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Abstract: SARS-CoV-2 nucleic acid detection tests enable rapid virus detection; however, it is chal-
lenging to identify genotypes to comprehend the local epidemiology and infection routes in real-time
qRT-PCR. At the end of June 2022, our hospital experienced an in-hospital cluster of COVID-19.
When examined using the GeneXpert® System, the cycle threshold (Ct) value of the N2 region of the
nucleocapsid gene of SARS-CoV-2 was approximately 10 cycles higher than that of the envelope gene.
Sanger sequencing revealed a G29179T mutation in the primer and probe binding sites. A review
of past test results revealed differences in Ct values in 21 of 345 SARS-CoV-2-positive patients, of
which 17 cases were cluster-related and 4 were not. Including these 21 cases, 36 cases in total were
selected for whole-genome sequencing (WGS). The viral genomes in the cluster-related cases were
identified as BA.2.10, and those in the non-cluster cases were closely related and classified as being
downstream of BA.2.10 and other lineages. Although WGS can provide comprehensive information,
its use is limited in various laboratory settings. A measurement platform reporting and comparing
Ct values of different target genes can improve test accuracy, enhance our understanding of infection
spread, and be applied to the quality control of reagents.
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1. Introduction

Nucleic acid detection tests are used to diagnose severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection, and several devices and reagent kits are com-
mercially available for this purpose [1–4]. Among these, real-time reverse transcription
polymerase chain reaction (qRT-PCR) assays have formed the backbone of coronavirus
disease-19 (COVID-19) diagnosis since the start of the COVID-19 pandemic, and many
qRT-PCR-based SARS-CoV-2 testing platforms have been developed and made commer-
cially available, including the GeneXpert® System and Cepheid Xpert Xpress SARS-CoV-2
assay kit (GX) (Beckman Coulter, Inc., Brea, CA, USA) [5], which target the envelope gene
(E) and N2 region of the nucleocapsid gene (N2) of SARS-CoV-2. If a sample is positive, it is
expected that N2 or both N2 and E targets will be detected using threshold (Ct) values [6].

In our hospital, various SARS-CoV-2 nucleic acid detection tests are used. Particularly, GX
is used for routine and emergency testing. We identified a cluster of COVID-19 cases within a
short period among hospitalized patients and staff members from June to July 2022. Suspecting
a nosocomial infection, we used GX to screen many contacts, and some SARS-CoV-2-positive
cases were detected among individuals who had not yet developed symptoms.

Whole-genome sequencing (WGS) of the viral genome can help identify the virus
strains and can be useful for clarifying whether these cases originated from a single infection
route; however, it is difficult to perform WGS in hospital laboratories owing to the time, cost,
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equipment, and competence required. We noticed a characteristic preliminary finding in the
GX results—the two Ct values of the N2 and E gene targets were markedly different: the Ct
value of N2 was approximately 10 cycles higher than that of E. Mutations in the qRT-PCR
primer and probe binding sites have been reported to cause the discrepancy in the Ct values
of these two gene targets [7–22]; therefore, we aimed to determine the base sequence of
the GX detection site. In addition, WGS was performed using next-generation sequencing.
We also traced the GX results to determine when viruses with these characteristics first
emerged. From June to July 2022, when the cluster of COVID-19 cases occurred in our
hospital, the BA.2 lineage of the Omicron variant was replaced by the BA.5 lineage, and
both the BA.2 and BA.5 lineages were identified in Japan. In this study, we verified whether
SARS-CoV-2 point mutations can be detected by real-time qRT-PCR using Ct values and
tested the validity of this tool for estimating nosocomial infection routes. This study is a
coincidental product of the cluster analysis of cases concentrated in the same department
within a specific period. The cases were believed to be a cluster based on evidence (several
occurrences in the same department at the same time).

2. Materials and Methods
2.1. Participants

The study participants included 36 patients and staff members who tested positive
for SARS-CoV-2 through qRT-PCR from June to early August 2022. We also reviewed
the GX test results of 345 positive cases out of 4905 patients tested for SARS-CoV-2 at
Hamamatsu University Hospital from mid-June 2020, when COVID-19 was first confirmed
in Hamamatsu, Japan, to early August 2022.

