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Abstract: Glucagon-like peptide 1 receptor agonists (GLP-1RAs) have been shown to improve
glucose and lipid homeostasis, promote weight loss, and reduce cardiovascular risk factors. They are
a promising therapeutic option for non-alcoholic fatty liver disease (NAFLD), the most common liver
disease, associated with T2DM, obesity, and metabolic syndrome. GLP-1RAs have been approved for
the treatment of T2DM and obesity, but not for NAFLD. Most recent clinical trials have suggested the
importance of early pharmacologic intervention with GLP-1RAs in alleviating and limiting NAFLD,
as well as highlighting the relative scarcity of in vitro studies on semaglutide, indicating the need
for further research. However, extra-hepatic factors contribute to the GLP-1RA results of in vivo
studies. Cell culture models of NAFLD can be helpful in eliminating extrahepatic effects on the
alleviation of hepatic steatosis, modulation of lipid metabolism pathways, reduction of inflammation,
and prevention of the progression of NAFLD to severe hepatic conditions. In this review article, we
discuss the role of GLP-1 and GLP-1RA in the treatment of NAFLD using human hepatocyte models.

Keywords: GLP-1; GLP-1RA; semaglutide; liraglutide; NAFLD; NASH; NASF; in vitro; cell culture;
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1. Introduction

NAFLD is the most common liver disease and globally recognized public health
problem, with a rapidly increasing incidence and prevalence [1–3]. It is usually associated
with T2DM, obesity, and metabolic syndrome; however, the pathogenesis of NAFLD is
highly complex and currently explained by the “multiple hit” hypothesis. In summary,
the “multi-hit” theory suggests that NAFLD is caused by a combination of genetic and
epigenetic, environmental, nutritional, and lifestyle factors that lead to the accumulation
of fat in the liver. Pathophysiological processes include the accumulation of lipids in
hepatocytes, insulin resistance, dysregulated uptake and synthesis of fatty acids (FA),
their oxidation and secretion from the liver, increased hepatic glucose production, and
lipogenesis. Further “hits” are considered to be oxidative stress-induced mitochondrial
dysfunction, lipotoxicity-induced apoptosis, and inflammation, eventually resulting in
progression to non-alcoholic steatohepatitis (NASH), fibrosis (NASF), cirrhosis, as well as
hepatic malignancies, and liver failure [4].

During the early years of the 20th century, studies on fat accumulation revealed that
certain intestinal factors play a significant role in glucose metabolism and homeostasis by
stimulating postprandial pancreatic secretion. These factors were termed “incretins”. The
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incretin hormone glucagon-like peptide 1 (GLP-1) was discovered, and its insulinotropic
activity was described [5,6]. This insulinotropic effect of the gut–endocrine–pancreas axis
interrelated pathways is commonly referred to as the “incretin effect”, elucidating the
phenomenon of higher secretion of insulin after oral glucose intake compared to intra-
venously administered glucose in healthy individuals with similar levels of glycemia [7,8].
While intact in patients with normal oral glucose tolerance, the incretin effect is impaired
in individuals with glucose and lipid dysmetabolism, such as patients with type 1 and
type 2 diabetes mellitus (T1DM and T2DM), obesity, and other related metabolic disorders,
including non-alcoholic fatty liver disease (NAFLD) [9–14]. Following these findings, a
growing number of studies examining the incretins and incretin-based therapy has been
published in recent years, providing evidence that the “incretin effect” includes processes
beyond merely the entero-insular axis and insulinotropic effects.

