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Abstract: Elucidation of the tertiary structure of proteins is an important task for biological and
medical studies. AlphaFold, a modern deep-learning algorithm, enables the prediction of protein
structure to a high level of accuracy. It has been applied in numerous studies in various areas of
biology and medicine. Viruses are biological entities infecting eukaryotic and procaryotic organisms.
They can pose a danger for humans and economically significant animals and plants, but they can
also be useful for biological control, suppressing populations of pests and pathogens. AlphaFold
can be used for studies of molecular mechanisms of viral infection to facilitate several activities,
including drug design. Computational prediction and analysis of the structure of bacteriophage
receptor-binding proteins can contribute to more efficient phage therapy. In addition, AlphaFold
predictions can be used for the discovery of enzymes of bacteriophage origin that are able to degrade
the cell wall of bacterial pathogens. The use of AlphaFold can assist fundamental viral research,
including evolutionary studies. The ongoing development and improvement of AlphaFold can
ensure that its contribution to the study of viral proteins will be significant in the future.
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1. Introduction

Proteins play a crucial role both in building biological structures and in managing
biochemical processes in living organisms. Proteins are linear unbranched polymers of
amino acid residues. To possess biological activity, proteins adopt unique three-dimensional
structures (folds), which is known as the “native state” [1,2]. The folded structure is
determined by the amino acid sequence of the protein (“primary structure”) [3,4], and the
formation of the folded native conformation (“tertiary structure”) starts with rapid folding
into a “secondary structure”, which is a local spatial conformation of the polypeptide
backbone, stabilised by intramolecular hydrogen bonds [5]. The most common elements of
the secondary structure are α-helices and β-sheets. The so-called “quaternary structure” is
the result of assembly of the folded proteins or protein subunits into protein complexes of
fully functional protein [6]. Thus, the protein structure can be described using four levels
of organisation: a primary, secondary, tertiary and, for some proteins, quaternary structure
(Figure 1).

Knowledge of the three-dimensional structure of proteins is important for under-
standing their functions. A detailed knowledge of three-dimensional structure is cru-
cial for protein structure-based drug design [8]. The main techniques for determin-
ing protein structures are X-ray crystallography [9], NMR spectroscopy [10] and Cryo-
electron microscopy [11]. Experimentally determined protein structures are stored in
databases, the largest of them being the publicly available Protein Data Bank (PDB) (https:
//www.rcsb.org/, accessed on 1 March 2023). As of March 2023, the PDB database con-
tained about 202,000 experimentally determined structures, most of which belonged to pro-
teins. This is, however, just a small fraction of all proteins for which the primary sequences
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are known. The UniProtKB/TrEMBL database alone contains over 200 million sequence
records, (database release 2022_05 of 14 December 2022 contained 229,580,745 sequence
entries, https://www.ebi.ac.uk/uniprot/TrEMBLstats, accessed on 1 March 2023). Thus,
the prediction of the three-dimensional structure of a protein is an urgent problem that aims
to fill the gap between the large known number of primary sequences and the relatively
small number of known structures.
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Figure 1. Three-dimensional structure of SARS-CoV-2 trimeric spike glycoprotein, determined with 
electron microscopy (PDB code #7DF3 [7]). (a) Monomeric subunit coloured based on a rainbow 
gradient scheme, where the N-terminus of the polypeptide chain is coloured blue, and the C-termi-
nus is coloured red. (b) Monomeric subunit coloured based on the secondary structure, where α-
helices are coloured cyan, β-sheets are coloured magenta, and loops are coloured wheat. (c) Quater-
nary structure of functional trimer, where each monomer is coloured in a different colour. 
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Prediction of the three-dimensional structure of proteins is a difficult task. For a long 
time, the main prediction methods included comparative modelling (homology model-
ling), threading and ab initio and machine-learning approaches [12,13]. The development 
of end-to-end machine-learning approaches in recent years has resulted in the emergence 
of new techniques that can often outperform other methods [2,14]. Moreover, recent pro-
gress associated with deep-learning methods enables speculation about a revolution in 
protein-structure prediction [15]. One of the most popular deep-learning techniques is Al-
phabet–Google DeepMind�s neural network-based end-to-end solution AlphaFold2 (Al-
phaFold, AF2), which was presented in the CASP14 competition [16], the second iteration 
of the AlphaFold system entered in CASP13 [17]. AlphaFold employs a deep-learning ap-
proach and a conventional neural network. This technique is able to predict the distance 

Figure 1. Three-dimensional structure of SARS-CoV-2 trimeric spike glycoprotein, determined with
electron microscopy (PDB code #7DF3 [7]). (a) Monomeric subunit coloured based on a rainbow
gradient scheme, where the N-terminus of the polypeptide chain is coloured blue, and the C-terminus
is coloured red. (b) Monomeric subunit coloured based on the secondary structure, where α-helices
are coloured cyan, β-sheets are coloured magenta, and loops are coloured wheat. (c) Quaternary
structure of functional trimer, where each monomer is coloured in a different colour.

