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Abstract: The podocan-like protein 1 (PODNL1), an important member of the small leucine-rich
proteoglycans (SLRP) family, is a crucial component of the tumor microenvironment (TME). But its
prognostic values and the role in the TME have not been systematically estimated in a pan-cancer
setting. Targeting PODNL1, a systematic exploration into the TCGA datasets, reconciling with the
analyses of single-cell transcriptomes and immunotherapeutic cohorts in cancers, and validation
by tissue microarray-based multiplex immunofluorescence staining was performed. PODNL1 was
significantly correlated with the poor prognosis and immunotherapeutic responses in various cancers.
In-depth demonstration of molecular mechanisms indicated that PODNL1 expressions were notably
positively correlated with cancer-associated fibroblast (CAF) infiltration levels in 33 types of cancers.
It also positively correlated with the pan-fibroblast TGF-β response signature score, and the hallmarks
including TGF-β, TNF-α, inflammatory response, apical junction, epithelial–mesenchymal transition
and hedgehog in pan-cancer. Furthermore, high PODNL1 expressions were positively related with the
regulation of tumor-promoting TGF-β signaling through downregulating SMAD2/3:4 heterotrimer
regulations transcription and up-regulating the pathway restricted SMAD protein phosphorylation.
Single-cell transcriptome analyses and immunofluorescence validations indicated that PODNL1 was
predominantly expressed in the cancer cells and CAFs in various cancers. Additionally, the hetero-
geneity of cancer genotype–phenotype cross-talking was also observed associated with PODNL1. Our
systematic study indicates that PODNL1 plays an important role in the complex regulation network
of tumor progression, and lays a foundation for further exploration to develop PODNL1 as a valuable
matrix-mediated biomarker for cancer immunotherapy and prognosis in a pan-cancer setting.

Keywords: podocan-like protein 1 (PODNL1); pan-cancer; small leucine-rich proteoglycans (SLRPs);
extracellular matrix (ECM); matrix-mediated biomarker; immunotherapy

1. Introduction

The major complexity and heterogeneity of cancer genotype–phenotype cross-talking
are inviting an elevated exploration of cancer hallmarks and are giving rise to the inte-
grative concept for establishing a knowledge system of cancer [1]. Although prominently
utilized for cancer treatment, cancer immunotherapy, especially of the immune checkpoint
blockade [2], when being contextualized within the tumor microenvironment (TME), such
as when combined with the matrix-mediated therapy, is paving a new avenue for conquer-
ing cancer in a pan-cancer setting. In recent years, the extracellular matrix (ECM) has been
increasingly recognized to play a crucial role in multiple processes in tumor progression,
metastasis and especially immune evasion. Some ECM proteins can not only change the
TME at the topographical, architectural, biomechanical, and biochemical levels, but also
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serve as “matricryptins” which contain cryptic domains acting functions like chemokines
and cytokines, regulating and transducing crucial signaling pathways within the TME.
During carcinogenesis, such ECM proteins become highly dysregulated, emerging as a
reservoir of the cancer markers associated with prediction, diagnosis, and prognosis, and
as a pool of novel targets for matrix-mediated therapy as well [3].

Small leucine-rich proteoglycans (SLRPs) comprising five classes (I–V) with leucine-
rich repeat (LRR) motifs are involved in the ECM assembly and related with various
biological processes including the modulation of collagen fibrillogenesis and tumor pro-
gression [4,5]. In some breast cancer models, downregulated SLRPs of classes I and II,
e.g., decorin and lumican, are demonstrated to be correlated with tumor-suppressive func-
tion [6,7], and in other models, high levels of lumican in non-metastatic pancreatic cancer
are found to be associated with a more quiescent cancer cell state and prolonged patient
survival [8]. In another trial with colorectal adenocarcinoma, lumican is shown to have
close correlations with the infiltration levels of immune cells including the tumor-associated
macrophages, regulatory T cells, and dendritic cells [9]. Meanwhile, another class I member
biglycan secreted by the cancer-associated fibroblasts (CAFs) is demonstrated to cause a
poor prognosis and be associated with the immunosuppressive TME [10], and high bigly-
can expression is also found to be associated with tumor invasiveness in several types of
cancer [11]. Also, previous studies show that the main SLRP members, including decorin,
biglycan, asporin, and fibromodulin, are able to bind to and regulate the transforming
growth factor beta (TGF-β) pathway [4] and, among them, decorin modulates TGF-β
signaling via interacting with the low-density lipoprotein receptor-related protein (LRP-1)
and affects the mechanical dynamics of three-dimensional collagen matrices [12,13].

In particular, SLRPs have a class V member, named podocan-like 1 (PODNL1), which
is found to be highly expressed in bone, glioma, bladder and ovarian cancers, representing
a potential prognostic biomarker [14–18]. Its high expression together with the presence
of low-methylation in its CpG sites is coupled with significantly increased expressions
of PD-1, PD-L1, and CTLA4 in glioma [17]. Its overexpression in glioma cells is even
believed to remarkably promote the mesenchymal-related biomarkers including vimentin,
N-cadherin, snail, and fibronectin [16]. However, its prognostic values and the role in
the TME have not been systematically estimated yet, especially in a pan-cancer setting.
Therefore, in the present study, we performed a systematic exploration of PODNL1 through
the Cancer Genome Atlas (TCGA) pan-cancer datasets, TIMER (Tumor Immune Estimation
Resource), Gene Set Variation Analysis (GSVA), Gene Set Enrichment Analysis (GSEA), and
the Cellminer, reconciling with the analyses of single-cell transcriptomes and immunother-
apeutic cohorts in cancers, and validation by the tissue microarray (TMA)-based multiplex
immunofluorescence staining in 20 types of cancer as well (Figure 1).
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Figure 1. The workflow and experimental framework of this study. Targeting PODNL1, a systematic 
exploration into the datasets including TCGA, reconciling with the analyses of single-cell transcrip-
tomes and immunotherapeutic cohorts in cancers was performed, aiming to evaluate the correla-
tions between PODNL1 differential expression levels and prognostic value in a pan-cancer setting, 
and further systematically explore the related immune mechanism contextualizing the tumor envi-
ronment and immunotherapy responses. Further validation was conducted by tissue microarray-
based multiplex immunofluorescence staining. All the abbreviations are listed in Table S1. 
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2.1. Data Collection and Differential Expression Analyses 

