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Abstract: Rapeseed is one of the most important oil crops in the world. Increasing demand for oil
and limited agronomic capabilities of present-day rapeseed result in the need for rapid development
of new, superior cultivars. Double haploid (DH) technology is a fast and convenient approach in
plant breeding as well as genetic research. Brassica napus is considered a model species for DH
production based on microspore embryogenesis; however, the molecular mechanisms underlying
microspore reprogramming are still vague. It is known that morphological changes are accompanied
by gene and protein expression patterns, alongside carbohydrate and lipid metabolism. Novel, more
efficient methods for DH rapeseed production have been reported. This review covers new findings
and advances in Brassica napus DH production as well as the latest reports related to agronomically
important traits in molecular studies employing the double haploid rapeseed lines.

Keywords: androgenesis; canola; haploidy; microspore reprogramming; plant breeding; induction
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1. Introduction

Rapeseed (Brassica napus L., AACC, 2n = 38) is one of the main oil crops in the world.
It is an amphidiploid species derived from spontaneous interspecific hybridization between
turnip rape (Brassica rapa L. syn. Campestris, AA, 2n = 20) and cabbage (Brassica oleracea L.,
CC, 2n = 18). The geographical center of its origin is located around the Mediterranean
coastline of Southern Europe, 5000–10,000 years ago. Compared with crops such as soybean,
rice, and wheat with much longer evolutions and domestication histories, rapeseed can
be considered a recently domesticated crop. Two botanical varieties have been defined:
B. napus L. var. rapifera (DC) Metzger and B. napus L. var. oleifera Delile [1]. The latter of the
two is known for its oil content and wide application. It is grown extensively in Europe,
Canada, China, India, and Australia (USDA 2022). In the nineteenth century in Europe,
canola oil was highly valued for its high erucic acid content required for the lubrication
of steam engines. Moreover, due to high protein levels, it was used as animal feed. In
the following years, rapeseed underwent substantial phenotype changes and considerable
improvement of agronomic traits, which resulted in a significant growth of yield and oil
content. The refinement of good agronomical practices had a tremendous impact on the
efficiency of canola crop cultivation. The launch of “double low” cultivars has significantly
increased the popularity of canola oil. In 2022–2023, the world rapeseed oil consumption
has increased to 31.8 million metric tons worldwide [2]. The presented progress has been
made possible by the development of Brassica napus breeding programs all over the world.
At present, researchers and plant breeders focus on various aspects of improving the yield
and quality of rapeseed and widening its application.

The main research targets are to obtain cultivars with various, but controlled and
stable fatty acid composition (dependent on the implementation of canola oil), to increase
the protein and decrease the glucosinolate amount in seeds, and to create new cultivars
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resistant to biotic and abiotic stresses. Other breeding objectives include a lower content
of fiber and polyphenols, enhancement of cold resistance and regeneration ability from
damage caused by freezing, improvement of resistance to fungal pathogens, resilience
to pests and vermin, herbicide tolerance, balancing the maturing of the seeds, as well as
reducing the proneness to pod shattering and seed loss. Traits that increase the agronomic
value of the cultivars are also being researched: improved use of fertilizers, robustness
to soil quality changes (drought, flooding), alleviated tendency for crop lodging, rapid
germination, covering of the space between rows to avoid weed infestation, and increasing
the number of seeds per silique [3,4].

Through the years, various methods and protocols have been implemented in plant
breeding programs. The leading strategy for new rapeseed cultivar development exploits
the use of double haploid plants. Therefore, this review discusses production methods of
DH rapeseed and its applications.

2. Double Haploid

A double haploid organism carries two sets of chromosomes and is homozygous at
every locus; thus, genetic segregation will not occur [5]. Within the population of DH lines,
the phenotype variability is high. Each of those lines has the potential of becoming a cultivar.
Double haploids are widely used in molecular research for genetic map construction, gene
localization, marker identification, and improvement of plant breeding efficiency.

Double haploid technology is one of the fundamental elements of plant breeding; it
has been utilized in many studies for crop plant development. Primarily, the aim of DH
production is the development of a true homozygous breeding line [6,7]. It offers several
economic, logistic, and genetic benefits over conventional inbred lines. The main advantage
of DH production is the reduced breeding time in comparison to conventional breeding,
through backcrossing and selfing; moreover, the double haploid lines exhibit immortal
behavior [8]. The former requires one to two breeding cycles to obtain a homozygous elite
line, whereas the latter takes up to nine generations. DH lines are very useful for hybrid
breeding and the development of mapping populations for molecular studies due to high
genetic stability, no effect of dominance or heterozygosity, and short generation time.

The double haploid method relies mainly on the haploid cells—plant gametes are used
to develop haploid embryos. In nature, such occurrence rarely happens; thus, DH produc-
tion usually requires two major steps: haploid induction and chromosome doubling [9].

Plants are well known for their remarkable totipotency abilities. The cells of any type
and development stage can switch into any other developmental program, form calluses,
or convert into undifferentiated, proliferative growth when given the right conditions [10].

Haploid usually refers to the product of meiosis, which is a cell with a reduced number
of chromosomes (n)—gametes containing only half of the chromosome complete set (2n).
Based on cell origin, haploid plants can be described as maternal and paternal, derived
from egg cells or pollen cells, and microspores, respectively [11]. Haploid individuals
are tremendously useful in various kinds of research, for example, studies focused on
induced mutagenesis analysis, where recessive mutations can be easily detected without
the masking effect of dominance [12]. Haploids are usually smaller, less vigorous, and
sterile. Therefore, production of double haploids is more desirable for practical purposes.
Although haploid plants can form spontaneously, it is an extremely rare occurrence.