2.2. Nucleic Acid Detection Testing of SARS-CoV-2

Nasopharyngeal swab samples were collected from selected patients with a fever, sore
throat, headache, and fatigue and from persons they had had close contact with, includ-
ing the medical staff of Hamamatsu University Hospital (Hamamatsu, Japan). Flocked
nasopharyngeal swabs were placed in a BD Universal Viral Transport Collection Kit (Bec-
ton, Dickinson and Company, Franklin Lakes, NJ, USA) and transported to the clinical
laboratory of the hospital. qRT-PCR for SARS-CoV-2 was performed using the GeneXpert®

System and Cepheid Xpert Xpress SARS-CoV-2 assay kit (Beckman Coulter, Inc., Brea,
CA, USA), according to the manufacturer’s protocol. The GeneXpert® system is a fully
automated genetic analyzer that integrates the processes of nucleic acid extraction, PCR
amplification, and detection. In addition to SARS-CoV-2, it also supports microbiological
tests, such as those for MRSA and Clostridium difficile, and is characterized by the rapid
reporting of results within 60 min. The Cepheid Xpert Xpress SARS-CoV-2 assay kit em-
ploys a cartridge-based nucleic acid amplification test and requires no special treatment
by simply applying the sample to the reagent cartridge. The test reports a positive result
when N2 is detected, whereas a presumptive positive result is reported when only the E
target is detected. The cutoff Ct value for SARS-CoV-2 detection was set at 45, and that for
undetectable cases, in which GX failed to yield Ct values, was set at 0. As a quality control,
a sample processing control (SPC), which functions as an internal control, is included in
the cartridge of the Cepheid Xpert Xpress SARS-CoV-2 assay kit [6].

2.3. DNA Sequencing of the SARS-CoV-2 Genome

Total RNA was automatically extracted from nasopharyngeal swab samples us-
ing the QIAcube® platform (Qiagen, Venlo, The Netherlands), and 5 µL of the eluate
was used to prepare cDNA using the ReverTra Ace-α-® qPCR RT Kit (Toyobo, Tsuruga,
Japan). Sanger sequencing was performed targeting the N2 region of SARS-CoV-2 using
a BigDye™ Terminator v3.1 Cycle Sequencing Kit and an Applied Biosystems SeqStudio
Genetic Analyzer (Thermo Fisher Scientific, Waltham, MA, USA). The primers used are
listed in Table S1 [23,24].
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WGS of SARS-CoV-2 was performed using targeted amplification of the SARS-CoV-2
genome by multiplex PCR according to the National Institute of Infectious Diseases (NIID,
Tokyo, Japan) protocol [25] using the MiSeq platform (Illumina, San Diego, CA, USA).
The SARS-CoV-2 genome library for the MiSeq platform was prepared using the Super-
Script IV First-Strand Synthesis System (Thermo Fisher Scientific), Q5 Hot Start DNA
Polymerase (NEB), QIAseq FX DNA Library UDI Kit (QIAGEN), and Alt nCov2019
primers/Primers/ver N5 [26].

We identified the virus strains of the selected 36 infected individuals through WGS.
The obtained sequence reads were compared to those of the reference strain (Wuhan-Hu-1,
NC_045512) using the SARS-CoV-2 pipeline (https://github.com/onecodex/sars-cov-2
(accessed on 28 February 2023)), and consensus sequences of each sample were generated
using iVar (https://andersen-lab.github.io/ivar/html/index.html (accessed on 28 February
2023)) [27]. The sequence reads of three patient samples could not be obtained owing to the
low quality and number of reads. A total of 33 patient sequences in FASTA format were
analyzed using “Nextclade (version 2.9.0)” (https://nextstrain.org/nextclade/sars-cov-2
(accessed on 28 February 2023)).

2.4. Statistical Analysis

All statistical analyses were performed using ‘EZR’ (Easy R) [28]. The data are pre-
sented as the median and interquartile range (IQR). Differences in Ct values between
N2 and E were compared based on c.29179G > T using the Mann–Whitney U test. The
significance level was set at p < 0.05.