The clinical stages and survival information including overall survival time in days 
(OS), disease-free survival (DFS), disease-specific survival (DSS), progression-free sur-
vival (PFS), RNA-seq and SNP data of 33 types of cancers were acquired from the TCGA 
database (https://portal.gdc.cancer.gov/ (accessed on 5 April 2022)). Meanwhile, the infor-
mation of normal samples was collected from the Genotype–Tissue Expression (GETx) 
dataset, conflated with TCGA data and then corrected to calculate the pan-cancer differ-
ences of PODNL1 expressions. The cell line expression matrix was downloaded from the 
Cancer Cell Line Encyclopedia (CCLE) database (https://portals.broadinstitute.org/ccle/ 
(accessed on 5 April 2022)) and Human Protein Atlas (HPA) database (https://www.pro-
teinatlas.org/ (accessed on 6 April 2022)). The single-cell sequencing datasets of glioblas-
toma multiforme (GBM) were collected from the Single Cell Portal platform (http://single-
cell.broadinstitute.org (accessed on 17 May 2022)) and other related single-cell sequencing 
datasets were collected from the Gene Expression Omnibus (GEO) database 
(https://www.ncbi.nlm.nih.gov/geo/ (accessed on 17 May 2022)) including bladder 
urothelial cancer (BLCA, GSE145137), head and neck squamous cell carcinoma (HNSC, 
GSE103322), kidney renal clear cell carcinoma (KIRC, GSE121636 and GSE171306), ovar-
ian serous cystadenocarcinoma (OV, GSE118828). The analyses of the PODNL1 differen-
tial expressions within tumor subtypes were conducted by The Gene Expression Profiling 
Interactive Analysis (GEPIA2, http://gepia.cancer-pku.cn (accessed on 10 April 2022)) sub-
type filter. All the abbreviations in this paper are listed in Table S1. 

Figure 1. The workflow and experimental framework of this study. Targeting PODNL1, a systematic
exploration into the datasets including TCGA, reconciling with the analyses of single-cell transcrip-
tomes and immunotherapeutic cohorts in cancers was performed, aiming to evaluate the correlations
between PODNL1 differential expression levels and prognostic value in a pan-cancer setting, and
further systematically explore the related immune mechanism contextualizing the tumor environ-
ment and immunotherapy responses. Further validation was conducted by tissue microarray-based
multiplex immunofluorescence staining. All the abbreviations are listed in Table S1.

2. Materials and Methods
2.1. Data Collection and Differential Expression Analyses

The clinical stages and survival information including overall survival time in days
(OS), disease-free survival (DFS), disease-specific survival (DSS), progression-free survival
(PFS), RNA-seq and SNP data of 33 types of cancers were acquired from the TCGA database
(https://portal.gdc.cancer.gov/ (accessed on 5 April 2022)). Meanwhile, the information
of normal samples was collected from the Genotype–Tissue Expression (GETx) dataset,
conflated with TCGA data and then corrected to calculate the pan-cancer differences of
PODNL1 expressions. The cell line expression matrix was downloaded from the Cancer Cell
Line Encyclopedia (CCLE) database (https://portals.broadinstitute.org/ccle/ (accessed
on 5 April 2022)) and Human Protein Atlas (HPA) database (https://www.proteinatlas.
org/ (accessed on 6 April 2022)). The single-cell sequencing datasets of glioblastoma
multiforme (GBM) were collected from the Single Cell Portal platform (http://singlecell.
broadinstitute.org (accessed on 17 May 2022)) and other related single-cell sequencing
datasets were collected from the Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/ (accessed on 17 May 2022)) including bladder urothelial
cancer (BLCA, GSE145137), head and neck squamous cell carcinoma (HNSC, GSE103322),
kidney renal clear cell carcinoma (KIRC, GSE121636 and GSE171306), ovarian serous
cystadenocarcinoma (OV, GSE118828). The analyses of the PODNL1 differential expressions
within tumor subtypes were conducted by The Gene Expression Profiling Interactive
Analysis (GEPIA2, http://gepia.cancer-pku.cn (accessed on 10 April 2022)) subtype filter.
All the abbreviations in this paper are listed in Table S1.
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2.2. Correlations between PODNL1 Expressions and Prognosis

The correlations between the PODNL1 expression levels and OS, DFS, DSS, and PFS
in patients with cancers were evaluated using the Cox proportional hazards model and
Kaplan–Meier (K-M) survival method through the R packages “survival”, “survminer”, and
“forestplot”. The “timeROC” (v 0.4) R package was used to generate the receiver operating
characteristic (ROC) curve to compare the predictive accuracy of PODNL1 expressions.

2.3. Tumor Immune Infiltration

The correlations between immune infiltration scores (including Immune Score, stromal
score, estimate score, tumor purity) and the expression levels of PODNL1 were evaluated
using ESTIMATE (estimation of stromal and immune cells in malignant tumor tissues
using expression data) [19] in pan-cancer. The TIMER database (http://timer.cistrome.org/
(accessed on 2 June 2022)), which provides multiple immune deconvolution methods in-
cluding TIMER, cell-type identification by estimating relative subsets of RNA transcripts
(CIBERSORT), CIBERSORT-ABS, xCELL, estimating the proportion of immune and cancer
cells (EPIC), the microenvironment cell populations counter (MCP-counter), a method to
quantify the fractions of ten immune cell types from bulk RNA-sequencing data (quan-
TIseq), and TIDE algorithms were applied for analyzing immune infiltration levels [20].

2.4. The TME-Related Biological Processes

To explore the correlations between the expression levels of PODNL1 and TME, we
collected the related gene signatures including the pan-fibroblast TGF-β response signature
scores (Pan_F_TBRs), antigen processing machinery (APM), DNA repair, angiogenesis, and
homologous recombination [21] as well as signatures of tumor inflammation, tumor prolifer-
ation, G2M checkpoint, epithelial–mesenchymal transition (EMT), and DNA replication [22].
In the following, we performed the PODNL1 correlation analyses with immunomodula-
tors including inmmunostimulator, immunocheckpoint, major histocompatibility complex
(MHC), chemokine and its receptors using the gene sets from an integrated repository por-
tal for tumor–immune system interactions (TISDB, http://cis.hku.hk/TISIDB/ (accessed
on 10 June 2022)), and with TGF-β gene sets from combined hallmark_TGF_beta_signaling
and KEGG_TGF_beta_signaling_pathway genes from the molecular signatures database
(MsigDB) [23]. The cancer stem cell markers gene set was summarized from the previous
study [24]. The multi-gene correlation was analyzed by the R software package “pheatmap”.
Cancer hallmark signatures were analyzed by the GSVA method and Kyoto Encyclopedia
of Genes and Genomes database (KEGG) terms by the GSEA. Finally, the protein–protein
interaction (PPI) network was analyzed using GeneMANIA (http://www.genemania.org
(accessed on 13 June 2022)).