Prediction of the three-dimensional structure of proteins is a difficult task. For a long
time, the main prediction methods included comparative modelling (homology modelling),
threading and ab initio and machine-learning approaches [12,13]. The development of
end-to-end machine-learning approaches in recent years has resulted in the emergence
of new techniques that can often outperform other methods [2,14]. Moreover, recent
progress associated with deep-learning methods enables speculation about a revolution
in protein-structure prediction [15]. One of the most popular deep-learning techniques
is Alphabet–Google DeepMind’s neural network-based end-to-end solution AlphaFold2
(AlphaFold, AF2), which was presented in the CASP14 competition [16], the second itera-
tion of the AlphaFold system entered in CASP13 [17]. AlphaFold employs a deep-learning
approach and a conventional neural network. This technique is able to predict the dis-
tance and torsion distribution of proteins, using training schemes of experimentally deter-
mined PDB structures, protein primary sequences and the multiple sequence alignment
(MSA) of proteins. In CASP14, AlphaFold2 structures had a median backbone accuracy
of 0.96 Å RMSD95 (Cα root-mean-square deviation at 95% residue coverage) and an all-
atom accuracy of 1.5 Å RMSD95. The corresponding values for the prediction of the best
alternative method were 2.8 Å and 3.5 Å [16]. The high level of accuracy of AlphaFold2 pre-
dictions boosted the popularity of this technique. One might even talk about “AlphaFold
mania”, given the astonishing increase in the number of journal articles and preprints citing
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AlphaFold2 AI software [18]. As of the beginning of March 2023, the original paper [16]
published in July 2021, which described AlphaFold2′s release, with its source code, was
accessed about a million times and, according to the Web of Science metric, was cited about
5000 times (https://www.nature.com/articles/s41586-021-03819-2/metrics, accessed on
1 March 2023).

The updated version of AlphaFold2, called AlphaFold-Multimer, also developed by
DeepMind, was released several months after AlphaFold2 [19]. AlphaFold-Multimer was
designed to predict the three-dimensional structure of protein complexes. AlphaFold-
Multimer was benchmarked on a large dataset of 4446 protein complexes, successfully
predicting the interface in 70% of cases of heteromeric interfaces and in 72% of cases of
homomeric interfaces. A high level of predictive accuracy was demonstrated in 26% of
cases of heteromeric interfaces and 36% of cases of homomeric interfaces.

The level of accuracy of AlphaFold (and other AI protein-folding methods, such
as RoseTTAFold [20]) makes it tempting to use AlphaFold predictions in various fields
of biological and medical research. In particular, virology, the importance of which has
become especially evident in the light of the recent COVID-19 pandemic, has received a new
tool that can solve a number of problems requiring the knowledge of three-dimensional
protein structures. Virology studies viruses, probably the most widespread entities on
Earth [21]. Viruses infect various cellular organisms, including eukaryotes, archaea and
bacteria. In the latter case, they are called “bacteriophages”, or “phages”. Phages and their
proteins that are harmful to bacteria can be used to fight bacterial infection in humans,
animals and plants [22,23]. So-called “phage therapy”, or the use of bacteriophages to treat
bacterial infections, can assist in the context of the rise of antimicrobial resistance [24]. This
review describes different cases of the use of AlphaFold for the purposes of viral research.
It summarizes the results of the studies involving AlphaFold predictions, analyses the
possible advantages and disadvantages of AlphaFold for predictions of viral proteins and
discusses corresponding studies (Table 1).

Table 1. Summary of the studies discussed.

Authors, Year Virus or Viral Group Study Aim (s) Results and AF2 Usage

Callaway 2022 [18] to explore how AF2 changes
biology

AF2 affects many studies and provides
a quality of prediction not previously
achievable by computational tools. At
the same time, it has limitations and it
is important to consider them when
conducting research.

Evans et al., 2021 [19]

to present the extension of
AlphaFold for protein
complexes—AlphaFold-
Multimer

AlphaFold-Multimer significantly
improves the quality of predicted
multimeric interfaces, compared with
basic AlphaFold adapted to input data,
while maintaining a high level of
accuracy within the chain.

Abdelkader et al., 2022
[25] SARS-CoV-2

to find inhibitors of
non-structural protein 6
(NSP6)

Using the AF2 predictions, candidate
inhibitors were suggested and
recommended for biological testing.

Flower et al., 2021 [26] SARS-CoV-2

to test the in silico prediction
of β-rich ORF8 protein for
finding an MR solution to the
crystallographic phase
problem

It was shown that the ORF8 protein
model, predicted by AF2, is sufficiently
accurate to provide a phase solution by
MR.

https://www.nature.com/articles/s41586-021-03819-2/metrics
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Table 1. Cont.

Authors, Year Virus or Viral Group Study Aim (s) Results and AF2 Usage

Vuren et al., 2022 [27] SARS-CoV-2

to test highly thermo-tolerant
monomeric receptor-binding
domain derivatives on mice
for the development of new
vaccines

The monomeric formulation of the
vaccine was observed to produce a
slightly superior immune response,
possibly because it presents more
antigenic epitopes, as shown using AF2
predictions.