3. Results
3.1. N2 Delay in GX

Thirty-six patients and medical staff in the same ward or central medical support
department suspected of being infected with SARS-CoV-2 were subjected to SARS-CoV-2
screening using GX. An unusual delay or failure in the amplification of N2 against E was
observed in 19 cases within 10 days. The Ct values (mean ± standard deviation) of positive
cases with the unusual delay (23 cases) were 22.4 ± 6.2 cycles for E and 33.0 ± 7.0 cycles
for N2. The Ct delay, calculated as ∆Ct (N2—E), was 10.7 ± 2.3 cycles (mean ± SD). Two
samples showed an N2 dropout, but the Ct values of E in the samples were higher than
30 cycles, leading to an N2 dropout by a delay of approximately 10 cycles (Table 1; pink
group). In the case of numbers 23, 25–27, and 29–35, there was a high amount of virus in
the sample (Ct values < 20.0 cycles), dNTPs were consumed, and the SPC could not be
amplified (Table 1; green group).

https://github.com/onecodex/sars-cov-2
https://andersen-lab.github.io/ivar/html/index.html
https://nextstrain.org/nextclade/sars-cov-2
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Table 1. Details of the 36 selected COVID-19 cases, including Ct values and DNA sequencing data.

No. Day Sex Age Patient or Staff
Ct Value (GeneXpert) Sanger Sequence of N2 NGS

Pangolin Lineage Nextclade Lineage
E N2 SPC N2-E c.29179 Other Mutations c.29179

1 −36 F 31 Outpatient 15.7 25.2 29.2 9.5 T T BA.2.10 21L
2 −3 F 33 Outpatient 19.4 29.6 28.2 10.2 T T BA.2.10 21L
3 −1 F 78 Outpatient 20.1 22.3 27.9 2.2 G c.28983A > G c.29218C > T G BA.2.3.1 21L
4 0 F 11 Outpatient 20.3 28.7 27.8 8.4 T T BA.2.10 21L
5 0 M 65 Medical engineer 21.9 30.8 27.7 8.9 T T BA.2.10 21L
6 0 M 24 Medical engineer 28.3 37.2 30.5 8.9 T T BA.2.10 21L
7 0 M 41 Medical engineer 21.8 33.0 28.3 11.2 T T BA.2.10 21L
8 0 F 57 Nurse 25.4 41.6 28.2 16.2 T T BA.2.10 21L
9 0 M 41 Inpatient 14.3 24.1 27.6 9.8 T T BA.2.10 21L

10 0 F 41 Nurse 30.7 42.7 28.0 12.0 T T BA.2.10 21L
11 1 M 27 Doctor 15.8 25.4 28.7 9.6 T T BA.2.10 21L
12 1 F 59 Nursing assistant 25.9 36.7 28.9 10.8 T T BA.2.10 21L
13 1 F 26 Nurse 23.2 40.0 28.9 16.8 T T BA.2.10 21L
14 1 F 25 Nurse 34.1 43.8 28.5 9.7 Failed T Failed Failed
15 2 F 26 Nurse 32.6 43.5 27.9 10.9 Failed T Failed Failed
16 2 F 47 Nurse 33.8 0.0 28.9 −33.8 Failed T Failed Failed
17 2 F 26 Medical engineer 31.4 0.0 28.9 −31.4 T T BA.2.10 21L
18 4 F 53 Inpatient 12.5 21.8 27.7 9.3 T T BA.2.10 21L
19 4 F 82 Family of No. 18 28.8 38.6 28.6 9.8 T T BA.2.10 21L
20 4 M 82 Inpatient 14.7 24.7 28.5 10.0 T T BA.2.10 21L
21 6 F 24 Nurse 19.4 33.5 28.2 14.1 T T BA.2.10 21L
22 8 F 27 Nurse 26.0 35.9 28.4 9.9 T T BA.2.10 21L
23 10 F 25 Medical engineer 16.7 16.9 0.0 0.2 G G BF.22 22B
24 11 F 79 Family of No. 20 18.2 27.1 29.2 8.9 T T BA.2.10 21L
25 13 F 26 Nurse 14.7 15.3 0.0 0.6 G G BA.2.10 21L
26 14 F 26 Nurse 19.5 20.5 0.0 1 G G BA.2.10 21L
27 14 M 77 Outpatient 16.6 18.7 0.0 2.1 G c.29253C > T G BA.2.3.13 21L
28 19 F 24 Nurse 25.4 25.4 30.4 0 Not tested G BA.5.2 22B
29 19 F 26 Physical therapist 16.4 16.5 0.0 0.1 Not tested G BA.5.2 22B
30 22 M 79 Inpatient 16.1 18.6 0.0 2.5 Not tested G BA.5.2 22B
31 23 F 23 Nurse 20.7 22.6 0.0 1.9 Not tested G BA.5.2 22B
32 23 M 29 Doctor 18.0 19.2 0.0 1.2 Not tested G BF.5 22B
33 24 F 37 Nurse 19.6 20.5 0.0 0.9 Not tested G BF.22 22B
34 25 F 25 Nurse 19.4 19.9 0.0 0.5 Not tested G BF.22 22B
35 33 F 27 Nurse 18.1 19.5 0.0 1.4 G G BA.5.2 22B
36 36 F 79 Inpatient 21.0 30.0 28.9 9.0 T T BA.2.10 21L