2.5. Tumor Mutation Burden (TMB) and Microsatellite Instability (MSI)

Though defined as the total amount of somatic genetic-coding errors, base substitu-
tions, insertions or deletions detected per mega base, TMB in this study was determined
by calculating the variant frequency and the number of variants/exon length for each
tumor sample after dividing the non-synonymous mutation sites by the total length of
the protein-coding region. The value of MSI for each TCGA patient was derived from
previously published studies [25]. The correlations of the expression levels of PODNL1
with TMB and MSI were analyzed using Spearman’s rank correlation coefficient, and then
visualized by the “Fmsb”, “Limma” and “Dplyr” R packages.

2.6. Mutation Landscape and Methylation

The pan-cancer mutation landscape of PODNL1 was measured using cBioportal (www.
cbioportal.org (accessed on 4 July 2022)). The Methsurv database (https://biit.cs.ut.ee/
methsurv (accessed on 6 July 2022)) was used to find the methylation sites and prognostic
information of PODNL1 in pan-cancer. The correlations of PODNL1 methylation with the
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http://cis.hku.hk/TISIDB/
http://www.genemania.org
www.cbioportal.org
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cytotoxic T lymphocyte (CTL) and T cell dysfunction were analyzed via the Tumor Immune
Dysfunction and Exclusion platform (TIDE) [26].

2.7. The Immunotherapeutic Responses

The IMvigor210 cohort [21] of patients with metastatic urothelial cancer (mUC) receiv-
ing anti-PD-L1 immunotherapy (http://research-pub.gene.com/IMvigor210CoreBiologies
(accessed on 9 July 2022)), and the GSE78220 cohort [27] of patients with melanoma
receiving anti-PD-1 immunotherapy were used to further analyze the expression lev-
els of PODNL1 with the immunotherapeutic responses. The immunotherapeutic re-
sponses, respectively, were represented as the complete response (CR), partial response
(PR), stable disease (SD), and progressive disease (PD). The prognosis Risk, Risk.adj
and ROC for PODNL1 expressions in immunotherapeutic cohorts were calculated by
the TIDE platform [26]. The OS K-M curves for the cohorts receiving anti-CTLA4 and
anti-PD-1 treatments were analyzed by K-M Plotter platform immunotherapy module
(https://kmplot.com/analysis/index.php?p=service&cancer=immunotherapy (accessed
on 11 July 2022)).

2.8. Analyses of Single-Cell Transcriptomes and Drug Responses

The R package “Seuratv4.1.1.” was applied for basic analyses of single-cell RNA se-
quencing data, including data filtering, quality control and integrating. The corrected
normalized data metrics were applied to the standard analysis. Principal component
analysis (PCA) was carried out for dimension reduction. Then, cell clustering was per-
formed using the FindClusters function implemented in the “Seurat” R package. The
R package “Infercnv” and “Copykat” were used for the identification of tumor cells.
Dimensionality reduction was visualized using the uniform manifold approximation
and projection (UMAP) function and PODNL1 gene expression levels were plotted by
“Vlnplot”, “Dimplot” and “Featureplot”. The correlations of the expression levels of
PODNL1 with drug responses in pan-cancer treatment were analyzed using the Cellminer
datasets (http://discover.nci.nih.gov/cellminer/ (accessed on 15 July 2022)).

2.9. Multiplex Immunofluorescence Staining

The digital image analyses (DIA) of TMA-based multiplex immunofluorescence stain-
ing were performed as described by previous studies [28]. TMA chips containing a total of
52 pairs of tumor and matched adjacent normal tissues from 20 types of cancer including
LUAD, LUSC, small-cell lung cancer (SCLC), BLCA, KIRC, BRCA, THCA, GBM, PRAD,
ESCA, STAD, COAD, READ, PAAD, LIHC, CESC, UCEC, OV, SKCM, and DLBC were
obtained from Shanghai Zhuoli Biotechnology Company Ltd., Shanghai, China. Two
pathologists reviewed the hematoxylin-andeosin (HE)-stained tumor, whole sections of
formalin-fixed, paraffinembedded (FFPE) specimens and identified regions of invasive
carcinoma, which displayed the typical histological features for sampling into TMAs. For
each sampling pair, one to three representative tumor cores and one core with normal or
tumor-adjacent tissue with a 1.5 mm diameter were selected. The primary monoclonal
antibodies were against PODNL1 (206269-T08, 1:50, SinoBiological, Shanghai, China) and
FAP (BM5121, 1:100, Boster, Wuhan, China). Then, the DIA technology using the fully
automated VIS DIA VisioMorph system (Visiopharm®, Hoersholm, Denmark) was applied
to evaluate the relationship between PODNL1 and fibroblast activation protein α (FAP)
expression levels, while the positive cells were quantified at a single-cell level. The histo-
chemistry score is given by (H-Score) = ∑ (pi × i) = (percentage of weak intensity × 1) +
(percentage of moderate intensity × 2) + (percentage of strong intensity × 3), i stands the
staining intensity and pi represents the ratio of positive cells in the section.

2.10. Statistical Analysis

All analysis methods and R packages were implemented by R version 4.0.3., with a
p value < 0.05 considered as statistically significant. Correlations of two variables were
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analyzed using Spearman’s or Pearson’s test. In the case of two groups’ comparisons,
Student’s t-test and the Wilcoxon rank-sum test were used for normally and nonnormally
distributed variables, respectively. For the comparisons of more than two groups, the
Kruskal–Wallis tests and one-way analysis of variance were, respectively, utilized as the
nonparametric and parametric methods.

