It is caused by various factors, including degenerative changes, immune system
abnormalities, and trauma [21–23]. Since there is currently no definitive treatment to restore
the affected joint in osteoarthritis, which is accompanied by chronic inflammation and
symptoms such as pain, stiffness, and swelling, the primary objective of treatment is to
alleviate pain and prevent cartilage damage. The ultimate goal is to control inflammation,
reduce pain, delay or prevent joint damage, and maintain joint function to enhance the
overall quality of life [24,25]. Common treatment methods include non-steroidal anti-
inflammatory drugs (NSAIDs), painkillers, and intra-articular injections of hyaluronic acid.
However, these treatments have drawbacks, such as potential side effects on the digestive,
cardiovascular, renal, and coagulation systems, as well as concerns about long-term use.
As a result, research on developing health-functional foods using natural ingredients with
excellent safety is actively pursued [26–28].

Kalopanax pictus Nakai, belonging to the Araliaceae family, refers to the dried bark of
Kalopanax septemlobus Koidz or the tree itself. It is known for its non-toxic nature, bitter and
astringent taste, and significant antibacterial and antifungal properties. The main active
components of Kalopanax pictus Nakai, including kalopanaxsaponins, liriodendrin, and
syringin, have been reported to have analgesic and anti-inflammatory effects in animal
models of rheumatoid arthritis [29–31].

Achyranthes japonica is a medicinal herb belonging to the Amaranthaceae family and
is traditionally used in temperate and subtropical regions of China, Japan, Korea, and
Southeast Asia [32,33]. It contains ecdysterones such as ecdysterone and inokosterone, alka-
loids such as achyranthin, steroids like β-sitosterol, stigmasterol, rubrosterone, and various
types of saponins. In oriental medicine, it is known for its effectiveness in inflammation,
pain relief, muscle and bone strengthening, liver and kidney protection, improving blood
circulation, treating skin diseases and boils, and alleviating joint pain [34,35].

In addition to Kalopanax pictus Nakai and Achyranthes japonica Nakai, several other
herbs have been investigated for their potential effects on inflammation and osteoarthritis.
For example, studies have shown that Curcuma longa (turmeric) possesses anti-inflammatory
properties and can alleviate symptoms of osteoarthritis [36]. Another herb, Boswellia
serrata, has been reported to exhibit anti-inflammatory effects and may have a benefi-
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cial impact on osteoarthritis [37,38]. Furthermore, Zingiber officinale (ginger) has shown
anti-inflammatory activity and may contribute to the management of osteoarthritis symp-
toms [39]. These studies highlight the potential of various herbs in modulating inflamma-
tion and alleviating osteoarthritis symptoms. However, the specific effects of these herbs
on inflammation and osteoarthritis require further investigation.

In this study, in pathological management, pharmacotherapy aims to achieve pain
relief, inflammation suppression, and analgesic effects and we investigated the effects
of a combination of Kalopanax pictus Nakai and Achyranthes japonica Nakai complex ex-
tract on osteoarthritis using a monosodium iodoacetate (MIA)-induced animal model.
Despite extensive research having been conducted on the effects of Kalopanax pictus and
Achyranthes japonica extracts in experimental mouse models of osteoarthritis, this study was
designed to investigate the synergistic efficacy and derive superior effects. While previous
studies have examined the individual use of Kalopanax pictus Nakai and Achyranthes japon-
ica Nakai mixture extracts, there have been no studies on their combined use in specific
ratios. We confirmed the anti-inflammatory and joint-improving effects of the extract and
evaluated the potential of Kalopanax pictus Nakai and Achyranthes japonica Nakai complex
extract as a functional food ingredient for joint and bone health.

2. Materials and Methods
2.1. Experimental Material

We extracted Kalopanax pictus Nakai (50 g) and Achyranthes japonica Nakai (100 g) twice
with 10-fold weight of 50% (v/v) ethanol at 80–85 ◦C for 3 h, and then filtered through a
5-µm filter. 25.6 g of the mixed powder obtained by evaporating the filtrate and vacuum
drying was named SHP-47B. In subsequent experiments, dry powder SHP-47B was used
for experiments.

2.2. The Quantitative HPLC Analysis

The quantitative HPLC (high-performance liquid chromatography) analysis methods
for SHP-47B were designed complying with liquid chromatography of General Tests in
the Korean Pharmacopoeia Twelfth Edition [40]. All quantitative HPLC analyses were
performed in triplicate.

The quantitative analysis for the marker compound liriodendrin of Kalopanax pictus
Nakai were performed with HPLC (LC-2030 C 3D; Shimadzu Corporation, Kyoto, Japan)
equipped with Atlantis T3 column (4.6 mm ID × 250 mm L, 5 µm particle size; Waters,
Milford, MA, USA). The mobile phases were consisted of A (0.1% phosphoric acid in DW)
and B (acetonitrile). The gradient system was composed as follows: 4% B (0 min), 5% B
(7 min), 20% B (25 min), 20% B (40 min), 30% B (50 min), 4% B (52 min), 4% B (60 min).
The flow rate was 1 mL/min with a detection wavelength of 210 nm [41,42]. The standard
solution of liriodendrin was prepared at a concentration of 40 µg/mL in the 50% MeOH.
The test solution for the quantitative analysis of liriodendrin was prepared by sonication
of 0.2 g of SHP-47B in 50 mL of 50% MeOH during 60 min followed by filtration using
0.45 um syringe filter. The injection volume was 20 µL each of the test solution and the
standard solution.