GLP-1 is an intestinal peptide hormone, a post-translational product of proglucagon,
primarily produced and secreted from the intestinal enteroendocrine L-cells [5,15,16]. GLP-1
receptors (GLP-1R) have been found in α-cells of the human pancreas, several brain regions
(responsible for appetite, satiety, and food intake-energy balance), heart and vascular tissue,
and the kidneys, lungs, and gastrointestinal tract, as summarized by Nauck et al. [17].
However, the expression of GLP-1R in hepatic tissue remains controversial. In 2006, an
immunoblot analysis using an animal model found GLP-1R in isolated murine hepatocytes.
Pretreatment with a GLP-1R antagonist, exendin fragment 9–39, abolished the positive
effects of GLP-1 in the liver [18]. Recently, Yokomori et al. provided immunohistochemistry
(IHC) evidence of GLP-1R in hepatocytes in human liver biopsies. However, due to the
conflicting results of similar studies [19], possibly because of technical differences [20],
there is an ongoing debate on the presence of GLP-1R on hepatocytes. Evidence of GLP-
1R on hepatocytes suggested direct effects of a ligand–receptor interaction; however, the
findings are controversial or inconclusive. Effects of GLP-1 in the liver are believed to be
mediated by indirect pleiotropic mechanisms rather than the direct stimulation of GLP-1R
in the liver [21–26]. Despite the controversy surrounding GLP-1 receptor expression in
hepatic tissue, GLP-1 receptor agonists (GLP-1RA), have been shown to affect dysregulated
pathways of metabolic disorders and, therefore, have become a promising therapeutic
option.

Over the last decade, GLP-1RAs, such as exenatide, dulaglutide, liraglutide, semaglu-
tide, and others, have been explored as pharmacotherapy for T2DM and obesity, as well
for NAFLD [27–33]. The beneficial pharmacological effects of GLP1/GLP-1RAs include
increasing insulin secretion, suppressing glucagon release, slowing gastric emptying, and
enhancing satiety, resulting in an improvement in glucose and lipid metabolism, as well
as weight loss, reduced cardiovascular risk factors, and the improvement of non-alcoholic
fatty liver disease NAFLD [34–39].

While GLP-1RAs have been approved for treatment of T2DM and obesity, they have
not been officially approved for treatment of NAFLD. In addition, despite the significant
amount of research focused on the role of GLP-1 receptors in glucose metabolism and
insulin secretion, there is a relative scarcity of comprehensive reviews synthesizing the
effects of GLP-1RAs specifically on hepatic lipid metabolism in NAFLD. A significant
number of studies have investigated this topic [32,40–43]. However, the aim of this article
is to provide a more comprehensive review of recently obtained knowledge regarding
specifically underlying molecular and cellular mechanisms of GLP1 effects on hepatic lipid
metabolism and its potential in the treatment of NAFLD. Moreover, as described in the
previous section, it is uncertain whether the decrease in steatosis seen in animal and human
studies after treatment with GLP-1RAs is a result of the direct activation of hepatic GLP-1R
or an indirect effect. Due to this issue, we have opted out of reviewing most recent in vitro
studies to eliminate the pleiotropic effects contributing to GLP-1 results in in vivo studies.
To eliminate the extra-hepatic factors, we will provide insight into the recently elucidated
molecular and cellular mechanisms of GLP-1RAs in cell culture models of NAFLD, provid-
ing evidence of their direct role in the modulation of hepatic lipid metabolism, as well as
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providing other potential therapeutic targets. We will also summarize the most recently
published clinical trials for a comparison and possible explanations of these results, as well
as some guidelines that could be translated from in vitro models to clinical trials.

2. Role of GLP1 in The Modulation of Lipid Metabolism

Evidence supports a role for GLP-1 as a regulator of lipid and lipoprotein metabolism,
even the possibility that GLP-1 may activate two distinct receptors, with one of them being
similar or equivalent to the pancreatic receptor and the second one responsible for its
lipolytic effects [44,45].

Lipid metabolism includes processes, such as lipogenesis and lipolysis, lipid peroxida-
tion (when impaired resulting in lipotoxicity), fatty acid oxidation, cholesterol synthesis,
and lipid absorption, suggesting that GLP-1 affects all of these processes which, when
dysregulated, contribute greatly to the development or progression of NAFLD [43]. In this
section, we review the molecular mechanisms of GLP1-RA effects in the modulation of
lipid metabolism in hepatic tissue, predominantly in cell cultures using primary human
hepatocytes or continuous cell lines, such as HepG2 or Huh7.

2.1. Molecular Mechanisms of GLP1-RA in Modulating Lipid Metabolism in Hepatic Tissue

Research performed over the past decade has suggested a direct role for GLP1 in
hepatic lipid metabolism implying the presence of GLP1R in hepatocytes. In this section,
we will review the most recently obtained knowledge regarding the molecular mechanisms
that mediate the effect of GLP-1Ras on the modulation of hepatic lipid metabolism by
directly regulating aberrant processes, such as lipogenesis and lipolysis, FA β-oxidation,
and cholesterol synthesis and secretion, as well as its effects on lipotoxicity.