3. Results
3.1. mRNA Expression and Prognostic Value

The expression levels of PODNL1 were found significantly higher in tumor tissues
in 15 types of cancers including BLCA, breast-invasive carcinoma (BRCA), cholangiocar-
cinoma (CHOL), colon adenocarcinoma (COAD), esophageal carcinoma (ESCA), HNSC,
KIRC, lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), OV, pancre-
atic adenocarcinoma (PAAD), pheochromocytoma and paraganglioma (PCPG), rectum
adenocarcinoma (READ), sarcoma (SARC), and stomach adenocarcinoma (STAD), com-
pared with in normal tissue samples. Meanwhile, the expression levels of PODNL1 in nine
types of cancers were significantly downregulated (Figure 2A). Further analyses indicated
that PODNL1 was expressed in different cancer cell lines in CCLE datasets, and higher
in fibroblasts and brain tumor cells (Figure 2B), and its expression was enhanced in cell
lines of fHDF/TERT166, HSkMC, hTERT-RPE1, SiHa and U-2-OS, which were derived
from brain, muscle, female reproductive system, and mesenchymal tissues, respectively, in
HPA datasets (Figure 2C). Analysis of clinical stages in pan-cancer presented the results
that the expression levels of PODNL1 increased with tumor development as its expression
levels differed significantly between early (I and II) and advanced (III and IV) stages in
multiple cancers (Figure 2D,E). Moreover, analyses of molecular subtypes in GEPIA also
indicated significant variation among the pan-cancer (Figure 2F). The high expression
levels were correlated with the v-raf murine sarcoma viral oncogene homolog B1 (BRAF)
mutation type of thyroid carcinoma (THCA) and skin cutaneous melanoma (SKCM), the
mesenchymal/EMT phenotype of GBM, cervical squamous cell carcinoma and endocervical
adenocarcinoma (CESC), HNSC, PAAD, LUSC and OV, the M3 type of KIRC, non-papillary
type of BLCA, proximal-inflammatory phenotype of LUAD, luminal-A phenotype of BRCA,
and a non-seminoma type of testicular germ cell tumors (TGCT).

Further exploration via the cox proportional hazards model demonstrated that signifi-
cant correlations between the expression levels of PODNL1 and OS, PFS, DFS, and DSS in
various cancers (Figure 3A–D). Poor OS, PFS, DFS, and DSS were all shown to be signif-
icantly correlated with higher expression levels in kidney renal papillary cell carcinoma
(KIRP) (p < 0.05, HR > 1.8). Meanwhile, the K-M survival curves showed that, among the
patients with 10 types of cancers including brain lower grade glioma (LGG), KIRC, KIRP,
BLCA, OV, adrenocortical carcinoma (ACC), mesothelioma (MESO), GBM, PAAD with
metastasis, and STAD in stage M0, the high PODNL1 expressions significantly related with
both poor OS and PFS, with the correlated means of the area under the ROC curves (AUC)
all larger than 0.5 (Figure 3E–N). Among them, LGG, ACC and KIRP had the AUC of both
OS and PFI more than 0.7 (Figure 3E,G,J).
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Figure 2. Differential expression analyses of PODNL1 among cancers. (A) Expression profiles of
PODNL1 analyzed with TCGA and GTEX databases. (B) The expression levels of PODNL1 in tumor
cell lines in CCLE database. (C) The expression levels of PODNL1 in 69 cell lines from the HPA
database. (D) The correlations between the PODNL1 expressions and the clinical stages in 33 types
of cancers. (E) The correlations between the PODNL1 expressions and the clinical stages in ACC,
KIRC, KIRP, THCA, KICH, OV, BLCA, SKCM, COAD, STAD, ESCA, and TGCT. (F) The respective
analyses of correlations between the PODNL1 expressions and the molecular subtypes in SKCM,
THCA, SARC, BLCA, TGCT, GBM, CESC, HNSC, PAAD, LUAD, KIRP, KIRC, LUSC, THYM, and
BRCA. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. All the abbreviations are listed in Table S1.
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Figure 3. Pan-cancer survival analysis of PODNL1 using TCGA database. Through analysis us-
ing univariate cox regression, the forest plots representing the PODNL1 expressions significantly
associated with the following: (A) Overall survival time in days (OS) in KIRC, LGG, BLCA, ACC,
OV, LIHC, MESO and KIRP, which indicated that PODNL1 was a high-risk gene in these cancers,
particularly in ACC and KIRP. (B) Progression-free survival (PFS) in LGG, GBM, KIRC, ACC, BLCA,
KIRP, OV, and MESO, which indicated that PODNL1 was a high-risk gene, particularly in ACC and
KIRC. (C) Disease-free survival (DFS) in HNSC and KIRP. (D) Disease-special survival (DSS) in ACC,
LGG, KIRC, BLCA, GBM, KIRP, MESO, and OV. (E–N) The correlations of the high expression levels
of PODNL1 with the poor OS and PFS of patients with cancers including LGG, KIRC, KIRP, BLCA,
OV, ACC, MESO, GBM, PAAD metastasis and recurrence, and STAD Stage M0, analyzed by the
Kaplan–Meier (K–M) method, and the ROC curves measuring their predictive diagnostic values of
the PODNL1 expressions.

3.2. Immune Infiltration

Significant correlations were observed between the expression levels of PODNL1 and
immune infiltration at a pan-cancer scale (Figure 4). The expression levels of PODNL1
were positively correlated with Immune Score, ESTIMATE score and stromal score, and
negatively with tumor purity in 16, 25, 28, and 24 types of cancers, respectively (Figure 4A).
Further analyses presented significant correlations of the expression levels of PODNL1
with multiple TME components in pan-cancer, notably positively correlated with the in-
filtration levels of CAFs in all types of cancers, endothelial cells in 22 types of cancers,
and hematopoietic stem cells (HSCs) in 19 types of cancers. In adaptive immune cells, the
infiltration levels of CD8 + T cells were found negatively correlated with the PODNL1
expressions in 13 types of cancers, and positively correlated in six types of cancers. The
infiltration levels of CD4 + T cells were negatively correlated with PODNL1 expressions
in HCSC and BRCA. The total CD4 + T cells were negatively correlated, but the Th2 cells
positively correlated in BLCA. Moreover, the infiltration levels of B cells presented signifi-
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cant negative correlations with PODNL1 expressions in the majority of pan-cancer except
THCA, KIRP, liver hepatocellular carcinoma (LIHC) and PCPG. In the innate immune cells,
the infiltration levels of macrophages and monocytes were found positively correlated with
the PODNL1 expressions. In addition, PODNL1 expressions showed significant positive
correlation with myeloid-derived suppressor cells (MDSCs) in 11 types of cancers including
ACC, BLCA, BRCA-luminal A, CESC, ESCA, KIRC, LGG, LIHC, MESO, SKCM, and SKCM
metastasis (Figure 4B).