Singanallur et al., 2022
[28] SARS-CoV-2

to assess leading vaccines in
virus neutralisation assays
against Delta and Omicron
variants of concern (VOC) and
a reference isolate

At least a third dose of these vaccines is
necessary to generate sufficient
neutralising antibodies against
emerging VOC. AF2 was used to find
an explanation for the observed
reduction in neutralisation of Omicron
compared with other variants.

Bhowmick et al., 2022
[29] SARS-CoV-2

to study the effects of various
mutations in the RBD of the
SARS-CoV-2 spike and its key
interactions with the ACE-2
receptor, using protein
structure prediction
algorithms along with
molecular docking

AF2-generated and trRosetta-generated
models of RBD were compared.
trRosetta predictions appeared to be
more accurate and have been used for
docking with the ACE-2 receptor of
other mutated RBD variants.

Robertson et al., 2021
[30] SARS-CoV-2

to evaluate the concordance of
AF2 models with residual
dipolar couplings data

Close agreement between all sets of
AlphaFold models and experimental
residual dipolar couplings data was
found for most of the protein.

Kumari et al., 2023 [31] Monkeypox virus (MPXV)
to search for inhibitors of
MPXV DNA polymerase
(DNAP) for antiviral therapy

DNAP inhibitors were found using an
AF2-generated model and virtual
screening of ZINC and antiviral
libraries.

Kannan et al., 2022 [32] MPXV
to study the effects of
mutations in DNA replication
complex (RC)

Mutations in RC that are likely to
contribute to the 2022 monkeypox
outbreak were identified. AF2
predictions were used to model an RC
component.

Li et al., 2022 [33] MPXV

to study the mechanisms of
inhibition of poxvirus
phospholipase D (F13) by
tecovirimat, which have been
demonstrated to be effective
against monkeypox in vitro
and in anima

The potential binding pocket and the
possible binding mode for tecovirimat
with F13 were revealed using AF2
structure predictions and molecular
docking.

Yefet et al., 2023 [34] MPXV

to characterise the main
serological and B cell markers
accompanying MPXV
infection in humans

The reactivity of three MPXV antigens
to MPXV-11convalescent sera and
responses caused by vaccinia
virus-based vaccine (VACV) were
tested. AF2 modelling indicated similar
conformations of MPXV and VACV
antigens.

Benedyk et al., 2022 [35] Herpes Simplex Virus
Type-1 (HSV-1)

to study the mechanisms of
influence of HSV-1 on
sphingolipid metabolism

Using AF2 predictions, the residues
essential for the binding of involved
proteins were identified and
experiments demonstrating that HSV-1
modifies the sphingolipid metabolism
via specific protein–protein interactions
were conducted.
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Authors, Year Virus or Viral Group Study Aim (s) Results and AF2 Usage

Collantes et al., 2022 [36] HSV-1
to study details of the
transport of the viral particle
towards the nucleus

Structural features of the UL37
tegument protein, which is important
for retrograde transport and viral
replication, were revealed. AF2 and
other computational techniques were
used for prediction of structures of
UL37 and binding surface.

Fieulaine et al., 2023 [37] Hepatitis E virus (HEV) to study HEV replication
polyprotein (pORF1)

The structure of HEV pORF1 was
obtained with AF2 and then analysed.
The protocol to express and purify the
full-length HEV pORF1 was developed.

Liu et al., 2022 [38] Rice black-streaked dwarf
virus (RBSDV)

to reveal lipid-binding sites of
major outer capsid protein
(also known as P10)

The use of AF2 predictions and the
results of experimental studies enabled
the suggestion of putative binding sites
of lipids on RBSDV P10 protein.

Chen et al., 2022 [39] African swine fever virus
(ASFV)

to study the mechanism of
interactions of ssDNA and
ssDNA-binding protein
CP312R

With the assistance of AF2 predictions,
the crystal structure of ASFV CP312R
was determined, and the putative
ssDNA binding core domain was
suggested.

Kim et al., 2023 [40] Viral hemorrhagic
septicemia virus (VHSV)

to study the genesis of
secondary mutations in the
matrix (M) protein

VHSV was found to respond to the
artificial mutation of M protein through
secondary mutations. These secondary
mutations occurred when the artificial
mutations were harmful for the virus.
AlphaFold was used to predict the
structure of the M protein.

Veit et al., 2022 [41]
Porcine reproductive and
respiratory syndrome
virus (PRRSV)

to study the Gp5/M protein
dimer, the major component
of the viral envelope required
for virus budding

Detailed bioinformatic analysis of
Gp5/M was conducted using various
bioinformatic tools. AlphaFold was
used to obtain a model of the Gp5/M
dimer.

Hötzel 2022 [42] Several lentiviruses and
betaretroviruses

to study the surface envelope
glycoproteins of nonprimate
lentiviruses and
betaretroviruses

The consistence of AF2 models of small
ruminant lentiviruses and
betaretroviruses and experimental data
was shown. Structural features of
gp135 of small ruminant lentiviruses
were discussed.