Pathological lipid accumulation in hepatocytes, hepatic steatosis due to dysregulated
glucose and lipid homeostasis, is the hallmark of NAFLD and has been shown to be
greatly ameliorated in response to GLP-1RA treatment in numerous animal and clinical
studies [32,46]. Earlier studies in humans, animal models, and human hepatocyte cell
cultures mainly attributed the GLP-RA-mediated reduction in hepatocyte steatosis to the
inhibition of hepatic de novo lipogenesis (DNL) [44,47,48]. Gupta et al. conducted a
study on primary human hepatocytes demonstrating that GLP-1RA exendin-4 reduces
steatosis and improved mitochondrial function and the survival of hepatocytes. Specifically,
this group of researchers provided evidence that GLP1-RAs reduced apoptosis and fatty
acid induced-endoplasmic reticulum (ER) stress and induced autophagy of free fatty acids
(FFAs) in treated cells. Cell apoptosis is believed to be one of the main mechanisms of NAFL
progression to NASH and NASF, suggesting the possibility of GLP1-RA-based treatment of
NAFLD. This is also a first report providing evidence that GLP-1R is present on human
hepatocytes [21]. Recently, a similar study has been performed with liraglutide using a
Huh7 cell culture model of NAFLD confirming the results of the above-mentioned study.
Omanovic Kolaric et al. also demonstrated that these hepatoprotective and antisteatotic
effects were mediated by the downregulation of lipogenic PPARγ, ACSL1, and SREBP-
1c genes in both NAS and drug-induced steatosis (DIS). These genes are known to be
involved in key pathways of lipogenesis and FA metabolism in the liver [26]. Further
elucidation of these mechanisms was provided in a recent study [49] with exendin-4 in a
HepG2 cell culture model of steatosis. Besides the reduction of lipid content in exendin-
4-treated steatotic cells, the presence of exendin-4 also decreased CPT1A, ACC, DGAT1,
SCD1, ApoB, FABP1, and FOXA1 gene expression as determined via qRT-PCR. These genes
are directly involved in metabolic pathways for hepatic FAs and triacylglycerol (TAG)
synthesis, the uptake of circulating FFAs, hepatic FA β-oxidation, and hepatic secretion
of VLDL, all of which play a role in the pathophysiology of NAFLD and imply the direct
effects of GLP1 on lipid metabolism [50,51]. Perhaps the most significant observation
of this study, at least regarding the previously mentioned controversial issue of GLP-1R
expression on hepatocytes, were the GLP-1R silencing results. While GLP-1R silencing had
no effect on gene expression in the oleic acid induced-steatosis cells, the effect of exendin-4
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on gene expression with scrambled siRNA was reversed by GLP-1R silencing, implying
that the GLP-1R presence and direct agonist–receptor interaction is required for GLP1RA
antisteatotic effects in hepatic tissue. This study concluded that the direct activation
of GLP-1R by exendin-4 reduces steatosis in an in vitro model via stimulation of the
Wnt/β-catenin signaling pathway and reduces FOXA1 expression and FABP1 expression,
resulting in decreased FFA uptake [49]. An earlier study found that FOXA1 reduced
steatosis in primary cultured hepatocytes and HepG2, and the expression of FOXA1 was
downregulated in both murine models of hepatic steatosis and in human steatotic liver
tissue [52,53]. The downregulation of expression of FABP1 was also reported in a similar
study on cell cultures and mouse and human NAFLD tissue samples [53]. However, this
could have been an adaptive mechanism against FA uptake and fat accumulation. Another
group of researchers conducted a study with a synthetic peptide, AWRK6, a GLP-1RA,
using both a murine model and HepG2 fatty liver cell models and an insulin-induced
HepG2 insulin-resistant cell culture model. The results showed ameliorated steatosis in
HepG2 fatty liver model treated with AWRK6, as well as in vivo. The AMP-activated
protein kinase (AMPK) signaling pathway has been shown to be a key mechanism in the
regulation of hepatic lipid metabolism and inhibition of lipogenesis in the liver via the
downregulation of the expression of lipogenic genes, including acetyl-CoA carboxylase
(ACC). [54]. Western blot results suggested the involvement of AMPK/ACC signaling in
suppressing de novo lipogenesis and enhancing FA oxidation. Considering the established
role of PI3K/AKT pathway [55] in insulin-regulated metabolism and the development of
insulin resistance, the phosphorylation levels of these proteins was detected via Western
blotting both in vivo and in vitro. The results in both AWRK6 treated models of insulin-
resistance showed phosphorylated elevation of PI3K and AKT. To summarize, AWRK6
ameliorated steatosis and regulated lipid and glucose homeostasis, possibly by affecting
the PI3K/Akt/AMPK/ACC signaling pathway [56]. A recent study with liraglutide
demonstrated the involvement of the SHP1/AMPK signaling pathway in both in vivo and
in vitro models of NAFLD [57]. SHP1, also called PTPN6, is a protein that is expressed
in epithelial cells, skeletal muscles, and hepatic tissue. It has been recognized as an
important modulator of glucose metabolism in the liver and insulin resistance and a
negative regulator in the pathogenesis of NAFLD. It has been found to promote lipid
accumulation, inflammation, and oxidative stress [58,59]. In both in vivo and in vitro
models of NAFLD, SHP1 was found to be significantly upregulated, while AMPK was
downregulated. Treatment with liraglutide ameliorated lipid accumulation and showed
hepatoprotective effects in vivo and in vitro, providing compelling evidence that these
effects of liraglutide were mediated by inhibiting hepatic SHP1, resulting in the activation
of AMPK. However, a recent study found that SHP1 had anti-inflammatory effects on
NASH [60]. Another study also demonstrated partially conflicting results regarding its role
in alleviating hepatic steatosis, possibly mediated via the upregulation of lipogenic PPARγ.
However, it was also shown that SHP1 deficiency significantly improved obesity-associated
NAFLD in liver-specific SHP1-knockout (KO) mice [61] which is consistent with a previous
liraglutide study [57]. The conflicting results from in vivo studies show the need for further
investigation of SHP1 and its diverse effects. The PI3K signaling-mediated inhibition of fat
mass and obesity-associated (FTO) gene expression has also been reported to be directly
involved in the protective and antisteatotic effects of GLP-1 in vivo and in vitro in a similar
study with exenatide [62].