Day: The day on which the cluster of COVID-19 cases occurred was set as 0 (late June 2022). SPC: Sample processing control, included in the GeneXpert cartridge. The table coloring is
categorized based on the G29179T genotype: Pink: 29179T; light green: 29179G.



Curr. Issues Mol. Biol. 2023, 45 4128

3.2. N2 Amplification Delay Is Linked to the G29179T Mutation

We suspected that all samples with an N2 amplification delay may contain a mutation
in the GX primer or probe region. Therefore, we sequenced the samples with and without
the N2 amplification delay. Figure 1 shows the sequencing strategy used to reveal the
mutation responsible for the N2 amplification delay and a part of the Sanger sequencing
results. All samples with an N2 amplification delay had c.29179G > T (G29179T mutation;
p.Pro302Pro synonymous mutation) and the samples without an N2 amplification delay had
wild-type 29179G (Figure S1). Additionally, case no. 27 had a c.29253C > T (p.Ser327Leu)
mutation, and case no. 3 had c.28983A > G (Lys237Arg) and c.29218C > T (p.Phe315Phe)
mutations (Table 1); both cases had wild-type 29179G.
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Figure 1. Mutations in the nucleocapsid gene of SARS-CoV-2 from patients with COVID-19 and the
strategy used to reveal the mutation responsible for the N gene (N2 target region) amplification delay
in the GeneXpert® System and Cepheid Xpert Xpress SARS-CoV-2 assay kit (GX) results. Orange
bases indicate the N2 target region for Sanger sequencing of the nucleocapsid gene; the genome
positions are numbered according to the reference genome (Wuhan-HU-1; NC_045512.2). The primers
and probe for the US Centers for Disease Control and Prevention (CDC) primer and probe targets,
the Japan National Institute of Infectious Disease (NIID) primers, and the primers designed for the
present study are shown. The GX primer targets were very similar to those of the CDC-published PCR
primer sets. Green and blue bases indicate the location of the 29179: G/T mutation that spans five
nucleotides upstream of the 3’ end of the CDC forward primer (possibly the same as the GX primer).
Yellow and blue bases indicate other mutation locations: one within the CDC reverse primer (29218:
C/T) and two in regions unrelated to any primer or probe (28983: A/G; 29253: C/T). Blue-only bases
indicate previously described N gene mutations on the probe binding site that resulted in GX assay
failure and instability (29197: C/T; 29200: C/T or A; 29203: C/T).