The marker compound, ecdysterone, of Achyranthes japonica was quantified using
HPLC (LC-2030; Shimadzu Corporation, Kyoto, Japan) with a Capcell Pak C18 column
(4.6 mm ID × 250 mm L, 5 µm particle size; Osaka Soda Co. Ltd., Osaka, Japan). The
HPLC analyses were conducted at a flow rate of 1 mL/min, a column temperature of 35 °C,
and a detection wavelength of 254 nm. The gradient conditions of the mobile phase were
isocratic 15% MeCN from 0 min to 8 min, gradient 15–30% MeCN from 8 min to 15 min,
isocratic 30% MeCN from 15 min to 30 min, gradient 30–15% MeCN from 30 min to 31 min,
and isocratic 15% MeCN from 31 min to 40 min. The standard solution of ecdysterone was
processed at a concentration of 50 µg/mL in 50% MeOH. The ecdysterone-test solution was
prepared similarly to those of liriodendrin-test solution except for duration of sonication,
which was performed for 90 min.
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2.3. Writhing Test

For the writhing test, a mouse was administered interaperioneally with 0.5 mL of 1%
acetic acid dissolved in saline. Immediately after the injection, the animals were placed in
an acryl observation changer (20 cm high, 20 com diameter). The number of writhes was
counted during a 30 min period following the injection of acetic acid. A writhe was defined
as a contraction of the abdominal muscles accompanied by an extension of the forelimbs
and elongation of the body. The number of animals used for each group was five.

2.4. Cell Viability and NO Production in RAW 264.7 Cells

RAW264.7 cells, a murine macrophage cell line, were purchased from the Korea Cell
Line Bank (KCLB40071) and used. Reagents required for cell culture were purchased from
Gibco (Houston, TX, USA), and the medium was Dulbecco’s Modified Eagle Medium
(DMEM) with 10% fetal bovine serum (Ryun) and 1% antibiotics-antimycotic added to
the cells at 37 ◦C in the presence of 5% CO2. It was used in the experiment while being
subcultured once every 2–3 days in an incubator.

For analysis of cell viability, 2 × 104 cells/90 µL/well were treated with samples for
each concentration and incubated at 37 ◦C and 5% CO2 for 24 h each. After that, 10 µL
of WST-1 (ITSBio, Seoul, the Republic of Korea) solution was added to 100 µL of the cell
culture medium, incubated for 1 h, and the absorbance value was measured using a Multi
Detection Reader (Infinite 200, TECAN Group Ltd., Männedorf, Switzerland). The control group
was set as an experimental group treated with the same concentration as the high-concentration
experimental group, only with the solvent dissolved in the sample without processing the
sample. Cell viability was calculated according to the following formula.

cell viability (%) = (sample treatment group/control group) × 100

For NO measurement, Raw 264.7 cells were dispensed in a 24-well plate to be
8 × 104 cells/well and cultured for 24 h. After that, the samples were treated and re-
acted by concentration, and each well was treated with LPS and cultured for 24 h. After
incubation, 100 µL of the culture supernatant was taken, the same amount of Griess reagent
was added, it was left it for 10 min, and the absorbance at 540 nm was measured. The
concentration of nitrite produced was calculated using a standard curve in which sodium
nitrite was dissolved in DMEM medium, and the NO production inhibitory activity of each
sample was confirmed based on the difference in the amount of nitrite produced.

2.5. Inflammation-Related Cytokine Production Analysis in RAW264.7

For inflammatory cytokine measurement, Raw 264.7 cells were dispensed in a 24-well
plate to be 8 × 104 cells/well and cultured for 24 h. After that, the samples were treated
and reacted by concentration, and each well was treated with LPS and cultured for 24 h.
After incubation, the supernatant of the cell lysate was centrifuged. The inflammatory
cytokines TNF-α (CSB-E11987r, Cusabio, TX, USA), IL-6 (CSB-E04640r, Cusabio, TX, USA),
PGE2 (CSB-E07967r, Cusabio, TX, USA), MMP-2 (ab213910, Abcam, Cambridge, UK), and
MMP-9 (RMP900, R&D Systems, Minneapolis, MN, USA) were measured using ELISA
kits, following the manufacturers’ instructions. The experimental results of inflammatory
cytokines are shown in Figure S1.

2.6. Western Blot Analysis

After dispensing the cells at 2 × 106 cells/mL in a 100 π dish, the sample was treated
and cultured for 24 h. After that, it was washed three times with cold PBS and protein was
extracted from the cells using lysis buffer (PRO-PREPTM protein extraction solution, InTron,
Korea). was extracted. The extracted protein was quantified with Bradford reagent (Bio-
Rad, HerculesL, CA, USA) and the same amount was used for Western blot. For Western
blot, the same amount of protein was electrophoresed on SDS-PAGE gel, transferred to
PVDF membrane, and blocked with 5% skim milk solution for 1 h. After that, the primary
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antibody against the target protein was added overnight at 4 ◦C, and the secondary antibody
containing HRP was treated at room temperature for 1 h. Then, it was analyzed by scanner
(LI-COR, Lincoln, NE, USA). TBS-Tween 20 solution was used for each step of washing,
and the antibodies used in the experiment are shown in Table S1.

2.7. Animals and Experimental Design

As the experimental animal, an eight-week-old male Sprague-Dawley (SD) rat in a
specific-pathogen-free (SPF) state was purchased from Samtaco Bio Korea (Osan, Korea),
and was acclimatized for seven days and used in the experiment. During the breeding
period, regular solid feed (Samtako, Gyunggi, Korea) was consumed, and, during the
acclimatization period, filtered drinking water was changed daily and freely consumed.
During the animal breeding period, the temperature was 23 ± 1 °C, the humidity was
50 ± 5%, the noise was less than 60 phone, the lighting time was 08:00~20:00 (12 h a day), the
illuminance was 150~300 Lux, the ventilation was 10 times per hour, and 12 environments
were maintained. The use of mice was reviewed and approved by Invivo Animal Care
Committee (IACUC approval number: IV-RB-02-2204-09).