Weaver et al., 2022 [43] Human roseolovirus
to clarify structural features of
membrane glycoproteins U20
and U21

AlphaFold and RoseTTAfold were used
to predict the structures of U20 and
U21. Structural features of these
proteins were discussed.

Al-Shayeb et al., 2022
[44]

Bacteriophage
metagenomic sequences

to study CRISPR systems
encoded in phage genomes

Bacteriophage-encoded CRISPR
systems were found and classified
using genome-resolved metagenomics.
The Casλ-RNA-DNA structure was
determined using Cryo-EM. AF2 was
used to obtain the initial model of the
Casλ protein.

Klumpp et al., 2023 [45] Various bacteriophages
to review the features and use
of phage receptor-binding
proteins (RBPs)

Distinctive features of phage RBPs, the
use of RBPs as antibacterial agents and
the application of AlphaFold for the
prediction of RBPs’ structure were
described.
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Authors, Year Virus or Viral Group Study Aim (s) Results and AF2 Usage

Goulet et al., 2021 [46] Oenococcus oeni phages
OE33PA and Vinitor162

to reveal the structural
features of different phage
adhesion devices

The topology and structure of phage
adhesion proteins was studied using
AF2 modelling. Based on known
models, a topological model of the
OE33PA adhesion device was
proposed.

Evseev et al., 2023 [47] Curtobacterium prophages

to reveal and characterise
Curtobacterium
prophage-derived regions and
glycopolymer-degrading
enzymes of prophage origin

Prophage-derived regions were found
and annotated.
Glycopolymer-degrading enzymes of
prophage origin were modelled using
AF2, characterised and clustered.

Hawkins et al., 2022 [48] Staphylococcus phage
Andhra

to study the phage’s structural
features

The Cryo-EM structure was reported.
Using AlphaFold predictions, the distal
tail model was built.

Nieweglowska et al.,
2023 [49] Pseudomonas phage φPA3

to explore the mechanism of
formation of the phage
nucleus

The ability of Phage Nuclear Enclosure
(PhuN) protein to spontaneously
assemble into 2D sheets with p2 and p4
symmetry was shown. The p2
symmetric state was resolved by
Cryo-EM. AF2 was used to build a
model of the 2D array.

Šiborová et al., 2022 [50] Escherichia phage SU10 to study the mechanism of
phage genome delivery

Cryo-EM and Cryo-ET characterisation
of the attachment of the phage to the
host cell was presented. The formation
of a tail nozzle after rearrangement was
shown. AF2 was used to build tail
models.

Conners et al., 2021 [51] Klebsiella phage f1

to study the structural bases
of the mechanism of phage
egress and its practical
application

Cryo-EM structure phage-encoded pIV
secretin was determined, and the
mechanism for phage egress was
proposed. AF2 was used to predict the
structure of the N0 domain of pIV.

Eskenazi et al., 2022 [52] Klebsiella phage M1

to investigate the effectiveness
of combined pre-adapted
bacteriophage therapy and
antibiotics for the treatment of
fracture-related infection

The therapy resulted in an objective
improvement in the patient’s wounds
and overall condition. The combination
of phage and antibiotic therapy was
demonstrated to be highly effective
against the patient’s K. pneumoniae
strain. AlphaFold was used for the
modelling of original and mutated
phage proteins.

McGinnis et al., 2022 [53] Mycobacterium phage
TipsytheTRex

to study the mechanism of the
interaction of the immunity
repressor and DNA

A Dual DNA binding domains model
of the repressor was proposed. An
AlphaFold model of the repressor
protein was used to significantly
improve the structure obtained using
single-wavelength anomalous
diffraction phasing.
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Zhang et al., 2022 [54]

to investigate the functioning
of the toxin–antitoxin system
CapRelSJ46 that protects E. coli
against phages

It was shown that the C-terminal
domain of CapRelSJ46 controls the toxic
N-terminal region. Major capsid
proteins of some phages bind to the
C-terminal domain to relieve
autoinhibition, enabling the toxin
domain. AF2 was used for predicting
different conformations of CapRelSJ46.

Evseev et al., 2023 [55]
Various archaeal and
bacterial Duplodnaviria
viruses

to clarify the classification of
high-ranked taxa

Using the results of AlphaFold
predictions, combined with the results
of sequence-based phylogeny,
suggestions for possible upgrades to
taxonomic classifications of
Duplodnaviria viruses were made.

Liu et al., 2021 [56] Archaeal tailed viruses
to study and classify archaeal
tailed viruses, including
newly sequenced ones

A total of 37 newly sequenced genomes
and published sequences were
classified using genomic similarity and
network-based analysis. AF2 was used
for modelling major capsid proteins
and further structural comparisons.

Podgorski et al., 2023
[57] Actinobacteriophages

to classify
actinobacteriophage major
capsid proteins

AlphaFold predictions, together with
experimentally obtained structures,
were used to construct a detailed
structural dendrogram describing the
evolution of capsid structural stability
within actinobacteriophages.