3. Haploid/Double Haploid Induction Methods

Different methods for haploid induction for various species are used, as their viability
varies between genotypes. They can be classified in two main groups: in vivo (in planta)
or in vitro methods. In vivo methods include gynogenesis and androgenesis. The former
usually involves ovary or flower culture, while the latter involves anther and microspore
culture, facilitating the microspore embryogenesis [13]. Haploid progeny can also be
developed through wide hybridization or intraspecific hybridization. The bulbosum method
is the basic example of haploid induction mediated by interspecific crossing of related
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species [14]. The latest reported techniques include the use of genetically modified inducer
lines [11]. The efficiency of haploid/double haploid production varies depending on the
method (Table 1.)

Table 1. Comparison of Brassica napus haploid and double haploid production methods.

In Vitro Semi-In Vitro/In Vivo In Vivo

Gynogenesis Androgenesis Haploid inducer
lines

Interploidy
hybridization

Intraspecific
hybridization
Interspecific

hybridization

Flower buds
Placenta

Ovule
Ovary

Anther
Microspore - - Spontaneous

occurrence

Yield Haploid/Double
haploid

Haploid/Double
haploid Amphihaploid Double haploid Haploid/Double

haploid

Success rate in Brassica
napus H/DH
production

Low Low/Medium High High Low

Genotype dependent Yes Yes No Yes Yes

Reliant on pathway
conversion ability
(saprophytic→

sporophytic)

Yes Yes No No No

Chromosome
elimination No No Yes Yes Yes

Dependent on
environmental
conditions (i.e.,

medium composition,
light, temperature,

humidity)

Yes Yes No Yes Yes

Pretreatment

Yes
(temperature,

chemical
pretreatment,

irradiation etc.)

Yes (temperature,
chemical

pretreatment,
irradiation etc.)

Yes
(genetic modification) No No

References [15,16] [15–19] [20,21] [22] [23]

The first reports of microspore cultures were presented by Thomas and Wenzel in
1975 [24]. By the end of 1980s, it was established that embryos can be effectively generated
through the cultures of isolated microspores in a hormone-free medium, omitting the
callus phase [6]. Robert Lichter, [25] first developed a microspore-derived double haploid
production protocol on NLN medium without hormone addition.

4. Brassica napus Microspore Embryogenesis

Microspore embryogenesis refers to the transition of male gametes from their natural
development pathway towards embryo or callogenesis. Precursors of pollen grains in
diploid plants are microspores, which usually contain a haploid number of chromosomes.
Given the right conditions, it is possible to grow mature plants from microspores; however,
the effectiveness of embryogenesis depends on various factors. The main variable is species
or genotype, although the developmental stage of the microspores must also be considered.
Some species induce immediately in early stages of microspore genesis; however, in most
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cases the first pollen meiosis is needed [26]. Brassica napus embryogenesis is most effective
in a highly vacuolated microspore development stage, just before pollen mitosis [27,28].

Another important aspect to consider is the selection of the proper stressor or em-
bryogenesis technique adapted to the donor species. The most used factors include heat,
cold, starvation, chemical induction, or the combination of more than one element. Rape-
seed microspore embryogenesis protocols usually use a heat stress treatment (usually
32–33 ◦C) [29]. Some protocols include cold treatment prior to heat manipulation, although
the effectiveness of such a method may be lower in B. napus winter types than spring
types, due to their high cold tolerance [30–32]. Nevertheless, Pem et al. [32] proved that
extended exposure to lower temperatures (18 ◦C) induces embryogenesis in rapeseed and
provides two different pathways of embryo formation: suspensor-like and multicellular
embryos without suspensor. The use of hormone treatment in embryogenesis has also
been studied and found to be effective with jasmonic acid (JA) and abscisic acid (ABA). A
concentration of 0.5 mg/L and treatment time of 12 h yielded 68% plantlet regeneration
with ABA, and 1.0 mg/L JA for 24 h with 54% plantlet regeneration compared to untreated
microspores [33].

In B. napus, haploid plants are usually produced via microspore culture. Rapeseed
is considered the model species for studying microspore-derived plants. Anther culture
is considered decent, although a less efficient method of obtaining haploid embryos in
B. napus [34]. Haploid production efficiency through anther culture can be tenfold lower
than isolated microspore culture [17]

The production of microspore-derived plants requires three main stages: isolating,
culturing, and induction of the microspores; embryo selection; and plant regeneration
(Figure 1).
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Figure 1. Production of microspore-derived plants.

The composition of the liquid medium used for induction must be strictly designed for
the donor species, in order to deliver all nutritional components for optimal development
of the haploid embryos. Solid regeneration medium, complying with the optimal osmotic
pressure, makes it possible to achieve the highest plant regeneration rate possible. Routinely
used plant regeneration mediums include B5 (Gamborg) medium and MS (Murashige
and Skoog) medium with slight modifications, such as hormone additives and various
concentrations of basal mediums (1/2 or 1

4 ) [35,36]. The density of 10–40,000 cells per 1 mL
of medium is preferable in a rapeseed microspore culture [37].