3.3. The Single-Cell Transcriptomes Analyses

The single-cell transcriptome analyses demonstrated that PODNL1 was mainly ex-
pressed in neuronal cells and mesenchymal cells in normal tissues within the HPA database
(Figure 5A). Further single-cell sequencing analyses in five cancers (BLCA, GBM, HNSC,
KIRC and GBM) indicated that PODNL1 was highly expressed in cancer cells in all included
cancers as well as in CAFs of BLCA and HNSC. Moreover, moderate expressions were
found in stromal cells including neuronal cells, monocytes and T cells in GBM as well as B
cells, monocytes, macrophages, T cells and epithelial cells in HNSC (Figure 5B–F).

3.4. Cancer Immunotherapy Related Core Molecule Events

A series of gene sets were adopted to examine the potential relevance of PODNL1 ex-
pression to cancer immunotherapy. Among them, the Pan_F_TBRs, EMT and angiogenesis
had significant positive correlations with PODNL1 expressions in almost all the cancers (Fig-
ure 6A). Multiple types of cancers exhibited negative correlations with DNA replication (18),
DNA repair (14) and G2-M_checkpoint (12) (Figure 6A). Further evaluation indicated that
the highly expressed PODNL1 was significantly correlated with immune checkpoints,
immunostimulators, chemokines and its receptors, MHC and stem markers (Figure 6B–G).
Notably, immune checkpoints TGFB1 and CD276 were significantly positively correlated in
25 types of cancers (Figure 6B,C). Otherwise, cytokine receptors and MHC molecules were
observed to heterogeneously aggregate in different tumors (Figure 6E,F). Also, PODNL1
expressions were found to be positively correlated with the expression levels of cancer
stem cell-related molecular markers as cluster of differentiation 44 (CD44), sex-determining
region Y-box transcription factor 2 (SOX2), spalt-like transcription factor 1 (SALL1), RNA
exonuclease 1 homolog (REXO1), nucleus accumbens-associated protein 1 (NACC1), cy-
clin D1 (CCND1), catenin beta-1 (CTNNB1), neurogenic locus notch homolog protein 1
(NOTCH1), NOTCH4, and nestin (NES) in more than 10 types of cancers, especially with
the NES in more than 20 types of cancers (Figure 6G). Finally, in most tumors, PODNL1
expressions were not significantly correlated with TMB and MSI, only both positively
correlated in THCA, negatively with TMB in KIRP, HNSC, and negatively with MSI in
TGCT and acute myeloid leukemia (LAML) (Figure 6H,I).



Curr. Issues Mol. Biol. 2023, 45 6125

Curr. Issues Mol. Biol. 2023, 3, FOR PEER REVIEW 9 
 

 

cancer except THCA, KIRP, liver hepatocellular carcinoma (LIHC) and PCPG. In the in-
nate immune cells, the infiltration levels of macrophages and monocytes were found pos-
itively correlated with the PODNL1 expressions. In addition, PODNL1 expressions 
showed significant positive correlation with myeloid-derived suppressor cells (MDSCs) 
in 11 types of cancers including ACC, BLCA, BRCA-luminal A, CESC, ESCA, KIRC, LGG, 
LIHC, MESO, SKCM, and SKCM metastasis (Figure 4B). 

 
Figure 4. Correlation analyses between the PODNL1 expressions and the infiltration levels of im-
mune cells among pan-cancer. (A) Heatmap of the correlations between the expression levels of 
PODNL1 and Immune Score, ESTIMATEScore, StromalScore, and TumorPurity, respectively. (B) 
Heatmap of the correlations between the expression levels of PODNL1 and immune cells evaluated 
by the TIMER, CIBERSORT, CIBERSORT-ABS, XCELL, EPIC, MCPCOUNTER, QUANTISEQ, and 
TIDE algorithms. Red showed the positive correlations and purple the negative. * p < 0.05, ** p < 
0.01, *** p < 0.001. 

Figure 4. Correlation analyses between the PODNL1 expressions and the infiltration levels of immune
cells among pan-cancer. (A) Heatmap of the correlations between the expression levels of PODNL1
and Immune Score, ESTIMATEScore, StromalScore, and TumorPurity, respectively. (B) Heatmap of
the correlations between the expression levels of PODNL1 and immune cells evaluated by the TIMER,
CIBERSORT, CIBERSORT-ABS, XCELL, EPIC, MCPCOUNTER, QUANTISEQ, and TIDE algorithms.
Red showed the positive correlations and purple the negative. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 5. Single-cell sequencing analyzing PODNL1 co-expression in pan-cancer. (A) The expression
levels of PODNL1 in cells analyzed via the single-cell transcriptomes of normal tissues in HPA
datasets. (B–F) The expression levels of PODNL1 analyzed via the single-cell sequencing datasets of
BLCA, HNSC, GBM, KIRC, and OV, respectively.
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Figure 6. Correlations of PODNL1 expressions with the core molecules and biology pathways related
to tumor immunotherapeutic responses. Correlation heatmaps: (A) Pathways (including Pan_F_TBRs,
EMT markers, angiogenesis, ferroptosis, tumor inflammation signature, tumor proliferation signature,
homologous recombination, G2M checkpoint, DNA replication, DNA repair and antigen-processing
machinery). (B) Immune checkpoint. (C) Immunostimulator. (D) Chemokine. (E) Chemokine
receptor. (F) MHC. (G) Tumor stem cell marker. (H) TMB. (I) MSI. * p < 0.05, ** p < 0.01, *** p < 0.001.