Evseev et al., 2022 [58] Various myoviruses
to reveal patterns of structural
evolution of tail sheath
protein

Based on AF2 predictions and
laboratory-derived structures, patterns
of evolution of phage sheath protein
were revealed.

Hötzel et al., 2022 [59] Various retroviruses

to clarify common structural
features of the retroviral
surface envelope protein
subunit (SU)

Analysis of structures predicted with
AF2 revealed the common conserved
core of Sus and enabled the
identification of a homologue structure
in the SU equivalent GP1 of filoviruses,
demonstrating their common origin.

Callaway 2022 [60] to present the results of the
first year of AF2

The AlphaFold tool predicted about 200
million protein structures. About 35%
of these structures were highly accurate
and 45% could be used for specific
purposes.

Perrakis et al., 2021 [61]

to consider the scope and
implications of AF2
applications in structural
biology

Despite a number of limitations, the
analysis of models obtained with
AlphaFold can generate new and
testable hypotheses about protein
function, which is necessary for
structural biology.

Akdel et al., 2022 [62]

to evaluate the use of AF2
predictions for different
structural biology challenges,
such as variant effect
prediction, pocket detection,
and model

AF2 predictions, given their limitations,
can be applied to existing structural
biology problems, and their accuracy is
close to that of experimental models.
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Mirdita et al., 2022 [63] to present ColabFold and its
comparison with other tools

ColabFold goes beyond the original
AF2 functions by improving sequence
searches, providing tools for modelling
protein complexes, extending databases
and determining protein structures,
with about 90 times the speed of AF2.

Humphreys et al., 2021
[64]

to obtain models for
106 previously unidentified
protein complexes and 806
proteins, for which detailed
structural information was
lacking

The combination of AlphaFold and
Ro-seTTAfold expanded the scope of
deep-learning-based tools for
modelling protein complexes.

Gomes et al., 2022 [65]

to assess the reliability of
AlphaFold predictions of
Staphylococcus bacteria
adhesins proteins, using
single-molecule force
spectroscopy

AlphaFold generates extremely robust
protein structures, but in some cases
cannot accurately predict protein
multimers. Even AlphaFold Multimer
failed to predict important structural
features for some of the investigated
complexes, such as the locking strand
of adhesin.

Subramaniam et al., 2022
[66]

to study a combination of
computational and
experimental tools for protein
structure prediction

It was concluded that the development
of structural biology in the future will
be closely related to the synergy
between deep-machine-learning-based
predictions, as in AF2, and cryo-EM
technology.

Drake et al., 2022 [67]

to propose a new hybrid
method of Alphafold, Rosetta
and mass spectrometry
covalent labelling for
predicting protein complexes

Combining AF2 models of protein
complexes with differential covalent
labelling mass spectrometry data via
the application of RosettaDock
demonstrated a lower
root-mean-square deviation than
complexes predicted without covalent
labelling data.

He et al., 2022 [68]
to present EMBuild, an
automatic model-building
tool for protein complexes

EMBuild automatically builds models
from intermediate-resolution cryo-EM
maps integrating AlphaFold structure
prediction. It provides quality and
reliable models that are comparable to
manually built structures.

Bryant et al., 2022 [69]
to offer a new protocol for
AF2 prediction of protein
complexes

The use of optimised multiple sequence
alignment together with AF2 showed
acceptable quality for 63% of the
dimers.

Bryant et al., 2022 [70]

to propose the use of Monte
Carlo tree search for
predicting protein complexes
with AF2

The application of a Monte Carlo tree
search for the predicted AF2
subcomponents yielded 91 of 175
complexes, with a median TM-score of
0.51, and 30 of them demonstrated high
accuracy.
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Ruff et al., 2021 [71]
to study the implications of
AlphaFold for intrinsically
disordered proteins

Predicted structures obtained with
AlphaFold emphasised the importance
of intrinsically disordered
proteins/regions. A huge number of
protein regions that AlphaFold
predicted with low accuracy
overlapped with regions predicted as
IDRs.

Laurents et al., 2022 [72]

to provide information on the
prediction of protein folding
using a combination of NMR
and AF2 spectroscopy

In the future, NMR spectroscopy may
strengthen Alphafold predictions in
areas where it has limitations:
conformations, ligand and cofactor
interactions, post-translational
modifications and intrinsically
disordered proteins.

Edich et al., 2022 [73]
to study the impact of AF2 on
experimental structure
solution

Although AF2 has some drawbacks, it
can help in the design of the experiment
and determine which part of the
protein sequence may be intrinsically
disordered. It also encourages the
conducting of more experimental
studies, as data from them can improve
deep-machine-learning’s ability to
predict.

Wong et al., 2022 [74]
to assess AlphaFold-enabled
molecular docking predictions
for drug discovery

The use of AF2 together with molecular
docking simulations to predict
protein-ligand bindings demonstrated
poor performance. The prediction
accuracy might be improved by the
integration of machine-learning-based
approaches.