Important processes involved in hepatic lipid metabolism and cholesterol homeostasis
are often impaired in NAFLD and other metabolic disorders. Reverse cholesterol transport
(RCT) is a pathway by which cholesterol is transported from extrahepatic cells to the liver
for elimination as bile salts through intestines [63]. GLP-1 was demonstrated to beneficially
affect this process in vivo. However, the scarceness of in vitro studies on GLP-1RA in the
regulation of RCT and cholesterol secretion in NAFLD limits the understanding of molec-
ular mechanisms involved in this process. A recent study investigated the ABCA1 and
MAPK/ERK1/2 pathway in the regulation of RCT in mice, as well as in Hepg2 cells treated
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with high concentrations of glucose. MAPK/ERK1/2 signaling has been implicated in the
regulation of many physiological processes, including glucose and lipid metabolism, and
its dysregulation has been linked to the development of various metabolic disorders [64,65],
while ATP-binding membrane cassette transport protein A1 (ABCA1) is a key protein
involved in translocating cholesterol into the extracellular department and hepatic choles-
terol transportation [65]. In summary, the presented study demonstrated that liraglutide
promote RCT and reduces lipid accumulation in hepatic tissue in vivo, while also sug-
gesting that these effects could be mediated by activating the MAPK/ERK1/2 signaling
pathway, resulting in increased ABCA1 expression in HepG2 cells under high-glucose
conditions that often lead to NAFLD development and progression [66]. A similar in vitro
study with exendin-4 supported the involvement of ABCA1 upregulation in GLP-1RA
effects on hepatic cholesterol homeostasis and suggested that CaMKK/CaMKIV/PREB
signaling pathway activation is necessary for hepatic ABCA1 upregulation induced by
exendin-4 and its reduction in cholesterol accumulation in the hepatocytes. Furthermore,
blocking GLP-1R with exendin9–39 cancelled all exendin-4 effects on the upregulation
of hepatic ABCA1 and the reduction of cholesterol accumulation, suggesting that the ex-
pression of GLP-1R on HepG2 cells is essential for GLP-1RA effects on hepatocytes [20].
The main site of the degradation or catabolism of lipid droplets in the hepatocytes is lyso-
somes. Cholesterol is either excreted as bile acids or processed into lipoproteins (such
as VLDL). Autophagy is a complex pathway by which cytoplasmic content is incorpo-
rated into the lysosome for degradation and has been shown to regulate lipid metabolism
through the breakdown of lipid droplets, as well as the regulation of intracellular en-
ergy homeostasis mediated by the degradation of aberrant organelles and proteins [67].
Liraglutide has been found to decrease hepatic steatosis in vivo and in vitro by enhancing
autophagy and lipid degradation by the TFEB-mediated autophagy–lysosomal pathway.
Transcription factor EB (TFEB) is an important regulator of lysosome and autophagy path-
ways [68]. The upregulation of autophagy, demonstrated by enhanced expression of its
markers Beclin1, Atg7, and LC3, has been found in response to liraglutide in both murine
and cell culture models of NAFLD [69]. In a study specifically regarding the involve-
ment of autophagy in hepatic steatosis in vitro, it was found that GLP-1RAs ameliorated
FFA-induced lipotoxic liver cell damage and promoted autophagy resulting in the reduced
degeneration of hepatocytes in NAFLD [70]. Due to the role of lysosomal–mitochondrial axis
in lipotoxicity [71], the autophagy–lysosomal pathway could explain the GLP1-RA-mediated
reduction in oxidative stress and lipotoxicity in NAFLD.