3.5. Correlations with Tumor-Promoting TGF-β Signaling

Because of the strong correlations of PODNL1 expressions with CAFs infiltration levels
and Pan_F_TBRs, further correlation analysis with TGF-β pathway genes was conducted
and the results showed that multiple genes had significant correlations with its expressions
(Figure 7A–C). On the whole, the majority of genes in the TGF-β pathway were positively
correlated with PODNL1 expression, while a few showed negative correlations (Figure 7A).
We took the gene sets showing positive correlations in more than 20 types of tumors (red
column in Figure 7A,C) and negative correlations in more than 5 ones (purple column in
Figure 7A,B) to conduct the PPI analyses on the Metascape platform, respectively. In the
molecular complex detection (MCODE) networks, the positively correlated genes were
concentrated in the restricted SMAD protein phosphorylation pathway (Figure 7C) and the
negatively correlated ones in the SMAD2/3:4 heterotrimer regulations pathway (Figure 7B).
Since the proteoglycans SLRP family might play a role in regulating the TGF-β signaling
through its receptors, further PPI analyses covering positively correlated receptors indicated
that the PODNL1 protein shared a domain with leucine-richα-2 glycoprotein 1 (LRG1)
which could physically interact with activin A receptor-like type 1 (ACVRL1), endoglin
(ENG) and TGF beta receptor 1 (TGFBR1) (Figure 7D).
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ENG. * p < 0.05, ** p < 0.01.

3.6. Immunotherapeutic Responses

Further analyses suggested that the high expression levels of PODNL1 were signif-
icantly associated with the poor OS of patients from the enumerated immunotherapeu-
tic cohorts (the IMvigor210 cohort of mUC treated with anti-PD-L1 (Figure 8A–D), the
GSE78220 cohort with the melanoma treated with anti-PD-1 (Figure 8E–H), as well as the
cohorts of the patients treated with anti-CTLA4 (Figure 8I), and the cohorts of the patients
treated with anti-PD-1 (Figure 8J) immunotherapies, analyzed by the K-M platform. In
addition, through the estimation of the biomarker relevance of PODNL1 expressions within
the cohorts of IMvigor210 and GSE78220, and 20 cohorts in the TIDE platform, we found
that PODNL1 expressions had the predictive diagnostic AUC of more than 0.5 in 11 cohorts
among them (Figure 8K).
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Figure 8. Immunotherapy responses and biomarkers related with the expression levels of PODNL1
in cancer immunotherapeutic cohorts. (A–D) The IMvigor210 cohort: (A) The K-M curve of OS.
(B,C) Bar and box plots of immunotherapy responses (CR: complete response; PR: partial response;
SD: stable disease; PD: progressive disease) and (D) the areas under the ROC curves (AUCs) of the
PODNL1 expression, TMB, NEO, and their combination. (E–H) The GSE78220 cohort: (E) The K-M
plot of OS. (F,G) Bar and box plots of immunotherapy responses (CR/PR/SD/ PD) and (H) the AUCs
of the PODNL1 expressions. (I,J) The K-M curves of PODNL1 expression in immunotherapy cohorts
analyzed using the K-M plotter platform: (I) Anti-PD-1 cohorts. (J) Anti-CTLA4 cohorts. (K) The
correlations of high PODNL1 expressions with Risk, Risk.adj and ROC in immunotherapy cohorts
enumerated in TIDE platform.

3.7. Correlations with Various Cancer Hallmarks via Functional Analyses

GSVA and GSEA were conducted to comprehensively investigate the related pathways
with PODNL1 expressions. GSVA on gene sets of the cancer hallmarks showed that the non-
canonical TGF-β signaling pathway phosphoinositide 3 kinase-serine/threonine protein
kinase–mechanistic target of rapamycin kinase (PI3K-AKT-mTOR), ECM-related pathways
(including myogenesis, apical junction), the pathways associated with inflammation (includ-
ing TGF-β, tumor necrosis factor-α (TNF-α), inflammatory response, interleukin 6-janus
kinase-signal transductor of activators of transcription (IL-6-JAK-STAT3), IL-2-STAT5, and
Hypoxia), and the pathways related to stemness (including EMT and hedgehog) had
significant positive correlations with PODNL1 expressions in various cancers. Notably,
metabolism-related pathways, including fatty acid metabolism and adipogenesis, showed
significantly negative correlations in multiple cancers (Figure 9A). The GSEA confirmed
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that PONDL1 expressions significantly positively correlated with the pathways in cancers
and focal adhesion in six types of cancers including LGG, GBM, KIRC, BLCA, KIRP and OV,
which all exhibited a poor prognosis in the PODNL1 high expression groups (Figure 9B–G).
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3.8. Mutation and Methylation

The mutant landscape of PODNL1 in pan-cancer showed that PODNL1 altered mainly
by amplification and mutation in OV, uterine corpus endometrial carcinoma (UCEC) and
lymphoid neoplasm diffuse large B-cell lymphoma (DLBC) at a high level with a surprising
alteration rate of more than 4%, especially in OV at the highest alteration rate of 11.47%
(Figure 10A). A total of 36 mutation sites were found in PODNL1 protein, among which the
site A150V/T had the highest incidence (Figure 10B). Furthermore, we found more TP53
mutations in BLCA, HNSC, and KICH, and more mutations of phosphatidylinositol-4,5-
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bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) in BRCA, more BRAF mutations in
THCA, and more mutations of general transcription factor IIi (GTF2I) in thymoma (THYM)
in PODNL1 high-expression groups. Contrarily, low TP53 mutations were found to be
associated with high PODNL1 expressions in GBM and LGG (Figure 11).
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Figure 10. Mutational landscape and methylation of PODNL1 in pan-cancer. (A) Mutation frequency
of PODNL1 in pan-cancer. (B) Mutation lollipop chart of PODNL1. (C) Correlation table of PODNL1
methylation and CTL Cor, T Dysfunction, Risk and Risk.adj in 21 types of cancers from TCGA database,
analyzed using the TIDE platform. (D) Correlation heatmap of PODNL1 methylation sites and prognosis
of 25 different human cancers from TCGA database, analyzed using the Methsurv platform. The red
color represents a positive correlation while the purple negative. (* p < 0.05, ** p < 0.01, *** p < 0.001).
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Analyses combining the TIDE platform and Methsurv Database demonstrated that 
the survival prognosis, CTL infiltration level and T cell dysfunction were affected by 
PODNL1 methylation in multiple cancers, among which glioma was most significantly 

Figure 11. Oncoplots showed the somatic landscapes of (A) BLCA, (B) HNSC, (C) KICH, (D) BRCA,
(E) GBM, (F) LGG, (G) THCA and (H) THYM tumor cohorts. Genes are ordered by their mutation
frequencies, samples are ordered by disease histology, as indicated by the annotation bar. Waterfall
plot shows mutation information for each gene for each sample. Color annotation of various cancer
types are shown at the bottom. The bar plot above the legend shows the number of mutation burden.
(I) The mutation profiles of different genes in high- and low-PODNL1-expression groups: TP53 in
BLCA, HNSC, KICH, GBM and LGG, PIK3CA in BRCA, BRAF in THCA and GTF2I in THYM.