Once the acclimatization period was over, the experimental animals were separated
using the egg mass method based on body weight so that the average value between groups
was uniform. The experimental group was a normal group that did not induce arthritis, a
control group that did not treat the sample after inducing arthritis (control), and a treatment
group by SHP-47B concentration (50 mg/kg, 100 mg/kg, and 300 mg/kg) after induction of
arthritis, and as a positive control group, Celecoxib was administered (30 mg/kg), and 10 heads
per group were set. Samples were orally administered for a total of six weeks, and the control
group was administered the same amount of distilled water as the experimental group.

The establishment of an arthritic animal model was carried out by injecting 50 µL
(3 mg/mL) of MIA (monosodium iodoacetate) into the joint cavity of the left knee with an
insulin syringe, followed by sample administration for three weeks before MIA injection
(before arthritis induction) and after MIA injection (after induction of arthritis). The arthritis
improvement effect was demonstrated by sample administration for three weeks. MIA was
used diluted with 0.9% sodium chloride [43,44].

2.8. Weight-Bearing Index and Arthritis Clinical Index Analysis

The arthritis clinical index was independently observed by four experimenters, and
the swelling and the bending of the knee joint in each experimental group were scored
as no change (0 point) and 1–3 points, depending on the degree of severity. Scores were
scored and expressed as an average value.

The hindlimb weight bearing was set up at a 60 degree inclination in a plastic room
using an incapacitance meter tester (IMT), and, then, the strength applied to each hindlimb
was averaged over 10 s. The percentage of body weight distributed over the treated
ipsilateral hind limb was calculated using the following equation:

weight-bearing index (%) = (weight of evoked lower extremity/weight of normal lower extremity) × 100

2.9. Gait Analysis

In the case of gait analysis (paw area and paw width), ink was applied to the hind paw
and measured by running the experimental animal on a white paper with a length of 60 cm
and a width of 7 cm, and footprints were measured using Image J software version 2023.

2.10. Serum Biochemical Analysis

Blood was collected from the abdominal vena cava after inhalational anesthesia, and
divided into EDTA tubes and conical tubes for analysis. For hematological examination,
blood was put into an EDTA tube (DB Caribe, Ltd., Washington, DC, USA), it was rotated on
a roll mixer for about 30 min, and, then, a blood analyzer (Hemavet 950Fs, Drew Scientific
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Inc., Dallas, TX, USA) was used to measure white blood cells, lymphocytes, granulocytes,
and mid-size cells.

On the other hand, the blood collected in the conical tube was coagulated at room
temperature for 30 min for cytokine analysis, and the serum separated in a centrifuge
at 3000 rpm for 10 min was used with an ELISA kit to detect the inflammatory cytokine
TNF-α (CSB-E11987r, Cusabio, TX, USA), IL-6 (CSB-E04640r, Cusabio, TX, USA), PGE2
(CSB-E07967r, Cusabio, TX, USA), MMP-2 (ab213910, Abcam, Cambridge, UK), and nitric
oxide (ab65328, Abcam, Cambridge, UK) contents were measured.

2.11. Micro-CT Analysis

Micro-CT measurement was taken for 3 min using a Quantum FX Micro-CT (Perkin
Elmer, Waltham, MA, USA) set at a tube voltage of 90 kVp, tube current of 160 µA, and FOV
of 10 mm, and image analysis was performed using Analyze 12 (Mayo Clinic, Scottsdale,
AZ, USA). In this analysis, volume rendering was performed after the experiment was
completed to separate the meniscus, and then a 3D image was obtained.

2.12. Histological Analysis

The excised tissue was fixed in 10% formalin solution after cutting (trimming) the spec-
imen fixed in 10% formalin solution. Then, each tissue was embedded in paraffin, sectioned
to a thickness of 3 µm, cut, stained with hematoxylin–eosin or safranin-o, and observed
under an optical microscope. The staining results of all tissues were read by pathology
experts using an optical microscope, and were read blindly so that the experimental group
could not be known in advance to exclude subjective judgment.

2.13. Statistical Analysis

All experimental results were calculated as mean ± standard error (mean ± S.E.) using
a statistical program (SPSS ver. 12.0, SPSS Inc., Chicago, IL, USA). Statistical analysis ac-
cording to the statistical significance test between each experimental group was performed
with ANOVA (one-way analysis of variance test), and, if there was significance, post-testing
was performed with Duncan’s multiple range test when p < 0.05 was less.

3. Results
3.1. The Quantitative HPLC Analysis

The contents of the marker compounds for SHP-47B were determined by the quantita-
tive HPLC analysis. The results indicated that the amount of liriodendrin and ecdysterone
in SHP-47B were 1.74 ± 0.05 mg/g and 1.18 ± 0.05 mg/g, respectively (Figure 1).
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Figure 1. Chromatograms of liriodendrin-standard solution (A), ecdysterone-standard solution (B),
liriodendrin-test solution (C), and ecdysterone-test solution (D). (1): Liriodendrin and (2): Ecdys-
terone.

3.2. Writhing Test

The writhing test was divided into first and second, and, finally, the compounds to be
used in the experiment were identified. In the first test, SHP-43 and SHP-47 were judged to
be the most suitable compounds for the pain test, and, among them, SHP-47 (Achyranthes
japonica) was judged to be the most suitable. In the second test, Achyranthes japonica and
Kalopanax pictus Nakai were mixed in various ratios to make SHP-47A~D mixtures and a
writhing test was conducted (Table 1).

As a result, it was judged that SHP-47B was most suitable for the pain and active part,
and SHP-47B was selected and used in subsequent experiments.