The lipotoxicity of excessive lipid accumulation is one of the hallmarks of the progres-
sion of NAFL into NASH, NASF, and liver malignancies. This progression is a complex
process, which includes Kupffer and hepatic stellate cell activation in response to the
production of oxidative stress-induced inflammatory mediators. Lipotoxicity has been
extensively researched and recognized as one of the hallmarks in the pathophysiology
of NAFLD/NASH/NASF [72]. Both endogenous GLP-1 and liraglutide have demon-
strated protective effects against lipotoxicity in pancreatic islets [73]. However, the role of
GLP1-RA in reducing hepatic lipotoxicity and the inflammatory response has recently
gained attention [48,74].

Several pathways have recently been identified in mediating the. GLP-1RA beneficial
effects on lipotoxicity and inflammation in vitro. In a HepG2 cell culture model of NASH,
exenatide ameliorated NASH via the inhibition of pyroptosis, which was demonstrated
by reduced levels of its mediator molecules, such as nucleotide-binding oligomerization
domain-like receptor protein 3 (NLRP3), caspase-1, and IL-1β, resulting in the significant
improvement of NASH [75]. One study on a mouse-isolated primary Kupffer cell (KC) cell
culture model of NAFLD treated with liraglutide demonstrated that liraglutide attenuated the
mitochondrial dysfunction and suppressed NLRP3 inflammasome activation in KCs, resulting
in a significant reduction of IL-1β and TNF-α expression levels [76]. Liraglutide treatment
promoted the expression of IL-10 and decreased the expression of IL-12 and TNF-α, as well as
modulated Kupffer cells to M2-like activation via the cAMP-PKA-STAT3 signaling pathway
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in a mouse-isolated primary Kupffer cell (KC) model of NAFLD. Kupffer cell activation and
their polarization into an M2 phenotype have demonstrated anti-inflammatory properties
required for the development of NASH [77]. Liraglutide also decreased apoptosis and
levels of reactive oxygen species (ROS) resulting in the suppressed activation of hepatic
stellate cells, which is essential for the progression of NAFL/NASH to NASF [78]. There-
fore, these studies significantly contribute to the understanding and acknowledging of
GLP1-RAs anti-inflammatory effects. A recent study on a HepG2 cell culture model of
NAFLD treated with liraglutide found reduced activation of the NLRP3 inflammasome,
as well as mTORC1 signaling inhibition, in response to GLP1-RA treatment [79]. The
mechanistic target of rapamycin (mTOR) signaling pathways is involved in the regula-
tion of various cellular processes, such as autophagy, apoptosis, lipid metabolism, insulin
resistance, and oxidative stress. Due to its ability to induce autophagy and apoptosis,
as well as exhibit anti-inflammatory and anti-proliferative effects, it has shown potential
in the treatment of NAFLD-associated HCC (non-alcoholic fatty liver disease-associated
hepatocellular carcinoma) and other cancers, further elucidating the anti-lipotoxic and
anti-inflammatory properties of GLP-1RAs [80,81].