Growth factors, inhibitors, and other additives may also influence the effectiveness
of haploid embryo induction. For example, metascapases (MCAs), a group of cysteine
proteases, have been reported to improve in vitro embryogenesis. Downregulation of
MCAs and inhibition of autophagy decreases cell death and increases embryonic develop-
ment [27].
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4.1. Mechanisms of Microspore Reprogramming to Embryogenesis in Brassica napus

Even though microspore embryogenesis has been a widely utilized and studied
method for haploid and double haploid production, molecular mechanisms of devel-
opmental program transition in rapeseed are still not clear. It is known that several basic
metabolic and cellular processes take place during gametophytic to sporophytic transition.
Morphological changes in microspores are accompanied by alterations in gene and protein
expression patterns, as well as a decrease in lipid and carbohydrate content in the cells
(Figure 2) [38].
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Figure 2. Mechanisms of microspore reprogramming in Brassica napus.

4.1.1. Morphological Changes

The formation of microspore-derived embryos is different from zygotic embryogenesis.
Embryogenesis-induced microspores usually form round cells with centrally located nuclei
and vacuoles divided by cytoplasmic strands. These cells are referred to as “star cells”,
due to their morphology [39]. At later stages, an unorganized, multicellular mass that
develops into globular embryos is observed. The formation of a suspensor-like structure,
observed in zygotic embryogenesis, is a relatively rare occurrence in microspore embryo-
genesis, although it is not uncommon. The development of an embryo with a suspensor
is dependent on the microspore induction and culture conditions. Usually, a suspensor
develops when induction takes place at 25 ◦C or lower, or when an additional step of
cool-down after standard heat shock treatment (32 ◦C) is applied. The generation of a
zygote-like microspore-derived embryo is preceded by polarized microspore cell division.
It has also been found that the emergence of zygotic-like embryos with suspensors is
dependent on polar auxin transport [40]. Further stages of embryo development are similar
to somatic embryo development with the globular, heart, and torpedo embryo developmen-
tal stages [41–45]. The germination of microspore-derived plants may represent a major
setback in the double haploid rapeseed production, as the regeneration of plantlets varies
from 5% to 30%, depending on the genotype. Furthermore, the developmental stage of
the microspore-derived embryo influences regeneration efficiency. Kott and Beversdorf
found that embryos transferred to the germination medium after 35 days germinated,
3-5-fold better than those transferred after 21 days. Germination rate drops significantly at
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35–49 days [46]. Plant regeneration efficiency from microspore-derived embryos may also
be improved via medium optimalization, chilling, desiccation, or cotyledon excision at late
cotyledon stage [47–49].

4.1.2. Protein, Carbohydrate, and Lipid Changes during Microspore Embryogenesis

The changes of fatty acid storage and biosynthesis in microspore-derived embryos
are the same as in zygotic embryos [50–52]. Pifanelli et al. [53] determined that the SAD
(stearoyl-ACP desaturase) and EAR (enoyl-ACP reductase) genes are expressed both in
sporophytic and gametophytic cells; however, they are regulated differently which leads
to diversified lipid patterns. Starch grains in the embryogenic cells are scarce or do not
appear at all, in contrast to the cells following the microspore development program [54].
Large starch stores in the cytoplasmic area are a good indicator of the non-embryogenic
development of microspores cultured in vitro [55]. Other signs of embryogenic commit-
ment include formation of irregular and incomplete cell walls, caused by increased callose
synthesis and deposition of excreted cytoplasmic material, as well as a decrease in cellulose
synthesis [56]. The cell walls during embryogenesis become fragile and prone to defor-
mation [57]. Another interesting finding suggests an autophagic character of plastids of
microspore-derived embryos. Their activity is a part of a cytoplasm digestion and excretion
program necessary for embryogenic switch [58].

Increased production of napins, the water-soluble storage proteins of B. napus accu-
mulated in seeds, have been observed during microspore embryogenesis. Expression of
these proteins is regulated by 10–16 napin-encoding genes [59]. In the 1990s and 2000s,
several studies were conducted, leading to the discovery of a coincidence of napin expres-
sion upregulation and its use as a marker for detecting induction of B. napus microspore
embryogenesis and embryo development [60,61].

Pauls et al. (2006) described in depth the role of cellular pH shift towards alkaliniza-
tion, Ca+ influx, and its putative involvement in heat-induced microspore embryogenesis.
Heat shock initiates a cascade of reactions in the microspore, altering ROPs’ (Rho of plants)
gene expression, and resulting in cellular morphogenesis and embryo development. Solis
et al. [62] explored the behavior of PMEs (pectin methylesterases), that is, methyltrans-
ferases that take part in cell wall remodeling. Even though the low expression of BnPME
genes has been previously associated with microspore embryogenesis, the results demon-
strated the expression patterns comparable to zygotic embryogenesis. Stress-induced
microspore embryogenesis increases auxin production as well as TAA1 (tryptophan amino-
transferase) and NIT2 (nitrilase) genes’ expression of auxin biosynthetic pathways and
progresses further during embryo development. Furthermore, it was stated that polar
auxin transport (PAT) inhibits embryogenesis [63].