Curr. Issues Mol. Biol. 2023, 45 6402

Table 1. Effect of Herbal Complex on Acetic Acid-Induced Writhing Test in Mice (A). Effect of
Achyranthes japonica Nakai and Kalopanax pictus Nakai Complex on Acetic Acid-Induced Writhing Test
in Mice (B). Values with different superscript letters indicate significant differences within treatment
groups at p < 0.05 by ANOVA and Duncan’s multiple range tests. Data are presented as the means ±
standard errors (n = 5).

Group Dose (mg/kg,
P.O)

Average No. of
Writhing

Decrease in
Writhing Inhibition (%)

Control

A

- 59.00 ± 7.23 de 0.00 ab 0 ab

HPS-3C 100 54.33 ± 0.88 cde 4.67 abc 7.91 abc

SHP-40 100 35.67 ± 8.19 bc 23.33 cd 39.55 cd

SHP-41 100 43.00 ± 5.13 bcd 16.00 bcd 27.12 bcd

SHP-42 100 47.00 ± 1.15 bcde 12.00 abcd 20.34 abcd

SHP-43 100 15.33 ± 8.41 a 43.67 e 74.01 e

SHP-44 100 58.67 ± 4.37 de 0.33 ab 0.56 ab

SHP-45 100 68.33 ± 6.39 e −9.33 a -15.82 a

SHP-46 100 54.33 ± 10.84 cde 4.67 abc 7.91 abc

SHP-47 100 11.67 ± 7.22 a 47.33 e 80.23 e

SHP-48 100 51.33 ± 6.36 cde 7.67 abc 12.99 abc

Indomethacin 10 27.00 ± 3.21 ab 32.00 de 54.24 de

SHP-47A

B 100

36.67 ± 0.88
SHP-47B 30.33 ± 4.48
SHP-47C 32.33 ± 1.20
SHP-47D 43.00 ± 7.55 32.00 de 54.24 de

3.3. Cell Viability and NO Production in RAW 264.7 Cells

The cell viability of SHP-47B at various concentrations (0 to 5000 µg/mL) is presented
in Figure 2A. As a result of measuring cell viability after treating RAW 264.7 cells with SHP-
47B for 24 h, toxicity to cells was not confirmed from SHP-47B 50 µg/mL to 3000 µg/mL
concentration, but significant at 5000 µg/mL concentration reduction was confirmed.
Based on these results, subsequent experiments were conducted by setting the highest
concentration to 3000 µg/mL.
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Figure 2. In RAW 264.7 cells, the (A) cell viability of SHP-47B and the physiological activity of
(B) NO and (C) iNOS were measured. Cell viability was measured by WST-1 assay, and after
measuring NO production, iNOS was measured by Western blot analysis. The data are expressed as
the mean ± SD (n = 3), and different letters (g > f > e > d > c > b > a) indicate a significant difference
at p < 0.05, as determined by Duncan’s multiple-range test.

Referring to the cell results, the expression of NO product and iNOS protein was
confirmed by treating SHP-47B at each concentration in RAW 264.7 inflamed with LPS. NO
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production significantly increased to 6.63 ± 0.11 µM in the LPS-treated group, and NO
production was decreased in a concentration-dependent manner in the SHP-47B-treated
group. In particular, it was confirmed that NO production was reduced to 1.92 ± 0.09 µM
in the 3000 µg/mL treatment group (Figure 2B).

Additionally, as a result of measuring iNOS protein expression in Western blot re-
sults, it was confirmed that iNOS protein expression was suppressed in a concentration-
dependent manner in the SHP-47B treated group (Figure 2C).

3.4. Western Blot Analysis

NF-κB and MAPK signaling pathways are activated during inflammatory processes
and promote the expression of inflammatory mediators. Based on this mechanism, the
effects of SHP-47B on the NF-κB and MAPK signaling pathways in LPS-induced RAW
264.7 cells were confirmed through Western blot results. As demonstrated in Figure 3,
NF-κB and MAPK-related protein expression levels increased in the LPS-only treatment
group, and protein expression levels were suppressed in a concentration-dependent manner
except for p-ERK in the SHP-47B treatment group.
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Figure 3. Analysis of the physiological activity of SHP-47B on the activation of NF-κB and MPAK
pathways in LPS-induced inflammation in RAW 264.7 macrophages. Proteins obtained from RAW
264.7 cells were analyzed by Western blot for the expression of proteins related to each of the NF-κB
and MAPK pathways.

3.5. Weight-Bearing Index and Arthritis Clinical Index Analysis

To investigate the efficacy of SHP-47B in a mice model of arthritis induced by MIA,
the weight-bearing index and the clinical index of arthritis were measured. A total of five
measurements were taken from the induction of arthritis (MIA injection) to the end of
the experiment. From the first three days after the onset of arthritis, the normal group
showed a normal gait, but the control group and the experimental group showed pain
and leg dragging during walking due to arthritis. As a result expressed as a clinical
index, the control group showed 2.96 ± 0.04, the SHP-47B treatment group showed
2.77 ± 0.11 in the 50 mg/kg group, 2.59 ± 0.05 in the 100 mg/kg group, and 2.32 ± 0.10 in
the 300 mg/kg group. The celecoxib group used as a positive control showed a result of
2.05 ± 0.04 (Figure 4A).
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Figure 4. Effects of SHP-47B treatment on (A) weight bearing and (B) clinical arthritis in MIA-induced
arthritis mice model. The data are expressed as the mean ± SD (n = 7), and different letters (f > e > d >
c > b > a) indicate a significant difference at p < 0.05, as determined by Duncan’s multiple-range test.