All of the evidence presented in this section provides a valuable summary of the
positive effects of GLP1-RAs on cell culture models of NAFLD, imply their direct hepatic
lipid metabolism-modulating properties and synthesizes the most recently elucidated
molecular pathways mediating these effects, as well as pointing out other potential as a
therapeutic option for the treatment of NAFLD, while also providing recently obtained
evidence suggesting the presence of GLP-1Rs on hepatocytes.

2.2. GLP-1RA and Insulin Interactions in The Regulation of Lipid Metabolism in NAFLD

As highlighted in the introduction, this review aims to elucidate the role of GLP1 in
the direct modulation of molecular pathways of lipid metabolism, beyond its insulinotropic
effects in the pancreas. However, a discussion about lipid metabolism cannot exclude the
GLP1 and insulin relationship. The effects of insulin on lipid metabolism in the liver have
been well established. In summary, in vivo studies of both murine models and in humans
suggest that hepatic insulin signaling is needed for hepatic lipid synthesis, as well as for
promoting and progression of fatty liver disease during insulin resistance [82]. Besides
lipotoxicity and inflammation, insulin resistance is a part of a vicious circle that promotes
the development of NAFLD. Each of these processes affect and promote the development
and progression of the other [83]. The role of GLP-1 in hepatic lipid metabolism, including
crosstalk between GLP-1R and the insulin receptor, has been frequently reported. Fur-
thermore, there is a possible association of GLP-1R with IR as an alternative mechanism
in the regulation of their signaling [84]. This may complicate the discussion of the pres-
ence of GLP1-Rs on hepatocytes and potentially suggest an interaction of GLP1 and the
insulin receptor. However, the evidence for a direct GLP1-R and GLP-1RA interaction in
hepatocytes cannot be neglected [21,22,56]. It has been established that GLP-1 improves
insulin sensitivity in peripheral tissues [85], while a recent study provided compelling
direct and indirect evidence that GLP-1RAs improves insulin resistance and increase the
insulin sensitivity of hepatocytes, as well as demonstrating certain advantages of GLP-1RAs
over SGLT-2 inhibitors regarding modulating insulin resistance in NAFLD patients [86].
GLP-1 receptor signaling in hepatocytes revealed that exenatide alleviates hepatic steatosis
by regulating hepatic insulin clearance through induction in mice, highlighting the fact that
increased insulin clearance has been linked to the improvement of NAFLD [87].

These studies provide evidence for yet another mechanism of the NAFLD-ameliorating
GLP1-RA pharmacologic properties, contributing to a plethora of other evidence supporting
the role of GLP-1RAs in the treatment of NAFLD. The mechanisms are illustrated in
Figure 1.



Curr. Issues Mol. Biol. 2023, 45 4550

Curr. Issues Mol. Biol. 2023, 3, FOR PEER REVIEW 7 
 

 

insulin resistance and increase the insulin sensitivity of hepatocytes, as well as 

demonstrating certain advantages of GLP-1RAs over SGLT-2 inhibitors regarding 

modulating insulin resistance in NAFLD patients [86]. GLP-1 receptor signaling in 

hepatocytes revealed that exenatide alleviates hepatic steatosis by regulating hepatic 

insulin clearance through induction in mice, highlighting the fact that increased insulin 

clearance has been linked to the improvement of NAFLD [87].  