Analyses combining the TIDE platform and Methsurv Database demonstrated that
the survival prognosis, CTL infiltration level and T cell dysfunction were affected by
PODNL1 methylation in multiple cancers, among which glioma was most significantly
affected by methylation (Figure 10C,D). The low-level methylations in site Cg10729062
and site Cg03417156 were associated with poor prognosis in nine and six types of cancers,
respectively (Figure 10D).

3.9. Analyses of the Genome-Wide Co-Expression and Drug Responses

The genome-wide co-expression analyses showed that the expression levels of colla-
gen genes (COL1A1, COL1A2, COL5A1, COL5A2, COL8A1 and COL8A2) and LincRNAs
(Linc01614 and Linc01711) were significantly positively correlated with PODNL1 expres-
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sions in various cancers (Figure 12). Meanwhile, in drug responses, we found that PODNL1
expressions were positively correlated with the clinical responses after treating with BEN,
Tegafur, Lenvatinib, Megestrol acetate, and okadaic acid, but negatively in AT-13387 and
Allopurinol treatments (Figure S1).
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Figure 12. Expression correlation analysis of PODNL1 at the whole genome level in pan-cancer.
(A) Upset plot showed the genes correlated with PODNL1 expressions in pan-cancer. (B) Venn plots
showed the genes correlated with PODNL1 expressions in five types of cancers including BLCA,
KIRC, ACC, OV and GBM. (C1–E5) The expression correlations of PODNL1 with (C1–C5) COL1A1,
(D1–D5) COL5A1, and (E1–E5) LINC01614 in BLCA, KIRC, ACC, OV and GBM, respectively.

3.10. TMA-Based Multiplex Immunofluorescence Staining

Using the HPA database for further analysis, we found that the majority of malignan-
cies displayed cytoplasmic positivity of PODNL1 expression. Among them, the colorectal
and thyroid cancers along with several cases of gastric, pancreatic and ovarian cancers
exhibited stronger immunoreactivity (Figure S2). Furthermore, the DIA of TMA-based
multiplex immunofluorescence staining revealed the protein co-expression relationship
between PODNL1 and FAP, an important CAFs marker, in 20 types of cancer (Figure 13,
Table S2). We found that both the protein levels of PODNL1 and FAP were higher in
TME, and PODNL1 protein was especially highly expressed in cancer cells (Figure 13A–J).
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Meanwhile, it was found that the H-score of PODNL1 in tumor tissues was significantly
higher than that in adjacent normal tissues (Figure 13K). The H-score of PODNL1 was
significantly positively correlated with FAP (Figure 13L).
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ure 13A–J). Meanwhile, it was found that the H-score of PODNL1 in tumor tissues was 
significantly higher than that in adjacent normal tissues (Figure 13K). The H-score of 
PODNL1 was significantly positively correlated with FAP (Figure 13L). 

 
Figure 13. The digital image analyses of the relationship between the protein levels of PODNL1
and FAP using the TMA-based multiplex immunofluorescence staining detected from 52 paired
samples of 20 types of cancer. (A–J) The merged images of the multiplex immunofluorescence staining
(50× and 500×), the DAPI nuclear is stained in blue, while the protein levels of PODNL1 and FAP,
respectively, are stained in yellow and green; (A) LUAD; (B) BLCA; (C) KIRC; (D) BRCA; (E) COAD;
(F) OV; (G) UCEC; (H) CESC; (I) LUSC; (J) PAAD; (K) Comparison of the PONDL1 H-scores between
the pairs of tumor and matched adjacent normal tissues; (L) The relationship between the PONDL1
and FAP H-scores. ** p < 0.01.

4. Discussion

PODNL1 is an important member of the SLRP family which includes ubiquitous
ECM components involved in matrix organization and signaling regulation in TME [4]. At
present, a number of studies have revealed the promoting role of PODNL1 in tumor prolif-
eration and EMT [14–18]. In high-grade glioma cell lines, PODNL1 has been demonstrated
to stimulate cell proliferation and migration via the regulation of the Akt-mTOR axis [16].
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In the present study, we found that PODNL1 was highly expressed in tumor tissues in
15 types of cancers and its high expression was significantly associated with more advanced
stages and poor prognosis in multiple types of cancers. Notably, PODNL1 expressions
were also enriched in more aggressive molecular subtypes in various tumors, such as the
mesenchymal type of GBM [29] and OV [30], and M3 type of KIRC [31]. Combined with
previous studies [14–18], such results indicate that PODNL1 could serve as a novel potential
biomarker to guide prognosis predictions and individualized therapies in cancers.

The immune infiltration in TME involves interplay of various cell types and complex
signaling pathways. The cell types like cancer cells, stromal cells, endothelial cells, and
immune cells interplay in TME, driving cancer progression, prognosis, and immunother-
apeutic responses [32]. Our analyses indicated that the PODNL1 expression was notably
correlated with immune infiltration in TME. Specifically, it was significantly positively
correlated with the infiltration levels of CAFs in all types of cancers and other cells like
endothelial cells, macrophages, MDSCs, and tumor-associated HSCs in most types of
cancers. The CAFs play an important role in tumor promotion involving ECM remodeling
and cancer stemness sustaining via the production of varieties of cytokines, growth factors,
and cell-surface molecules [32,33]. In the other case, MDSCs, as pathologically activated
immature cells, can suppress T-cell activity and contribute to immunosuppression in TME
as well [34]. Our study further demonstrated that the high expression levels of PODNL1
were positively correlated with the molecular signatures and hallmarks of tumors including
Pan-TBR, TGF-β, TNF-α, inflammatory response, apical junction, coagulation, EMT, and
hedgehog. Current immune–checkpoint blockade (ICB)-based immunotherapies, com-
monly targeting PD-1, PD-L1 and CTLA-4, have not achieved the desired efficacy in the
therapeutic practices in different types of cancers, suggesting that tumor cells may develop
other ways to evade immune surveillance. Recent report indicates that targeting CD276
may enhance ICB-based immunotherapy in HNSC because it overexpressed in cancer stem
cells and could be utilized to escape attacking from CD8+ T cells [35]. Interestingly, our
study showed a concordant indication by presenting a positive correlation between CD276
and PODNL1 expressions in pan-cancer. Put together, all these results suggested that the
high expression levels of PODNL1 correlated with various cells infiltration levels and
molecular signaling in TME, may involve ECM remodeling, uncontrolled inflammation
activation and maintenance of immune-suppressive signaling. Further analyses on the
correlations with the clinical responses of ICB also indicated its potential predictive value
on tumor immunotherapy.