Once the experiment was completed, the weight-bearing index was analyzed to
confirm the pain amelioration effect of SHP-47B in an animal model of arthritis induced
by MIA. From the analysis results, it was confirmed that the result value of 31.95 ± 0.95%
of the control group was significantly reduced compared to the result of 51.39 ± 0.57%
of the normal group. In contrast, in the case of the SHP-47B treatment group, the result
values were 39.08 ± 0.17% in the 50 mg/kg group, 37.89 ± 0.60 in the 100 mg/kg group,
and 41.78 ± 0.61% in the 300 mg/kg group, and the positive control group (celecoxib) used
as a weight-bearing index result value of 39.62 ± 0.59% (Figure 4B).

3.6. Gait Analysis

As another method to confirm the pain improvement effect of SHP-47B in mice model
of arthritis induced by MIA, the foot area and width were measured and analyzed in the
animal model walking. First, as a result of measuring the foot area, it was confirmed that
the normal group was 6.13 ± 0.09 cm2, while the control group was 4.49 ± 0.14 cm2. On the
other hand, for the SHP-47B treated group, it was 5.07 ± 0.16 cm2 in the 50 mg/kg group,
5.64 ± 0.14 cm2 in the 100 mg/kg group, and 5.78 ± 0.10 cm2 in the 300 mg/kg group.
These results confirmed that the pain caused by arthritis was suppressed in a concentration-
dependent manner in the SHP-47B treatment group, resulting in an increase in the area and
width of the foot during walking. In particular, in the 100 mg/kg and 300 mg/kg groups, it was
confirmed that the area and width of the foot increased compared to the 5.37 ± 0.14 cm2 result
of the celecoxib group used as a positive control group (Figure 5A).

As a result of foot width analysis, it was confirmed that the result value of 1.96 ± 0.01 cm
in the normal group was significantly reduced compared to the result of 1.63 ± 0.05 cm
in the control group. On the other hand, in the case of the SHP-47B treatment group, the
width increased to 1.89 ± 0.04 cm in the 50 mg/kg group, 1.75 ± 0.05 cm in the 100 mg/kg
group, and 1.83 ± 0.04 cm in the 300 mg/kg group. The celecoxib group used as a positive
control showed a result of 1.73 ± 0.03 cm. The foot width increased in all experimental
groups compared to the control group, and it was confirmed that the foot width increased
more than the Celecoxib treated group at all concentrations in the SHP-47B treated group
(Figure 5B).

Through these results, it was shown that the treatment of SHP-47B suppressed the pain
caused by arthritis, resulting in an increase in the area and width of the foot during walking.
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Figure 5. The effects of SHP-47B treatment on plantar (A) area and (B) width in gait analysis of an
mice model of arthritis induced by MIA. Gait analysis results were comprehensively expressed in
the (C) mouse plantar measurement picture. The data are expressed as the mean ± SD (n = 7), and
different letters (d > c > b > a) indicate a significant difference at p < 0.05, as determined by Duncan’s
multiple-range test.

3.7. Serum Biochemical Analysis

For the results reported in Table 2, hematological analysis was performed using blood
immune cells of animal models in MIA-induced arthritis experiments. As a result of
hematological analysis, the analysis of the white blood cell (WBC) count measurement
result and the change in blood mid-cells (MID) content could not confirm a significant
change between each experimental group. However, significant changes were observed
between each experimental group in the content of granulocytes (GRA) in the blood and
the change in the number of lymphocytes (LYM) in the blood.

As a result of analyzing the content of granulocytes (GRA) in the blood, the control
group had 1.28 ± 0.05 × 103/µL (15.21 ± 0.50%) compared to 2.03 ± 0.18 × 103/µL
(22.63 ± 1.39%) of the normal group, indicating the induction of arthritis by MIA. Through
this, it was confirmed that the content of granulocytes in the blood was significantly
reduced. On the other hand, in the case of the SHP-47B treatment group, 1.51 ± 0.11 ×
103/µL (17.24 ± 1.33%) in the 50 mg/kg group, 1.61 ± 0.12 × 103/µL (16.61 ± 0.71%)
in the 100 mg/kg group, and 1.41 ± 0.10 × 103/µL (19.37 ± 0.94%) in the 300 mg/kg
group. In the celecoxib group used as a positive control group, 1.67 ± 0.05 × 103/µL
(20.93 ± 0.84%) appeared, confirming a significant increase compared to the control group
in the 300 mg/kg and celecoxib groups.

As a result of measuring the change in blood lymphocytes (LYM), the control group was
6.20 ± 0.30 × 103/µL (80.10 ± 0.95%) compared to 6.21 ± 0.51 ×103/µL (70.67 ± 1.52%) of
the normal group, indicating that arthritis was induced by MIA. Through this, it was
confirmed that the content of lymphocytes in the blood was increased. On the other hand,
in the case of the SHP-47B treatment group, 6.33 ± 0.32 ×103/µL (75.40 ± 1.03%) in the
50 mg/kg group, 7.08 ± 0.50 × 103/µL (77.69 ± 1.01%) in the 100 mg/kg group, and
5.14 ± 0.19 × 103/µL (74.96 ± 0.96%) in the 300 mg/kg group. In the celecoxib group
used as a positive control group, it was 5.74 ± 0.27 × 103/µL (73.61 ± 0.92%). Through
these results, a significant decrease was confirmed in the SHP-47B and celecoxib groups
compared to the control group.
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Table 2. Effects of SHP-47B Treatment on blood immune cells in MIA-induced arthritis experimental
mice models. The data are expressed as the mean ± SD (n = 7), and different letters (d > c > b > a)
indicate a significant difference at p < 0.05, as determined by Duncan’s multiple-range test.