These studies provide evidence for yet another mechanism of the NAFLD-

ameliorating GLP1-RA pharmacologic properties, contributing to a plethora of other 

evidence supporting the role of GLP-1RAs in the treatment of NAFLD. The mechanisms 

are illustrated in Figure 1. 

 

Figure 1. GLP-1RA effects in NAFLD cell culture models. ROS: reactive oxygen species; DNL: de 

novo lipogenesis; FFAs: free fatty acids; FA: fatty acid; ER: endoplasmic reticulum; GLP-1RA: 

glucagon-like peptide 1 receptor agonists; NASH: non-alcoholic steatohepatitis; NASF: non-

alcoholic steatofibrosis. Green arrow: Processes result in ameliorated steatosis; Red arrow: Processes 

result in inhibition of NAFLD progression to NASH/NASF/cirrhosis. Figure created with Servier 

Medical Art, https://smart.servier.com/. 

3. Current Status of GLP-1RAs in the Treatment of Progressive NAFLD 

As mentioned previously, GLP-1RAs have been approved globally for the treatment 

of obesity and T2DM, but not for patients with NAFLD, despite resulting in the 

improvement of NAFLD in patients with these diseases [88,89].  

A systematic review and meta-analysis of randomized controlled trials regarding the 

potential of liraglutide in the treatment of NAFLD published in 2021 concluded that 

despite its promising potential, evidence does not support the administration of 

liraglutide to patients with NAFLD at the time [35]. A randomized, placebo-controlled 

phase 2 trial of semaglutide treatment in patients with NASH-related cirrhosis is the most 

recent study regarding the GLP-1RA treatment of NAFLD. The study concluded that 

semaglutide 2.4 mg once weekly in patients with NASH-related cirrhosis did not 

significantly improve fibrosis or NASH versus a placebo. Semaglutide did, however, 

improve cardiometabolic risk parameters (weight loss, glycemic, and lipids homeostasis) 

Figure 1. GLP-1RA effects in NAFLD cell culture models. ROS: reactive oxygen species; DNL:
de novo lipogenesis; FFAs: free fatty acids; FA: fatty acid; ER: endoplasmic reticulum; GLP-1RA:
glucagon-like peptide 1 receptor agonists; NASH: non-alcoholic steatohepatitis; NASF: non-alcoholic
steatofibrosis. Green arrow: Processes result in ameliorated steatosis; Red arrow: Processes result in
inhibition of NAFLD progression to NASH/NASF/cirrhosis. Figure created with Servier Medical
Art, https://smart.servier.com/.

3. Current Status of GLP-1RAs in The Treatment of Progressive NAFLD

As mentioned previously, GLP-1RAs have been approved globally for the treatment of
obesity and T2DM, but not for patients with NAFLD, despite resulting in the improvement
of NAFLD in patients with these diseases [88,89].

A systematic review and meta-analysis of randomized controlled trials regarding
the potential of liraglutide in the treatment of NAFLD published in 2021 concluded that
despite its promising potential, evidence does not support the administration of liraglu-
tide to patients with NAFLD at the time [35]. A randomized, placebo-controlled phase 2
trial of semaglutide treatment in patients with NASH-related cirrhosis is the most recent
study regarding the GLP-1RA treatment of NAFLD. The study concluded that semaglutide
2.4 mg once weekly in patients with NASH-related cirrhosis did not significantly improve
fibrosis or NASH versus a placebo. Semaglutide did, however, improve cardiometabolic
risk parameters (weight loss, glycemic, and lipids homeostasis) [90]. However, liraglutide
and semaglutide have previously been explored in patients with NASH, mainly with-
out cirrhosis. In summary, results showed NASH resolution [91,92] and no worsening
of fibrosis [92] versus the placebo group, contrary to the novel study on patients with
NASH-induced cirrhosis.

These novel results, perhaps disappointing, actually provide evidence of the im-
portance of early intervention and the need to provide pharmacologic options, such as
GLP1-RAs for the treatment of NAFLD aiming to prevent its progression to NASH, NASF,
and cirrhosis. Moreover, a recent case report presented results of liraglutide treatment
in obese, pre-diabetic patients not compliant with lifestyle modifications with NASH-
induced cirrhosis. Liraglutide demonstrated the reversal of disease progression despite
no significant changes in weight, providing further evidence of the importance of pharma-

https://smart.servier.com/
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cotherapeutic interventions in patients with NASH, as well as suggesting the direct effect
of liraglutides on hepatic tissue, independent of pleiotropic effects due to improvements in
body mass index [93]. The most recent clinical trial of semaglutide in NAFLD is currently
recruiting participants [94]; however, it has shown the efforts of the scientific community
in finding pharmacotherapeutic options intended for NAFLD and the recognition of its
necessity.