Hekkelman et al., 2022
[75]

to present AlphaFill, a tool for
improving AlphaFold
predictions with ligands and
cofactors

The developed algorithm, employing
sequence and structure similarity
analysis, received a good validation
performed against experimental
structures.

Bagdonas et al., 2021 [76]

to propose an approach that
addresses the absence of
cofactors and co- or
post-translational
modifications in AF2 models

This approach combines sequence and
structure data to transfer protein
glycosylation from a library of
structurally balanced glycan blocks to
the AlphaFold model. The algorithm
was integrated into the Privateer
software.

Van Breugel et al., 2022
[77]

to assess the quality of AF2
models in the study of
centrosome and centriole
biogenesis

AF2 models can reveal important
insights into the structural features of
two key proteins in centrosome and
centriole biogenesis, CEP192 and
CEP44. The AF2 algorithm was used to
predict, with subsequent experimental
validation, previously unknown
primary features in the structure of
TTBK2 associated with CEP164, as well
as the Chibby1-FAM92A complex.
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Table 1. Cont.

Authors, Year Virus or Viral Group Study Aim (s) Results and AF2 Usage

Lane 2023 [78]
to discuss AF2 restrictions
concerning structural
distribution and other issues

As deep-machine-learning algorithms
develop, they require more and more
experimental data. In the author’s
opinion, experimental methods such as
time-resolved crystallography, cryo-EM
data and others can provide
information that enables researchers to
penetrate the essence of protein
functioning.

Bertoline et al., 2023 [79]

to provide an overview of
changes in protein structure
prediction before and after the
advent of AF2

The advent of AF2 has taken the
protein folding prediction problem to
the next step; however, it has several
limitations. AF2 instigated the
emergence of new tools, such as
ESMfold, which, although inferior in
accuracy, use different approaches,
which enable very fast predictions.

Buel et al., 2022 [80]
to study the ability of AF2 to
predict the effect of missense
mutations on structure

AF2 seems not to be able to predict the
effect of missense mutations on the 3D
structure of proteins. Differences
between mutated and wild-type
structures predicted by AlphaFold
were extremely small.

Pak et al., 2021 [81]

to evaluate the ability of
AlphaFold to predict the
impact of single mutations on
protein stability

It seems impossible to obtain a reliable
evaluation of the impact of mutation on
protein stability with the direct
application of AI predictions.

2. Application of AF2 for Research on Eukaryotic Viruses
2.1. Application of AlphaFold for SARS-CoV-2 Research

The outbreak of severe acute respiratory syndrome caused by coronavirus 2 (SARS-
CoV-2, realm Ribozyviria, class Pisoniviricetes, order Nidovirales, family Coronaviridae, genus
Betacoronavirus) and the spread of associated infection boosted research on coronaviruses.
The structure of SARS-CoV-2 spike (S) glycoprotein, the main target of antibodies, has been
determined by cryo-electron microscopy and was used in the development of vaccines and
inhibitors [82,83]. S glycoprotein promotes entry into the cell. Another target of drug design
is main protease cutting the initial translated propeptide into functional viral proteins. The
crystal structure of the SARS-CoV-2 main protease was also obtained experimentally [84].

To assist the solution of tasks related to general research and drug design, different
structure prediction techniques, including AlphaFold, were used for prediction of SARS-
CoV-2 proteins [25–29,85]. The main task was probably the investigation of the mechanism
of interaction of the SARS-CoV-2 receptor-binding protein (RBP), which is the SARS-CoV-2
spike, and the angiotensin-converting enzyme 2 (ACE2) receptor. AF2 predictions enabled
clarification of the structural features of monomeric and multimeric formulations of the
vaccine and suggested that monomeric formulation presents more antigenic epitopes [27].
The emergence of new immune-escaping variants of SARS-CoV-2, such as Omicron BA1,
made it important to study potential mutation sites that do not yet exist in nature but
could increase the binding affinity of RBD and the receptor [29]. AF2 predictions were
successfully used to find an explanation for the observed reduction in the neutralisation of
SARS-CoV-2 variants of concern compared with other variants [28]. AF2 predictions can
be combined with molecular dynamics simulations to improve modelling accuracy [86]
and to predict the physical properties of proteins. Such models can be used for studies
of both qualitative and quantitative aspects of the formation of the quaternary structure
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of proteins [85]. AlphaFold models are useful for revealing possible ligand binding sites.
Together with virtual screening and in silico validation, these approaches provide the basis
for the biological testing of new drugs and for the repurposing of natural products [25].

The accuracy of predicted structures can be assessed using computational tech-
niques [87] and via experimental methods, e.g., optical spectroscopy or measurement
of solution residual dipolar couplings data (RDCs) [30,88]. A meticulous evaluation of
the concordance of AF2 models of the SARS-CoV-2 homodimeric 3C-like protease (Mpro)
with residual dipolar couplings (RDCs) measured in solution for 15N–1HN and 13C′–1HN

atom pairs indicated the close agreement of AlphaFold predictions with experimental data
(Figure 2) [30].