Group
×103 cell/µL % of WBC

WBC GRA LYM MID GRA LYM MID

Normal 8.49 ± 0.48 b 2.03 ± 0.18 c 6.21 ± 0.51 abc 0.23 ± 0.02 b 22.63 ± 1.39 d 70.67 ± 1.52 a 2.46 ± 0.17
Control 7.73 ± 0.34 ab 1.28 ± 0.05 a 6.20 ± 0.30 abc 0.17 ± 0.01 a 15.21 ± 0.50 a 80.10 ± 0.95 d 2.16 ± 0.06

SPH-47B-50 8.27 ± 0.38 b 1.51 ± 0.11 ab 6.33 ± 0.32 bc 0.20 ± 0.01 ab 17.24 ± 1.33 ab 75.40 ± 1.03 bc 2.27 ± 0.15
SPH-47B-100 8.96 ± 0.56 b 1.61 ± 0.12 ab 7.08 ± 0.50 c 0.20 ± 0.01 ab 16.61 ± 0.71 ab 77.69 ± 1.01 cd 2.17 ± 0.13
SPH-47B-300 6.80 ± 0.31 a 1.41 ± 0.10 ab 5.14 ± 0.19 a 0.17 ± 0.02 a 19.37 ± 0.94 bc 74.96 ± 0.96 bc 2.27 ± 0.07

Celecoxib 7.73 ± 0.29 ab 1.67 ± 0.05 b 5.74 ± 0.27 ab 0.19 ± 0.01 ab 20.93 ± 0.84 cd 73.61 ± 0.92 b 2.44 ± 0.08

As a result of blood inflammatory cytokine analysis using an ELISA kit, it was con-
firmed that the expression levels of TNF-α, IL-6, PGE2, MMP-2, and NO were significantly
increased in the serum of mice with arthritis induced by MIA. In the TNF-α result, the SHP-
47B treatment group inhibited TNF-α in a concentration-dependent manner, and showed a
stronger inhibitory effect than celecoxib used as a positive control group (Figure 6A). In the
IL-6 results, the SHP-47B 100 mg/kg and 300 mg/kg groups effectively inhibited IL-6, and
showed similar inhibitory effects to celecoxib used as a positive control group (Figure 6B) In
the PEG2 results, the SHP-47B 300 mg/kg group showed a significant inhibitory effect, and
showed a similar level of inhibitory effect to the normal group (Figure 6C). In the results
of MMP-2, the SHP-47B treatment group inhibited MMP-2 in a concentration-dependent
manner, and the 300 mg/kg group showed a stronger inhibitory effect than celecoxib used
as a positive control group (Figure 6D). Finally, in the NO results, the SHP-47B treatment
group suppressed NO in a concentration-dependent manner, and the 100 mg/kg and
300 mg/kg groups showed similar inhibitory effects to celecoxib used as a positive control
(Figure 6E).
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and (E) nitric oxide (NO) in a mice model of arthritis induced by MIA. The data are expressed as the 
mean ± SD (n = 7), and different letters (d > c > b > a) indicate a significant difference at p < 0.05, as 
determined by Duncan’s multiple-range test. 

3.8. Micro-CT Analysis 
The effect of SHP-47B on knee joint meniscus volume was analyzed in an animal 

model of MIA-induced arthritis using micro-CT-arthrography (Figure 7A). The meniscus 
is a half-moon-shaped piece of cartilage located between the upper and lower joints of the 
knee. Located on the inside and outside of the knee, it is known as a tissue that protects 
the joint, absorbs shock, and helps the knee to function properly. 
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Figure 6. Effect of SHP-47B treatment on hematological analysis, (A) tumor necrosis factor-α (TNF-α),
(B) interleukin-6 (IL-6), (C) prostaglandin E2 (PGE2), (D) matrix metalloproteinase-2 (MMP-2), and
(E) nitric oxide (NO) in a mice model of arthritis induced by MIA. The data are expressed as the
mean ± SD (n = 7), and different letters (d > c > b > a) indicate a significant difference at p < 0.05, as
determined by Duncan’s multiple-range test.

3.8. Micro-CT Analysis

The effect of SHP-47B on knee joint meniscus volume was analyzed in an animal
model of MIA-induced arthritis using micro-CT-arthrography (Figure 7A). The meniscus is
a half-moon-shaped piece of cartilage located between the upper and lower joints of the
knee. Located on the inside and outside of the knee, it is known as a tissue that protects the
joint, absorbs shock, and helps the knee to function properly.
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± 0.26 mm3 compared to 4.18 ± 0.13 mm3 of the normal group, confirming that the meniscal 

volume was significantly reduced through arthritis caused by MIA. On the other hand, in 

Figure 7. Effects of SHP-47B treatment on (A) meniscus volume and (B) micro-CT images (blue-
purple: meniscus) in an MIA-induced arthritis mice model. N: normal, C: control, L: SHP-47B 50
mg/kg, M: SHP-47B 100 mg/kg, H: SHP-47B 300 mg/kg, P: celecoxib. The data are expressed as
the mean ± SD (n = 3), and different letters (b > a) indicate a significant difference at p < 0.05, as
determined by Duncan’s multiple-range test.

As a result of Micro CT analysis, the meniscal volume of the control group was 3.12 ±
0.26 mm3 compared to 4.18 ± 0.13 mm3 of the normal group, confirming that the meniscal
volume was significantly reduced through arthritis caused by MIA. On the other hand, in
the case of the SHP-47B treatment group, meniscus volume increased by 3.35 ± 0.14 mm3

in the 50 mg/kg group, 3.52 ± 0.02 mm3 in the 100 mg/kg group, and 3.55 ± 0.11 mm3 in
the 300 mg/kg group. The celecoxib group used as a positive control showed a result of
3.43 ± 0.40 mm3. Through these results, SHP-47B treatment increased the meniscal volume
of the knee joint and showed efficacy against arthritis (Figure 7B).