TGF-β signaling plays a critical role in multiple biological processes including in-
flammation, immunosuppression, angiogenesis, metastasis, EMT, fibroblast activation and
desmoplasia in TME. But, this signaling pathway can be both tumor-promoting and tumor-
suppressing, which is called the “TGF-β paradox” [36,37]. Increasing evidence shows that
the transferring of downstream TGF-β signaling from the canonical SMAD2/3:4 signaling
cascade to non-canonical cascades (such as the mitogen-activated protein kinases (MAPKs),
PI3K/AKT, rhodopsin (Rho) and TNF receptor-associated factor (TRAF) 4/6) may be a
critical trigger for tumor promotion [38,39]. Importantly, our study found that PODNL1
high expression was significantly correlated with downregulations of the SMAD2/3:4
heterotrimer regulations transcription and upregulations of the pathway-restricted SMAD
protein phosphorylation. Meanwhile, GSVA of cancer hallmark gene sets showed positive
correlation with the PI3K-AKT-mTOR pathway, indicating that PODNL1 may involve
regulating the switch of downstream pathways to induce pro-tumor effects. It is found
that many members of the SLRP family are able to bind to and modulate receptors of bone
morphogenetic protein (BMP)/TGF pathways [4]. Further PPI network analyses in this
study indicated that PODNL1 protein shared similar domain with LRG1 of the LRR family,
which has been verified to bind to and interact with the receptors of TGF-β signaling
including ACVRL1, ENG and TGFBR1, and is involved in the progression of cancer and
inflammatory disorders [40].



Curr. Issues Mol. Biol. 2023, 45 6136

Moreover, TGF-β pathway activity in fibroblasts has been found significantly cor-
related with non-response in immunotherapies in the mUC anti-PD-L1 cohort. The
TGF-β-activated CAFs are observed to be significantly associated with cancer immune
evasion. A large-scale pan-cancer analysis indicates that the presence of a TGF-β-associated
C-ECM signature including a distinct set of ECM genes upregulated in cancer links CAFs
to immune evasion and immunotherapy failure [41]. In the groups with high expression
levels of PODNL1, we observed the extensive enrichment of CAFs in all 33 types of cancers
and significant inhibition of canonical cascades and activation of non-canonical cascades
of TGF-β signaling. Then, our further analyses of single-cell transcriptomes showed that
PODNL1 expression was mainly enriched in the cancer cells of BLCA, GBM, HNSC, KIRC,
and OV, and in the CAFs in BLCA and HNSC as well. Interestingly, through the TMA-based
multiplex immunofluorescence staining, we further validated that the PODNL1 protein was
especially highly expressed in cancer nests and positively correlated with FAP expression in
TME in 20 types of cancer, which has been known as an important marker of activated CAFs
and was verified as being associated with fibrosis and ECM degradation, and strongly ex-
pressed in the tumor stroma [42]. Previous studies showed that the knockdown of PODNL1
in the cell lines of GBM and BLCA can significantly influence the malignant biological
behavior of tumor cells, including EMT and high proliferation [17,18]. Similarly, herein,
PODNL1 was demonstrated to be involved in maintaining the CAF-TGF-β signaling loop
in TME, and then might promote the continuous activation of EMT cascades and generated
tumor immune evasion.

Collagens and proteoglycans are fundamental elements in ECM [3]. Particularly, the
positive correlations of PODNL1 expressions with such collagens as collagen type 1 alpha
1 chain (COL1A1), COL1A2 and collagen type V alpha 1 chain (COL5A1) were found in
over 30 types of cancers. Chen et al. illustrate that cancer cell derived dysfunctional
COL1A1 homotrimers can lead remodeling of the tumor microbiome, diminishing T-cell
infiltration, and reducing anti-PD-1 immunotherapeutic response [43]. The COL5A1 is
also reported as functionally prominent in the collagen hierarchy and fibers assembly in
ECM and promoting proliferation and metastasis in cancers [44]. In short, our results
indicate that PODNL1 may involve collagen dysfunction in ECM remodeling in TME in a
pan-cancer setting.

The ECM crosslinks the genotype–phenotype cross-talk during malignancy [3]. This
is also testified with our findings in the present study that the heterogeneity of cancer
genotype–phenotype cross-talking was associated with PODNL1, the important SLPR
member in ECM. In ACC, BLCA, HNSC, and KICH, the groups of high PODNL1 expres-
sions were found with more TP53 mutations. The wild-type p53 can interact with the
tumor-suppressive SMADs genes, but the mutant p53 can subvert the tumor-suppressing
responses of TGF-β signaling [45]. In pancreatic cancer, the p53 mutation promotes the
alternating activation of CAFs and ECM remodeling in TME and facilitates malignant
progression [46].

Epigenetic modifications may reshape the TME [47]. The PODNL1 methylation status
has been reported to impact the prognosis of patients with LGG. In our study, the methyla-
tion level of the PODNL1 site CG10729062 was found to be associated with OS in various
cancers. Furthermore, Linc01614 was also found significantly positively co-expressed with
PODNL1 in multiple types of cancers. Linc01614, speculated as a biomarker for poor
prognosis in breast cancer, is significantly upregulated in various tumor tissues and highly
correlated with TGF-β signaling and ECM remodeling [48]. Put together, both the methy-
lation and the related LincRNAs may participate in the complex regulatory network of
PODNL1 during tumor progression.

5. Conclusions

The present study comprehensively uncovered the correlations of the class V SLRP
member PODNL1 expression with the prognosis, immunotherapeutic response, TME immune
infiltration, co-expression networks, mutation landscape and epigenetic regulation in a pan-
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cancer setting. Our systematic study indicates that PODNL1 promotes tumor progression
by activating tumor-promoting TGF-β signaling, involving the formation and maintenance
of uncontrolled inflammatory EMT and ECM remodeling in the TME. Our study has laid a
foundation for further elucidating the molecular mechanisms of PODNL1 related regulatory
network in tumor progression and developing PODNL1 as a potential tumor matrix-mediated
biomarker for immunotherapy and prognosis in a pan-cancer setting.
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