Interestingly, the high level of accuracy of AF2 predictions makes it possible to use
AlphaFold predictions to determine a macromolecular structure from crystallographic
diffraction experiments. It has been shown that a template-free AF2 model, generated by
the AlphaFold2 group, was of sufficient quality to phase the native SARS-CoV-2 ORF8
dataset by molecular replacement, overcoming the limitations of the crystallographic
phasing problem [26]. However, a comparison of RMSD (root mean square deviation
of atomic positions) values of SARS-CoV-2 spike RBD, the laboratory-derived structure
with both trRosetta-generated models [89] and models generated by AlphaFold v2.1.0,
indicated the high level of accuracy of both methods, but the better results were obtained
with trRosetta.
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Excluded residues (red) illustrated on a ribbon diagram (PDB code 5R8T; only a single chain is 
shown, for clarity); residues with missing RDCs are shown in grey and the catalytic dyad is shown 
in yellow. (d) Q-factors from SVD fits of 1DNH and 2DC′H RDCs to the included region of all available 
Mpro X-ray structures, plotted as a histogram, with the top-ranked (Amber-relaxed) AF2 models 
obtained using full, date-limited and sequence-limited implementations marked. (e) Q-factors of all 
Amber-relaxed models. (f) X-ray structure resolution vs. Q-factor and (g) Cα RMSD (relative to 
5R8T) vs. Q-factor. (h) Cα wireframe of all 352 PDB structures. Images courtesy of Dr. Adriaan Bax. 
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(a) 1DNH and (b) 2DC′H experimental couplings vs. those predicted from X-ray structure 5R8T. (c)
Excluded residues (red) illustrated on a ribbon diagram (PDB code 5R8T; only a single chain is shown,
for clarity); residues with missing RDCs are shown in grey and the catalytic dyad is shown in yellow.
(d) Q-factors from SVD fits of 1DNH and 2DC′H RDCs to the included region of all available Mpro X-ray
structures, plotted as a histogram, with the top-ranked (Amber-relaxed) AF2 models obtained using
full, date-limited and sequence-limited implementations marked. (e) Q-factors of all Amber-relaxed
models. (f) X-ray structure resolution vs. Q-factor and (g) Cα RMSD (relative to 5R8T) vs. Q-factor.
(h) Cα wireframe of all 352 PDB structures. Images courtesy of Dr. Adriaan Bax. Reprinted/adapted
with permission from Ref. [30]. Not subject to U.S. Copyright.
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2.2. Application of AlphaFold to Study Eukaryotic Viruses

AlphaFold is widely used in research on other eukaryotic viruses, including monkey-
pox virus (MPXV) [31–34], herpes simplex virus [35,36], hepatitis E virus (HEV) [37] and
other viral pathogens of humans and economically significant animals and plants [38–43].
Monkeypox virus (MPXV) represents a new serious threat to human health. MPXV has
spread to 110 countries (https://www.cdc.gov/poxvirus/mpox/response/2022/world-
map.html, accessed on 1 March 2023). As of 1 March 2023, there were 86,231 confirmed
cases worldwide, of which 84,858 cases occurred in locations that had not previously re-
ported MPXV cases. Monkeypox virus is classified as a member of realm Varidnaviria, class
Pokkesviricetes, order Chitovirales, family Poxviridae, genus Orthopoxvirus and is evolution-
arily close to vaccinia virus (VACV), the smallpox virus. AlphaFold-derived structures of
the recombinantly expressed MPXV antigen truncations to their VACV homologues have
indicated that MPXV and VACV antigens are likely to achieve similar conformations [34].
The World Health Organisation (WHO) has recommended the current anti-smallpox drugs
tecovirimat, brincidofovir and cidofovir for the treatment of monkeypox [90]. Brincido-
fovir and cidofovir inhibit DNA polymerase (DNAP), while tecovirimat is an inhibitor for
poxvirus phospholipase D (protein F13) [91], but specific antiviral treatment requires new
drugs.

MPXV DNA polymerase (DNAP) is a very important antiviral drug target. The
laboratory-derived structure of MPXV DNAP was deposited in the RCSB PDB database
(PDB code 8HG1) in mid-November 2022, and a paper describing this structure was
published in January 2023 [92]. Before that, the AF2-derived structure was obtained and
used in the search and design of new inhibitors of MPXV DNAP. The molecules found
were predicted to bind to the MPXV DNAP with a binding energy comparable to that of
brincidofovir and cidofovir. New MPXV DNAP inhibitors are important in the context
of possible drug resistance, which can arise due to mutations in proteins of the DNA
replication complex (RC). Studies of the effect of mutations in MPXV RC using AF2-
generated models have suggested similar mechanisms of drug resistance to cidofovir in
monkeypox and vaccinia viruses [32]. It appears that the use of highly accurate AlphaFold
predictions can assist the forecasting of the emergence of drug-resistant variants of concern
to improve preparedness for them.