4.1.3. DNA Modifications

Stress-induced microspore embryogenesis can result in DNA structure changes. Such
modifications cause a shift in the nuclear architecture during plant differentiation and
proliferation. Global DNA methylation decreases with the epigenetic reprogramming after
embryogenesis induction [64]. Heat shock (32 ◦C) applied to B. napus microspores no
longer than 6h leads to DNA hypomethylation. An approximately twofold change was
observed [65]. Segui-Simarro et al. [66] noticed changes in size, shape, and distribution
of interchromatin structures such as granule clusters GCs, perichromatin fibrils PFs, Ca-
jal bodies CBs, and perichromatic clusters PGs during the transition of the microspore
development program from gametophytic towards embryogenic. The authors suggested
that remodeling in the interchromatin domain may be the cause of transcriptional changes.
Consequently, RNA-associated structures can be a regulatory mechanism in microspore
embryogenesis. In addition, changes in histone methylation and acetylation have been
found. Microspore reprogramming is followed by spatial and temporal alterations in distri-
bution patterns of methylated H3K9m2 and acetylated H3/H4 histones, which are equal to
BnHKMT and BnHAT genes’ (methyltransferase and acetyltransferase, respectively) expres-
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sion patterns. The authors support the hypothesis of histone acetylation and methylation
taking part in embryogenic reprogramming of the microspores [28]. Further endorsement
of this statement provides a standalone analysis of histone deacetylases (HDACs) and its
role in regulating haploid embryogenesis. Blocking HDAC activity with trichostatin A
resulted in hyperacetylation of histones H3/H4 and a high yield of microspore-derived
embryos [67].

4.1.4. Gene Expression Changes

Gene expression studies of early microspore embryogenesis have been previously con-
ducted, and this section summarizes the most significant findings. Transcriptional changes
caused by embryogenesis induction involve stress adaptation genes, pollen development,
and embryogenic transition. A majority of differentially expressed genes have been de-
scribed as stress adaptation genes, but they do not contribute to microspore embryogenesis.
One of the widely researched genes associated with embryogenic development is the BABY
BOOM gene (BBM). At the beginning of the 2000s, BABY BOOM genes captured scientists’
attention and have since been extensively studied [68–71]. BBM genes are the transcription
factors of the AP2/ERF family (APETALA2 FAMILY/ETHYLENE-RESPONSIVE ELE-
MENT BINDING FACTOR). Its broad spectrum of functions includes cell proliferation,
plant growth, and development regulation [69]. BBM genes have been reported to par-
ticipate in microspore reprogramming to embryogenesis. However, its exact role in B.
napus induction of microspore embryogenesis and development of microspore-derived
embryos is not clear. Boutilier et al. [70] found that BBM genes express mainly in develop-
ing embryos and seeds. BBM promotes cell proliferation and morphogenesis, though its
embryogenesis-inducing nature is not yet identified. On the contrary, analysis of expression
of BBM-targeted genes in Arabidopsis thaliana showed large groups of genes expressed
in meristems, responsible for actin activation, cell differentiation, proliferation, and cell
wall modifications. It was concluded that BBM genes activate developmental pathways
leading to plant growth; therefore, they may be the starting point of microspore redifferen-
tiation [71]. The LEAFY COTYLEDON genes (LEC1 and LEC2), EMBRYOMAKER (EMK),
FUSCA3, and SHOOTMERISTEMLESS (STM) seem to be related to microspore-derived em-
bryo development; however, they have not been correlated with the induction of microspore
embryogenesis [29,72–76]. Other genes discovered through analysis of differentially ex-
pressed genes (DEGs) have been reported to carry unknown function and have never been
connected with microspore embryogenesis [77]. Later, the DEGs were subtracted using the
suppression subtractive hybridization (SSH) method. A total of 254 ESTs were isolated, of
which 96.4% were homologous to known genes: 42.7% of unclassified proteins and 13.6%
of metabolism genes. Six genes were examined using qRT-PCR, and their expression was
confirmed in different stages of embryogenesis [78]. One of the gene groups that have been
found participating in embryogenesis is the SERK (somatic embryogenesis-related kinase)
family. These genes encode leucine-rich repeats transmembrane receptor-like proteins
(LRR-RLK). SERKs are part of a brassinosteroid receptor complex involved in brassinos-
teroid signaling. Increased expression level has been observed in BnSERK1 and BnSERK2
genes during microspore culture and development [79].

5. Chromosome Doubling

In addition to homozygosity, the microspore-derived haploid plants ensure a wide
spectrum of genetic recombination. As previously mentioned, they may display reduced
vigor and infertility due to the meiotic division failure.

Some of the haploid individuals undergo spontaneous doubling. Generally, to ob-
tain a relatively high percentage of homozygous fertile plants from microspore-derived
plants, various chemical compounds are used. Induced doubling of chromosomes can
be conducted both in vivo and in vitro. The most frequently used chromosome doubling
agent is colchicine, which disrupts normal mitotic cell division. Colchicine can be used on
isolated microspores, microspore-derived embryos, and regenerated plants [5,18,19]. The



Curr. Issues Mol. Biol. 2023, 45 4438

use of colchicine results in 16% to 94% of individuals with doubled chromosome numbers
in in vitro culture. Microspore treatment can have a greater chromosome doubling effect
compared to microspore-derived embryo treatment or regenerated plant treatment, which
makes it possible to omit the haploidization stage of double haploid production [80–82].
Other antimitotic agents such as oryzalin, trifluralin, and amiprophos-methyl can also
support chromosome doubling [83,84]. Other protocols implement the use of heat shock to
induce the doubling of chromosomes.

Even though microspore embryogenesis and colchicine treatment for double haploid
production is a quite efficient method, it is also time- and cost-consuming and requires
laboratory expertise. B. napus is a naturally derived hybrid obtained by crossing Brassica
rapa and Brassica oleracea, followed by chromosome doubling That is why it may serve as
a model species for genome duplication research. Some plant species can yield haploid
embryos through crossing of specific individuals carrying particular genetic traits [85].