3.3. Past Cases Analyzed through GX

Out of 345 SARS-CoV-2-positive cases, 14 had E2-negative and N2-positive results
with high Ct values. In addition, a presumptive positive result was observed in eight
cases. Interestingly, only the pink group cases in Table 1 had ∆Ct (N2-E) deviations close to
10 cycles for about two years, and 17 cases were cluster-related. Among these, the Ct value
for E exceeded 35 cycles and the Ct value for N2 was not obtained in two cases. Because the
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Ct values for E exceeded 30 cycles in these cases, it is possible that if the Ct values deviated
by approximately 10 cycles, the Ct value of N2 exceeded 45 and became undetectable. For
example, in eight cases that have been reported since June 2020, the genetic test results
were not available because of the high Ct value (i.e., low viral load). Figure 2 shows the
concordance between the Ct values for N2 and E.
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Figure 2. Comparison between N2 and E Ct values analyzed through GX. A total of 354 cases
with positive or presumptive positive GX results were correlated with two Ct values of N2 and E.
Undetectable cases in which GX failed to yield Ct values were plotted with Ct values of 48. Red dots
indicate cases with the G29179T mutation.

In the periods preceding and following the cluster, which lasted approximately 10 days,
an N2 amplification delay was observed in one outpatient approximately one month before
the cluster (no. 1), two outpatients a few days before the cluster (nos. 2 and 4), and one
hospitalized patient approximately 1 month after the cluster (no. 36). These four cases did
not seem to be related to the cluster. To investigate the relationship between these cases and
the cluster, we examined the N gene through Sanger sequencing and found the G29179T
mutation in all infected individuals that had an N2 amplification delay.

3.4. Phylogeny of SARS-CoV-2 Detected during the Cluster

In 3 of the 36 SARS-CoV-2-positive cases (nos. 14–16) analyzed through WGS (Table 1),
the depth and genome quality were too low to confidently assign Pangolin and Nextclade
lineages. This was possibly due to an insufficient amount of RNA. For the remaining
33 cases, the genome could be read with sufficient depth and reliability. All 23 cases
with an N2 amplification delay and G29179T mutation were classified as Pangolin lineage
BA.2.10 and Nextclade lineage 21 L (Omicron) (Figure 3). Of the 23 cases, 19 were cluster-
related, 3 (nos. 1, 2, 4) occurred before the cluster, and 1 (no. 36) occurred approximately
1 month after the cluster. There were no similar types of viral infection observed during
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the one month. In particular, case no. 1, a woman with familial infection who presented
to the emergency department approximately 1 month before the cluster, was identified
by reviewing all previous GX results. In addition, one month after the cluster subsided, a
similar N2 amplification delay was observed in one case (no. 36). WGS revealed that both
of these cases belonged to lineage BA.2.10, with sequences nearly identical to those of the
cluster cases. However, slight differences in the base sequence were observed, which was
presumed to be due to a subtype of the BA.2.10 lineage that is spreading in the community.
In contrast, two cases (nos. 25 and 26) belonging to the BA.2.10 lineage did not have the
G29179T mutation. Two other cases belonged to the 21 L (Omicron) BA.2 lineage but to
different sublineages—BA.2.3.1 (no. 3) and BA.2.13 (no. 27). The remaining nine cases
belonged to the 22 B (Omicron) BA.5 lineage. Among them, three distinct lineages were
identified in seven cases (no. 28–34) that worked in a similar environment and developed
an infection at almost the same time.
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4. Discussion

In this study, we noticed a discrepancy between the Ct values of N2 and E analyzed
through GX, which led to the detection of the G29179T mutation in the PCR primer and
probe binding sites. This discrepancy was useful in analyzing multiple cluster cases that
occurred at the same time based on changes in the genotype. Therefore, our findings have
great significance for viral strain identification and tracking. The diversity of genotypes is
one of the most important factors affecting the difference in gene amplification efficiency.
Several authors have reported mutations that affect the amplification efficiency of GX [7–22].
Although these mutations are likely to be infrequent, it is important to understand them
because they affect the clinical and laboratory assessments of patients with COVID-19. In
other words, base substitutions in the binding regions of primers and/or probes are related
to the amplification efficiency of PCR, and genotype analysis may lead to the discovery of
infection routes and infection control. In this study, cases with the same mutation in the N2
region belonged to the group with the same infection route, and it was inferred that the
infection route was different in cases without this mutation, which is of great significance
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from the perspective of infection control. Similar to strategies for bacterial infection control
in which the genotype of causative bacteria is determined when a nosocomial infection
is suspected [29], we demonstrated that it is possible to estimate the route of infection by
examining the genotype of viruses, which can be applied beyond the scope of SARS-CoV-2.