3.9. Histological Analysis

For histopathological analysis using hematoxylin and eosin (H&E) and Safranin-O fast
green staining, the left knee joint of the MIA-induced arthritis mouse model was excised
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and the articular cartilage was analyzed using Motic EasyScan (Motic, Xiamen, China)
(Figures 8 and 9).
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Figure 8. Analysis of synovial cell changes and inflammatory cell infiltration in the knee joint by
H&E staining in an MIA-induced arthritis mouse model. (A) normal group, (B) control group,
(C) SHP-47B 50 mg/kg group, (D) SHP-47B 100 mg/kg group, (E) SHP-47B 300 mg/kg group, and
(F) positive control (celecoxib) group. Histological analysis result image magnification = 4×, and
scale bar = 300 µm.
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Figure 9. Analysis of cartilage tissue damage through Safranin-O staining in MIA-induced arthritis
mouse model. (A) normal group, (B) control group, (C) SHP-47B 50 mg/kg group, (D) SHP-47B 100
mg/kg group, (E) SHP-47B 300 mg/kg group, and (F) positive control (celecoxib) group. Histological
analysis result image magnification = 4×, and scale bar = 300 µm.

As a result of analyzing changes in synovial cells and infiltration of inflammatory
cells in the knee joint by H&E staining, synovial tissues were regularly arranged and
no inflammatory cells were found in the joints of the normal group (Figure 8A). On the
other hand, in the control group, severe bone erosion of cartilage tissue around the joint
and infiltration of inflammatory cells in the tissue were markedly observed, and synovial
inflammation thickening was also observed (Figure 8B). In the SHP-47B test group, as the
administration concentration increased, the loss of cartilage tissue and the infiltration of
inflammatory cells into the tissue gradually decreased (Figure 8C,D). Especially, in the
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300 mg/kg group, no inflammatory cell infiltration was observed in the tissue, and the
tissue arrangement was relatively uniformly arranged (Figure 8E,F).

As a result of checking the cartilage tissue damage through Safranin-O staining of the
proteoglycan layer of cartilage cells in the knee cartilage (Figure 9), in the normal group,
the cartilage cells of the contact, transition, and radial areas of the articular cartilage were
arranged in parallel, and the cartilage matrix was also was well kept (Figure 9A). However,
in the control group, there was loss of proteoglycan due to inflammatory findings and
cartilage invasion, and extensive destruction of subchondral bone tissue was observed
(Figure 9B). In the SHP-47B test group, as the administration concentration increased,
the cartilage layer was clearly observed (Figure 9C,D), and, in the 300 mg/kg group, the
improvement of the cartilage layer was observed at a level similar to that of the normal
group together with celecoxib, a positive control group (Figure 9E,F).

The staining results of all tissues were read by pathology experts using an optical
microscope, and were read blindly so that the experimental group could not be known in
advance to exclude subjective judgment.

4. Discussion

Osteoarthritis is a representative inflammatory joint disease that causes pain, stiffness,
and swelling due to degenerative changes, immune system abnormalities, trauma, and
other factors, leading to functional and mobility impairments in daily life and reducing
quality of life [1–3,19]. The treatment goal for patients with arthritis is to reduce pain
through inflammation control and to minimize joint deformation and disability by prevent-
ing joint damage, thereby improving the quality of life by maintaining joint function as
much as possible [22,23].

The main active compounds in Kalopanax pictus Nakai used in the research are
kalopanaxsaponins, liriodendrin, and syringin, which have been reported to possess anal-
gesic and anti-inflammatory effects in a rheumatoid arthritis animal model [27–29]. HPLC
analysis revealed that liriodendrin had a higher content compared to other plant com-
pounds and was recommended as a marker compound [20]. Additionally, ecdysterone,
known for their efficacy in promoting the growth and activity of osteoblasts and osteoclasts,
were combined with liriodendrin to create the SHP-47B compound and investigated the
possibility of SHP-47B as a functional ingredient for improving joint health [45–47].

The immunological causes of osteoarthritis are known to involve various cytokines
such as B cells, T cells, TNF-α, IL-1, IL-6, and IL-17, among others. Osteoarthritis is known
to be promoted by inflammatory cytokines (TNF-α, IL-1, IL-6, IL-17, etc.) that stimulate
the secretion of matrix metalloproteinases (MMPs) from synovial fibroblasts [48–53]. In
addition, it can be said that the homeostasis of pro-inflammatory and anti-inflammatory
cytokines is disrupted through the activation of the diverse and complex cytokine network
of rheumatoid arthritis, leading to a state where inflammation is exacerbated. Proteolytic
enzymes, such as matrix metalloproteinase (MMPs), play an important role in cartilage and
bone destruction in inflammatory osteoarthritis. MMPs act as extracellular matrix proteins
in vivo and are involved in proteoglycan degradation in osteoarthritis, and regulation of
MMP activity is important in arthritis treatment [54,55].

Currently, through research on these activation mechanisms, kinases, such as JAK,
MAPK, SYK, PI3K, NF-κB, and BTK, are being recognized as major targets for the develop-
ment of rheumatoid arthritis treatments. In particular, the JAK-STAT pathway is reported
to be a very important target for the development of rheumatoid arthritis therapies [56,57].