4. Conclusions

Firstly, in this article we provide the most recently obtained knowledge for elucidat-
ing the role of GLP1-RAs in the modulation of hepatic lipid metabolism and treatment
of NAFLD. While there are similar review articles examining this subject, we opted out
of evidence extrapolated from in vitro studies for several particular reasons, predomi-
nantly to exclude the pleiotropic effects of GLP-1RAs, to which their beneficial effects are
commonly attributed, aiming to distinguish between their indirect and direct effects on
hepatocyte hepatic lipid metabolism modulation and provide insight into the “controversial
issue” of the presence of GLP-1Rs on hepatocytes. Current evidence shows the ability of
GLP-1RAs to directly alleviate hepatic steatosis, modulate lipid metabolism pathways, such
as lipogenesis, FA oxidation, and cholesterol secretion, regulate oxidative stress, and reduce
lipotoxicity, as well as inflammation. Figure 1 summarizes the cellular and molecular
mechanisms underlying these effects, implying a direct role for GLP1-RAs in hepatic tissue,
highlighting their potential in patients with NAFLD. These in vitro studies also identified
novel potential targets for NAFLD treatment. Aiming to provide a comprehensive review
of currently used cell culture models for GLP1RAs in NAFLD treatment research, we have
provided Table 1.

Table 1. In vitro experimental cell culture models of NAFLD/NASH/NASF for GLP1-RA treatment
research.

Cell Line
Compounds Used to Induce

Cell Culture Model of
Hepatic Steatosis *

GLP1-RA
Compound Reference

Primary hepatocytes
Hep-G2 HuH7

Palmitic acid
Oleic acid

GLP-1
Exendin-4 [21]

Huh7 Oleic acid
Amiodarone Liraglutide [26]

HepG2 Oleic acid Exendin-4 [49]

HepG2 Oleic acid AWRK6
(synthetic peptide) [56]

HepG2 Palmitic acid Liraglutide [57,79]

L02 Palmitic acid Exenatide [62]

HepG2 High glucose Liraglutide [66]

Hepg2 Palmitic acid Liraglutide [69]

HepG2 Palmitic acid
Oleic acid Liraglutide [70]

HepG2 Oleic acid
LPS Exenatide [75]

Primary mice Kupffer
cells (KCs) Palmitic acid Liraglutide [76,77]

AML12 + JS-1 Palmitic acid (AML12)
H2O2 (AML12) Liraglutide [78]

* insulin resistance/high glucose environment/NASH.
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Secondly, the most recent clinical trials suggest that early intervention and pharma-
cological options, such as GLP1-RAs, are vital for limiting NAFLD progression to severe
NASH, NASF, and cirrhosis, in addition to off-label use in case reports indicating their
success even in progressive NASH with developed cirrhosis.

Interestingly, there is a relative scarcity of in vivo and in vitro studies on semaglutide,
the most recently approved GLP-1RA for the treatment of obesity by the FDA, as well as a
lack of rapidly evolving 3D cell culture model studies on the role of GLP-1RAs in NAFLD,
which mimic in vivo states to a greater extent in comparison to 2D cell culture models,
showing the need for further research in this area.

To conclude, in addition to lifestyle changes, such as physical activity and dietary
modifications as important adjuncts to pharmacotherapy in managing NAFLD, GLP1-
RAs demonstrated the highly efficient modulation and alleviation of hepatic steatosis and
aberrant signaling pathways involved in NAFLD pathophysiology and progression in vitro.
In addition to the clinical trials, this evidence could be a significant step in acknowledging
GLP-1RAs as one of the potential pharmacotherapeutic options for the treatment of NAFLD
and its progressive states, which has not been approved and implemented in clinical
practice for this disease.
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