A literature search revealed that the G29179T mutation identified herein has already
been reported. In Korea, it has a high frequency and accounts for approximately 70% of all
mutations in the B.1.497 lineage [7]. In Australia, Foster et al. [8] reported an increase in
E-positive and N-negative cases that were caused by a delta strain from August 2021. Many
mutations that affect the accuracy of qRT-PCR have been reported to spread to various
lineages, including those other than G29179T [9–22]. These mutations are considered to
independently occur after being divided into various lineages. In this study, the G29179T
mutation occurred in the BA.2.10 lineage and is thought to have spread to many infected
people. Furthermore, an individual infected with the same lineage with the G29179T muta-
tion was diagnosed at a different time, suggesting that the strain was present elsewhere.
To the best of our knowledge, this is the first report to identify a relationship between the
occurrence of the G29179T mutation in the N2 region and the GX delay for the Omicron
variant (B.1.1.529 and BA2.10).

From a different perspective, as shown in Figure 2, the relationship between the Ct
values of N2 and E is much stronger than expected. This indicates that the amplification
efficiencies of the two gene targets maintained a constant relationship; that is, the quality of
the reagent in GX was precisely maintained. Conversely, this relationship could be utilized
for the quality control of reagents. Many commercially available reagents amplify the two
regions as a countermeasure against poor detection (false negative) owing to viral mutations
and load [7–22,30–32] or non-specific detection (false positives) owing to cross-reactivity to
other viruses [33]. However, some reagents report only positive or negative results without
displaying the Ct values, whereas others report only the Ct value of one gene target. The
quantitative determination of the Ct values of two or more genes has merits that cannot be
obtained from qualitative judgments, such as genotype discrimination and infection control,
as shown in this report, as well as the prevention of false positives and false negatives based
on these values. The Ct value is a relative, and not an absolute, representation of the viral
load and varies according to the measurement method. Nevertheless, if the same method is
used consistently and quality control is implemented correctly, the Ct value not only shows
the amount of virus in the sample but also partly identifies the genotype. Therefore, it is
recommended that the Ct values of all amplified parts be quantified and generated. Our
results show that a deviation in the Ct value has great clinical and laboratory significance.

The phylogenetic tree was also used to determine the viral genome, and although it
provides crucial information both in terms of infection control and epidemiology, it remains
necessary to perform WGS [34,35]. However, because it is difficult to perform WGS for
routine laboratory testing, a screening method that can easily detect differences in DNA
sequences in addition to combinations of Ct values would be useful for rough genotyping
and infection control.

As a limitation of this study, if the Ct value is high, it cannot be completely denied that
the difference in amplification efficiency between the two regions is due to the detection of
a low viral load, as in the case of the very early stage of infection or the recovery period, and
false positives resulting from equipment or operator errors [30–33]. However, the accuracy
of GX suggests that the frequency of false positives is low, as all past cases in Figure 2 were
diagnosed with COVID-19. A suspected low viral load can be compensated for by retesting
at a different time. Additionally, only 36 cases were selected for WGS analysis, including
the cluster cases and other SARS-CoV-2-positive cases with discrepancies in Ct values and
the G29179T mutation. Another possible limitation is the low sample size. Nevertheless,
we were able to provide novel insights into the estimation of the infection route. Because
SARS-CoV-2 will continue to mutate, quantifying this difference will not always be useful
in detecting mutations. Hence, based on our observations, there is a need to establish an
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assay that is capable of detecting multiple, high-frequency point mutations in the N gene
region and thereby extend its framework to promote infection control.

5. Conclusions

In this study, we successfully identified the characteristics underlying the discrepancy
in Ct values of two target genes in SARS-CoV-2 infections obtained through GX and
associated these characteristics with infection control. Therefore, although not as accurate as
sequencing using WGS, all information generated through qRT-PCR should be considered
and could be applied to the quality control of reagents and to understand strain- and
variant-specific spread by rapid screening.
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