6. Brassica napus Haploid Production via Interploidy Hybridization

In B. napus, the first study regarding the doubled haploid production via interploidy
hybridization was reported in 2018 [22]. A Brassica allooctoploid pollen donor (AAAAC-
CCC, 2n = 8x = 76) acted as a doubled haploid inducer of B. napus. The described method
can provide homozygous lines after one generation without the application of colchicine
treatment. The genetic composition of the obtained DH in most cases resembles the ma-
ternal chromosome set, with the elimination of paternal genome. It should be noted that
the stability of the DH induction is genotype-dependent. The number of obtained double
haploids is highly variable and spans between 34.09–98.66% [86]. The induction efficiency
of DH inducers is dependent on the karyogene and cytoplasmic genotype. Thus, it was
concluded that the induction effect is affected by the interaction between the maternal
karyogene and cytoplasmic genotype [86]. Lou et al. [87] found a specific insertion on
chromosome C03 in the induced DH individuals. It may indicate that the insertion of the
paternal chromosome is not a random occurrence. The exact mechanism of DH induction
with the use of Brassica allooctoploid as a pollen donor is not known; however, it is assumed
that aneuploidy is one of the factors contributing to the successful DH induction in B. napus.
Location and cloning of the genes regulating inducibility will become the priority for the
studies in the near future, as it is one of the most promising and efficient in vivo methods
for chromosome doubling in B. napus.

Despite the ambiguity and novelty of this technique, it has by now found an imple-
mentation in scientific studies. Zhang et al. [88] developed cytoplasmic male sterile and
maintainer lines of B. napus with the doubled haploid inducer allooctoploid lines Y3380
and Y3560 described above. Zhou et al. [89] hypothesized that the new DH inducer lines
can successfully replace the method of continuous backcrossing of interspecific F1 with the
parent to resolve the problem of low seed rate. Such difficulty is caused by hybrid sterility
and chromosomal mismatch in the hybrid offspring of rapeseed. In the study, it was found
that the mother egg cell and egg cell genetic stability were significantly higher than that of
a sperm cell. This research provides valuable data that may contribute to reducing the time
of novel rapeseed germplasm development.

7. Brassica napus Haploid Induction Lines

Haploid induction lines (HI) have been used and researched mainly in monocotyledon
crops such as maize and rice with great success. It is an in vivo method of obtaining
haploid plants within one generation. The technique is based on the use of haploid inducer
lines as pollen donors. The result of such pollination is the stimulation of haploid eggs to
produce embryos with the loss of parental chromosomes. Such an outcome is the result of a
loss-of-function mutation of DMP (DOMAIN OF UNKNOWN FUNCTION 679 membrane
protein) genes. Maternal HI systems have progressed rapidly with the identification of HI
genes (Zea mays) [20], although they have been found mainly in monocotyledons. The lack
of such findings in dicotyledon plants is a great disadvantage in breeding development.
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Zhong et al. [21] confirmed that the DMP loss-off-function mutation induced the
in vivo maternal haploid production in several dicot plants. DMP-HI system has been
found effective in dicot plants such as Arabidopsis thaliana, Medicago truncatula, Solanum
lycopersicon, Solanum tuberosum L., Brassica napus, and Nicotiana tabacum [90–93]. The
DMP-HI system is genotype-independent. DMP genes can be easily selected through
their sequence identity and expression in generative organs or cells. In Brassica napus,
DMP genes have been determined through a search of maize ortholog genes expressed in
flowers and flower buds. Researchers suggest that targeting BnaDMP genes can be used for
haploid production in Brassica napus. Li et al. [94] developed haploid-induced lines through
knockout of DMP (Domain of unknown function 679 membrane protein). Zhong et al. [21]
constructed a pipeline for the establishment of DMP orthologs and proved the functionality
of dmp-based maternal HI (haploid induction) system in B. napus. In vivo HI technique
was established for the mutation of DMP genes. Authors found that the amphihaploid
induction rates are 1.1% and 2.4% while crossing double and triple mutants, respectively.
The dmp mutation in one B. napus genotype can be used to induce amphihaploids in various
maternal genotypes. It is one of the latest perspectives of in vivo haploid induction through
mutation of DMP maternal haploid inducer genes [93]. In both studies, CRISPR/Cas9
mutagenesis constructs designed for knock-out mutation induction were used, facilitating
fluorescent protein markers for easy identification of mutants. It was concluded that
mutation of B. napus DMP genes contribute to in vivo haploid embryo development upon
selfing in various genotypes.

8. Recent Findings Contributing to Brassica napus Double Haploid Plants

Double haploid rapeseed may be implemented in various molecular studies. DH
provides genetic variability, stability, uniqueness, and shortened development time at low
cost. The original purpose of DH technology was to rapidly produce homozygous indi-
viduals with fixed genetic composition. Nowadays, their advantages are used to conduct
many new research studies leading to new findings [95–99]. They are the foundation of
genetic and linkage mapping, localization of new traits and molecular markers, as well as
quantitative trait locus (QTL) analysis and marker-assisted selection (MAS). In the last five
years, studies using double haploid B. napus has provided great insight into genes/QTLs
(Table 2) and molecular mechanisms behind agronomically important traits. To prove the
value and applicability of DH technology in rapeseed, this section will focus on the latest
findings with DH B. napus used as the research material.