In this study, the anti-inflammatory mechanism of thawed hull extract was identified
in vitro and in vivo, and its potential as a functional material for improving osteoarthritis
was confirmed. First, in RAW264.7, in which inflammation was induced by LPS, treatment
with thaw extract inhibited the activity of MAPK and NF-κB, which are signal transduc-
tion pathways activated by Toll-like receptor (TLR). These results confirmed that strong
inhibition of inflammatory cytokine (TNF-α, IL-1, IL-6) and inflammatory mediators (NO,
PGE2) [58–60].
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NO is known to play a role in inhibiting tumor growth by mediating the anti-inflammatory
actions of immune cells [61,62]. This regulation of inflammation through NO is crucial in
controlling neurodegeneration by suppressing inflammation in neuroinflammatory dis-
eases [63]. Additionally, NO can be beneficial in the treatment of osteoarthritis by strongly
inhibiting the expression of gelatinases like MMP-2 and MMP-9, which play a significant
role in cartilage and bone destruction [64,65].

The potent inflammatory and MMPs inhibitory efficacy of SHP-47B was also observed
in an animal model of rheumatoid arthritis induced by MIA (monosodium iodoacetate),
which is known to induce rheumatoid arthritis as a glyceraldehyde-3-phosphate dehydro-
genase inhibitor. The MIA-induced arthritis model in rats causes joint cartilage damage,
functional impairment, and pain similar to human rheumatoid arthritis. Injecting MIA into
the knee joint space of rats causes changes in the synovial membrane and surrounding
tissues, increasing the load on the cartilage and causing continuous pain [35]. In this MIA-
induced arthritis animal model, treatment with the SHP-47B reduced pain (joint arthritis
index, hindlimb index, and gait analysis) induced by MIA and restored damage to the
meniscus cartilage, effectively reducing the levels of inflammatory cytokines TNF-α and
IL-6, inflammatory factor PGE2, MMP-2, and nitric oxide (NO) as confirmed by hemato-
logical analysis. The anti-inflammatory efficacy of SHP-47B was demonstrated through
significant results in clinical index analysis and histological analysis of experimental ani-
mals. Specifically, a concentration-dependent alleviation of osteoarthritis was observed in
the weight-bearing index and arthritis clinical index with SHP-47B treatment (50, 100, and
300 mg/kg).

In addition, the Micro CT-arthrography analysis of the meniscus, a crescent-shaped
cartilage located between the knee joints that plays a role in joint protection, shock absorp-
tion, and assisting knee function, showed that the volume of the meniscus increased in a
concentration-dependent manner with SHP-47B treatment (50, 100, and 300 mg/kg).

Finally, histological analysis of the left knee joint in each group was performed using
hematoxylin and eosin (H&E) staining and Safranin-O fast green staining. Based on the
pathophysiological observations of the disease model, treatment approaches can be divided
into direct tumor removal, alleviation of disease symptoms, and disease progression
inhibition through medication, as well as rehabilitation therapy. The purpose of our
research findings seems to lie in identifying methods that can alleviate or suppress the
progression of the disease [66]. Treatment of experimental animals with MIA resulted in
significant loss of cartilage tissue (bone erosion) and infiltration of inflammatory cells in the
tissue around the joint. In addition, inflammation invaded the cartilage along with synovial
inflammation and caused widespread destruction of the bone tissue beneath the cartilage
due to the loss of proteoglycans. However, treatment with SHP-47B at concentrations of 50,
100, and 300 mg/kg resulted in a concentration-dependent decrease in cartilage tissue loss
and infiltration of inflammatory cells. In particular, it was confirmed that treatment with a
high concentration (300 mg/kg) of SHP-47B suppressed osteoarthritis by reducing cartilage
tissue loss and infiltration of inflammatory cells and restoring the proteoglycan layer.

Various natural products are being studied for their potential to improve osteoarthritis,
but many of these products lack scientific evidence regarding quality control and efficacy.
In this study, we investigated the anti-osteoarthritis efficacy of SHP-47B, a mixture of
components Kalopanax pictus Nakai and Achyranthes japonica Nakai, rather than a single
ingredient, similar to other existing literature.

Since inflammatory cytokines are known to be involved in the initiation and perpetua-
tion of the osteoarthritis process, we treated LPS-induced RAW264.7 cells with SHP-47B
to inhibit inflammation-related proteins. Additionally, we conducted in vivo experiments
using an MIA-induced animal model to evaluate the anti-inflammatory cytokine inhibition
and histological analysis, indicating the potential of SHP-47B as a functional material
for improving osteoarthritis. However, most studies have focused on inflammatory cy-
tokines, and further mechanistic research involving various protein analyses related to
inflammatory cytokines should be conducted for a more detailed understanding.
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5. Conclusions

The purpose of this study was to develop pharmaceuticals using natural substances,
and we utilized two types of natural substances with known efficacy. Cell experiments
and animal experiments were conducted, and, through various research outcomes, the
efficacy of these substances against arthritis could be verified. However, to proceed with
the development of pharmaceuticals, there are still many aspects that need to be confirmed.
In particular, MAPK and NF-κB act as crucial signaling pathways within the cells, and
understanding their activation, inhibition mechanisms, as well as the interactions of related
proteins and genes, is essential. Moreover, through this understanding, we can determine
the internal responses induced by external stimuli and unveil the relevance of disruptions
in these signaling pathways to specific diseases.

To conduct mechanistic studies of MAPK and NF-κB, it is crucial to include appropriate
negative control and positive control groups, ensuring consistent experimental repetition
to validate the results. Moreover, employing diverse techniques to assess the activities of
MAPK and NF-κB and confirm their interactions appears to be necessary.

By pursuing such an approach, conducting meticulous mechanistic studies of the
MAPK and NF-κB signaling pathways, we can elucidate the mechanisms underlying the
anti-inflammatory effects associated with arthritis. This can pave the way for the develop-
ment of novel therapeutic interventions utilizing Kalopanax pictus Nakai and Achyranthes
japonica Nakai extracts.
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