Table 2. Latest QTL mining studies for disease resistance, seed traits, and plant architecture utilizing
double haploid rapeseed.

Rapeseed Population Trait Experimental Conditions Used Marker Type Number of Genes/QTLs Author

Darmor-bzh × Yudal
Darmor × Samourai Blackleg resistance Field SNP 16

4 [100]

Darmor-bzh × Yudal Blackleg resistance Field and greenhouse DArT 27 [101]

Darmor-bzh × Yudal Blackleg resistance Greenhouse SNP 8 [102]

Skipton × AgSpectrum Blackleg resistance Field and greenhouse SSR, SRAP, SCAR 8 [103]

Topas × AGCastle
Topas × AVSapphire Blackleg resistance Field SSR, DArT 22

21 [104]

RP04 × Ag-Outback Blackleg resistance Field and greenhouse DArT 21 [105]

ECD01 (B. rapa) × DH16516 (B.
napus) Clubroot Greenhouse SNP, 2 [106]

1CA1446.476-A1296 × Hi-Q
A04-73NA × Hi-Q Clubroot Greenhouse SNP 2 [107]

T19 × ACDC Clubroot Greenhouse SNP 3 [108]
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Table 2. Cont.

Rapeseed Population Trait Experimental Conditions Used Marker Type Number of Genes/QTLs Author

09CR500 × 09CR501 Clubroot Greenhouse SNP, SSR 2 [109]

Mendel × A07-26NR Clubroot Greenhouse SSR, 5 [110]

Zhongyou 821 × DHBao604 (H1),
Zhongyou 821 × DH6576 (H2),

Zhongyou 821 ×Westar
Sclerotinia stem rot Greenhouse SNP

H1: 4–6
H2: 3–6
H3: 2–6

[111]

ZP1 × D12 (B. napus inberd lines) Sclerotinia stem rot Field SNP 4 [112]

Huashuang 5 × J7005 Sclerotinia stem rot Field SSR 13 [113]

Bing 409 × Zhongshuang 8 Flowering time Field SNP 5 [114]

IMC106RR ×Wichita
Root morphology

Flowering time
Drought resistance

Field and greenhouse SNP 20 [115]

Polo × Topas
Flowering time

Fatty acid profile
Oil content

Field SSR
14

131
14

[116]

KenC-8 × N53-2 Flowering time Field SNP 55 (12 environment-stable,
43 environment-specific) [117]

KenC-8 × N53-2 Multi-main stem trait Field SNP, SSR, STS,
SRAP, IFLP 43 [118]

SGDH284 × 158A (derived from
Sollux and Zhoungyou9988

rapeseed cultivars)
Flowering time Field SNP 56 [119]

Low SD line No. 935 and high SD
line No. 3641

Seed density per
silique Field SNP 28 [120]

GH06 × P174 (late flowering ×
early flowering Flowering time Field SNP 27 [121]

8.1. Plant Structure

Plant height, branching, silique number, and number of seeds in siliques are important
rapeseed agronomic traits affecting the yield. High-stemmed plants are more prone to
lodging caused by strong winds and decrease the efficiency of the harvesting machinery.
Higher branching rate in the plants results in a higher yield of a single plant. The number
of harvested seeds directly reflects the agronomic and economic value of a cultivar. In the
last five years, several studies have been conducted using B. napus double haploid lines
and the bulk segregant analysis approach, their main objectives being the identification
of genes or QTLs conferring the traits described above. Bulk segregant analysis is one
of the several SNP (single nucleotide polymorphism) identification strategies, such as
GWAS (genome wide association study), ESTs (expressed sequence tags), array-based
analyses, amplicon sequencing, or identification from sequenced genomes [122–124]. It is a
method based on the use of segregating populations of two bulked pools of individuals
with contrasting traits. Supplemented by next-generation sequencing (NGS) of the whole
genome or transcriptome, this approach allows identification of molecular markers linked
to a gene of interest, manifesting itself in the phenotype in a rapid and relatively low-cost
and non-time-consuming way.

Zhao et al. [125] and Wei et al. [126] provided new insights regarding the molec-
ular mechanisms underlying dwarfism of B. napus. Using the “Aiyuan1” DH lines and
“Zhongyou 821” cultivar, a new dwarf locus—DS-4 encoding nucleus-targeted auxin/indole-
3-acetic acid (Aux/IAA) protein—was identified. The P87L substitution in the highly con-
served region of Aux/IAA was found to cause extreme dwarfism. Similarly, Wei et al. (2021)
found a ndf-2 mutation of Aux/IAA on chromosome A03. Both affect the auxin signaling
pathway. Additionally, nine height-related candidate genes were found on chromosome
A03 (BnaA03g31770D, BnaA03g37960D, BnaA03g24740D, BnaA03g40550D, BnaA03g26120D,
BnaA03g35130D, BnaA03g42350D, BnaA03g25610D, and BnaA03g39850D) that are involved
in gibberellin and cytokinin signaling pathways [127]. In addition to the IAA content and
signaling pathways, the modification changes in the ABA and GA (gibberellin) biosynthesis
were found [128].
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8.2. Number of Inflorescence, Seeds, and Pod-Shattering Tendencies

The number of seeds per silique is another trait that reflects the agronomic value of
the rapeseed. In the study, the BSA (bulked segregant analysis) method was conducted
in combination with Brassica 60K Illumina SNP array. The rapeseed double haploid lines
were derived from a 6Q006 × 6W26 hybrid. A major QTL region on chromosome A09
was found. Further BSA-seq analysis detected an InDel variation of BnaC09g45400D gene
encoding adenine phosphoribosyltransferase 5 (APT5) [129]. Pod length is a fundamental
factor affecting seed yield, as longer pods usually mean a higher number and weight of
seeds. Pod length is reported to be a multigenic controlled trait. Markers at two loci were
found using BSA and random amplified polymorphic DNA with rapeseed double haploid
line “Quantum” (long pod) and “China” (short pod). The two selected markers effectively
identified DH lines with average pod length increased by 15% [130].

Pod-shattering in B. napus is a major issue, causing a considerable yield loss. Cultivars
with low pod/silique-shattering make it possible to save a significant part of the yield
and ensure more profitable crop farming with the use of heavy machines and highly
automated agriculture. Chu et al. [131] identified a lignified-layer bridge (LBB) exclusive
to an elite line OR88 and found that LBB structure is controlled by a single recessive gene.
The proposed candidate gene BnTCP.C09 was found to be highly downregulated in the
aforementioned line.

8.3. Flowering Time

In the years 2017–2023, several research articles provided new insights into genetic
factors involving the flowering time (FT) of B. napus. Recognizing and controlling the
flowering time in the available registered cultivars allows for the selection of the appro-
priate cultivar for the local cropping system. A total of 306 genes involved in the control
of flowering time in Arabidopsis thaliana have been reported [132]. As A. thaliana is a
close relative of B. napus, the identification of FT genes in rapeseed is considerably easier.
BnFLC.A2, BnFLC.C2, and BnFLC.A3b genes are major factors determining FT in B. napus
and are reported to have an additive effect [133]. Major QTLs on chromosome C1 and
C9 were also reported to have additive characteristics [134]. Thirty-six genes associated
with flowering time were identified through whole-transcriptome analysis of double hap-
loid semi-wintertime line “Ningyou7” [135]. One QTL of the B. napus introgression line
was found to carry an allele introgressed from Brassica oleracea that affects the flowering
time [136]. Two QTLs were detected on chromosome A02 of B. napus. One of the two QTLs
contained a BnaFT.A2 flowering gene [137].

8.4. Seed Traits

The yellow seed trait is a widely researched topic in Brassica napus and other Brassica
oilseed crops. Yellow seeds are associated with high oil, low fiber, and pigment content [138].
Molecular mechanisms controlling the yellow color are the center of attention for many
researchers and breeders. The KNDH double haploid line was derived from progeny of
yellow-seeded B. napus N53-2 with high oil content and black-seeded Ken-C8 with low oil
content. Ten QTLs were detected, out of which four were stable in multiple environments.
The QTL cqSC-A09 was found to control the pigmentation of the seeds as well as oil and
fiber content [139]. A high-density linkage map was constructed with the double haploid
population KNDH. Identified QTLs were associated with SOC or SPC (seed oil content
or seed protein content) [138]. Another two double haploid lines were developed from
black-seeded cultivars’ progeny and tested in various environments. Segregating bulks
were revealed based on the distribution of lignin (black pigment) in the seeds. Low lignin
content in the seed coat is correlated with high oil content [140]. SNP analysis indicated a
narrow genomic region for low lignin content [141].

Seed weight is another indicator of the agronomic value of oilseed canola. BSA-
based analysis revealed four genes: GSBRNA2T00037136001, GSBRNA2T00037157001,
GSBRNA2T00037129001, and GSBRNA2T00069389001 being the putative candidate genes
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for seed weight control [142]. Major QTL cqSW.A03-2 explains the large percentage of
phenotypic variations in analyzed B. napus double haploid lines. The candidate gene of
said QTL locus may be the BnaA03G37960D gene [143] Major QTL mapping conducted
by Zhang et al. [144] confirmed the phenotypic effect of qSW.C9 QTL influencing seed
weight and observed its mediating character toward proliferation, cell expansion, and
signaling pathways.

8.5. Resistance to Diseases
8.5.1. Sclerotinia Stem Rot

Genetically based resistance to Sclerotinia sclerotinium is poorly understood in crops. It
is known that the resistance is controlled by several genes, which restrict the development
of resistant cultivars. Hence, the need for identification of QTL and molecular markers is a
pressing problem, and the development of segregating populations and genetic maps is
vital. Behla et al. [111] carried out a quantitative trait loci analysis in three rapeseed double
haploid populations. Three to six QTLs were found in each population; common QTLs
were identified in linkage groups A7, C6, and A9. A comparative transcriptomic study
revealed 36 upregulated, putative candidate genes responsible for ST resistance [145]. In
addition, Wu et al. [112] stated that ST resistance correlates negatively with flowering time.
Four QTLs colocalize for stem rot and early flowering time, which reveals a genetic link
between the two traits.

8.5.2. Clubroot

Plasmodiophora brassicae Woronin, the causal agent of clubroot disease, infects the roots
of Brassica host plants, resulting in characteristic clubs. These formations hinder water and
nutrient flow through the roots, and consequently the plant. Clubroot resistance (CR) genes
are being continuously researched. Up to today, over twenty genes and QTLs have been
identified. In recent years, several researchers have contributed to this number. CR genes
and genes taking part in the plant’s defense response, as well as new molecular markers,
have been found in B. napus [106,109,146,147]. Shaikh et al. [148] studied the inheritance
of resistance of three Plasmodiophora brassicacae pathotypes using two rapeseed double
haploid lines. Four percent of the DH lines were resistant to all studied pathotypes, which
led to the conclusion that pyramiding several resistance genes is a promising approach
to clubroot-resistant rapeseed breeding. Double haploid B. napus lines were also proven
useful in transcriptomic and metabolomic approaches, providing valuable information on
early-stage responses to clubroot in resistant and susceptible B. napus lines, as changes in
organic acid, amino acids, sugars, mannitol accumulation in roots, pyrroline-5-carboxylate,
citrate synthase, and pyruvate kinase expression were observed [148].

8.5.3. Blackleg

Leptosphaeria spp. causing blackleg disease in Brassica species is a major threat in
rapeseed breeding. The greatest yield loss is caused by the Leptosphaeria maculans species.
The annual yield loss in Poland in rapeseed crops is reported to be approximately 10–60%,
depending on the region [149]. Worldwide, some disastrous cases of 90% yield loss were
recorded in France and Canada [150,151]. The strategies of blackleg disease control include
cultural practices such as crop rotation, soil tillage, fungicides, and chemical agents. How-
ever, such solutions are neither sufficient nor economically feasible. The implementation
of resistant cultivars using the major, race-specific resistance genes (R genes) in present
agriculture systems seems to be the best blackleg management method. However, strong
selection pressure created by large-scale monoculture rapeseed plantations put on the
local strains of Leptosphaeria maculans strains results in relatively fast breaking of R genes.
The resistance of several commercial cultivars was reported to collapse within three years
after their release [152]. The pathogen ability of rapid evolution is possible because of
its resilience and the fact that it can reproduce both sexually (ascospores) and asexually
(pycnidiospores). Quantitative resistance (QR) originating from minor, non-race specific
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resistance genes is said to be a more stable source of resistance in rapeseed in terms of
long-term viability. The QR-controlling mechanisms are still unclear, although they are con-
sidered the most desired and durable rapeseed protection mechanisms. Quantitative trait
loci (QTL) analysis is the main method for studying QR, especially with rapidly developing
sequencing and computing techniques. Modern molecular methods significantly accelerate
the identification of blackleg resistance genes, both major and minor, and molecular marker
development. Most experiments in QTL mapping utilize the double haploid (DH) popula-
tions. Primarily, the marker system of choice for the map construction required for mining
QTLs conferring blackleg resistance in B. napus has been SSRs; however, the SRAP, AFLP,
RAPD, RFLP, and SCAR markers have been also utilized [153–158]. Raman et al. conducted
several studies regarding blackleg resistance in B. napus. In 2018, genomic regions involved
in quantitative resistance were studied in various environments—shade house and field
conditions. The plant material consisted of 258–276 double haploid lines derived from
Darmor-bzh × Yudal cross. Twenty-seven QTLs were found on twelve chromosomes, out
of which only seven were detected in more than one experiment. It was also concluded
that plant height and maturity may have an impact on quantitative resistance in testing
conditions [101]. As most QR effects are highly influenced by environmental conditions
(genotype by environment), such a statement is understandable. Genotype by environment
interaction makes identification of stable QTLs conferring blackleg resistance to rapeseed
challenging. In the following study, the authors mapped both qualitative and quantitative
loci for Leptosphaeria maculans resistance. Based on SSR, SRAP, STS, and EST-SSR markers,
the R and QR loci for blackleg resistance were localized. Eleven QTL were identified, out
of which only two were detected in all three field experiments [105]. Another paper by
Raman et al. [159] reported identification of two marker associations for two R genes and
twenty-one for QR loci. Three of them were repeatedly present on chromosomes A03,
A07, and C04 in the shade house and field experiments. Huaeng et al. [102] observed
a significant correlation between the growth of lesions caused by Leptosphaeria maculans
and the resistance of plants in field experiments. The QTL investigation resulted in the
identification of overlapping loci on chromosome A02 in both controlled and field condi-
tions. Over the years, the identification of QTLs conferring blackleg resistance has been
widely explored, although the complexity of GxE interaction hinders the recognition of
the QR effects, control mechanisms, and, as a consequence, a low number of effective and
functional markers [160].

9. Conclusions and Future Perspectives

Double haploid technology has undoubtedly had a great impact on rapeseed research
and breeding. The development of DH lines is the main backbone of B. napus cultivar
development. The remarkable features of these lines are readily applied in genetic and
molecular studies. The superiority of DH lines over conventional inbred lines is unques-
tionable. However, the demand of modern agriculture for improved cultivars is greater
than the breeders’ ability to meet those needs, even given such tools as double haploidy.
The effectiveness and production rate of haploid and double haploid plants is still relatively
low. Production of microspore-derived haploid or double haploid plants at an acceptable
level requires skill, experience, and a good understanding of the species or cultivar of
choice. Clearly, the understanding of the molecular mechanisms underlying embryogen-
esis of microspores needs to be improved. Moreover, it would be beneficial to focus on
the epigenetic aspects of microspore embryogenesis. Currently, microspore culture still
proves to be the most efficient and available method for the production of haploids and
double haploids in B. napus for most laboratories. The latest reported techniques exploiting
interploidy hybridization or inducer lines provide a more than satisfactory efficiency rate of
double haploid rapeseed production. However, the method facilitating the inducer lines is
unavailable for numerous laboratories, as it requires genetic modification. The integration
of biotechnological tools with the DH technique has proved fruitful, and what is more,
breeding efficiency and genetic improvement has been enhanced and accelerated.
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