The molecular mechanism of interaction of tecovirimat with the monkeypox phos-
pholipase D (F13) was studied using AlphaFold models and molecular dynamics simula-
tions [33]. The results suggested a detailed mechanism of inhibition of F13 by tecovirimat
(Figure 3) and supported the efficacy of tecovirimat against monkeypox virus, emphasising
the importance of the availability of precise modelling for revealing molecular mechanisms
of drug action.

https://www.cdc.gov/poxvirus/mpox/response/2022/world-map.html
https://www.cdc.gov/poxvirus/mpox/response/2022/world-map.html


Curr. Issues Mol. Biol. 2023, 45 3718Curr. Issues Mol. Biol. 2023, 3, FOR PEER REVIEW 14 
 

 

 
Figure 3. Molecular simulation analysis of tecovirimat with F13 from monkeypox virus. (a) 
Overview of the F13 protein structure from monkeypox virus generated by AlphaFold. (b) The 
minimum free energy poses with of F13 protein and tecovirimat and corresponding interactions 
plots. (c) RMSD of monkeypox virus F13-tecovirimat complex during the production stage of 
molecular dynamics. Images courtesy of Dr. Leiliang Zhang. Reprinted/adapted with permission 
from Ref. [33]. © 2022 The British Infection Association. 

Figure 3. Molecular simulation analysis of tecovirimat with F13 from monkeypox virus. (a) Overview
of the F13 protein structure from monkeypox virus generated by AlphaFold. (b) The minimum free
energy poses with of F13 protein and tecovirimat and corresponding interactions plots. (c) RMSD
of monkeypox virus F13-tecovirimat complex during the production stage of molecular dynamics.
Images courtesy of Dr. Leiliang Zhang. Reprinted/adapted with permission from Ref. [33]. © 2022
The British Infection Association.
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The development of new drugs is barely possible without an understanding of the
mechanisms of viral infection. This knowledge can often require robust structural analysis,
which can make use of modern deep-learning structure prediction methods. AlphaFold
can facilitate the elucidation of the functionality of viral proteins.

Herpesviruses constitute an important group of pathogens that infect animals, includ-
ing humans. Herpesviruses infect most vertebrates, causing a lifelong latent infection [93].
Herpesviruses belong to the realm Duplodnaviria, class Herviviricetes, order Herpesvirales,
and comprise the families Alloherpesviridae, Herpesviridae and Malacoherpesviridae [94]. Hu-
man herpesviruses belong to the family Herpesviridae. Herpes simplex virus 1 (HSV-1)
(genus Alphaherpesviruse), residing in sensory neurons or sympathetic neurons, has been
shown to severely modify infected cells and to remodel the composition and architecture
of cellular membranes [35,95,96]. One of the HSV-1 proteins, phosphatase adaptor UL21,
mediates dephosphorylation and accelerates the rate of ceramide to sphingomyelin conver-
sion, altering cell membranes and influencing viral replication [35]. AlphaFold-Multimer
modelling has revealed the details of the interaction of UL21 and viral protein UL16 and
has enabled the suggestion of the functionality of domains of the latter protein using its
structural features. Specific protein–protein interactions have been shown to be essential for
lipid metabolism [35]. The use of AlphaFold has also shown that another HSV-1 protein, the
tegument protein UL37, interacts with the cytoplasmic surface of the lipid membrane, sug-
gesting that UL37 can be a peripheral membrane protein [36]. AlphaFold predictions have
suggested the domain organisation of UL37, and assisted experimental studies and molec-
ular dynamics simulation have clarified the structural features and molecular mechanisms
of UL37 interactions.

Fundamentally similar tasks concerning research on other viral pathogens of animals,
including humans, and plants can be made easier by the use of AlphaFold predictions.
These tasks include mechanisms that are crucial for viral attachment, penetration, replica-
tion, release and other steps in the viral infection cycle. They can include the investigation
of viral proteins and membranes [38,41,43], viral proteins and DNA [39] and studies of
viral proteins, glycoproteins and their mutations [37,40,42]. It is noteworthy that AlphaFold
predictions are often used as part of an integrated approach, making the planning of
experiments easier and improving understanding of the results obtained.

3. Application of AlphaFold for Research on Bacteriophages

Bacteriophages (a.k.a. phages) are viruses that infect and replicate in bacterial cells
alone. Bacteriophages are ubiquitous—they can be found in water, soil and various living
organisms [97]. The total number of bacteriophages can be estimated at 1031 viral particles,
which is 10–100 times the number of cells [98]. The total mass of these particles is about
a trillion tons [99]. Phages are also members of plant and animal microbiomes, including
humans. For example, the human gastrointestinal tract contains more than 1012 phage
virions [100]. The ability of bacteriophages to destroy the cells of pathogenic bacteria
attracted the attention of scientists as early as the beginning of the 20th century. In recent
decades, interest in bacteriophage therapy has begun to grow, primarily due to the spread
of antibiotic resistance. Phage therapy has important advantages [101], including sustained
bactericidal activity and “autodosing”, wherein the number of phages positively correlates
with the number of host bacteria. Furthermore, phages have low intrinsic toxicity, and
phage therapy is characterised by minimal disruption of normal flora and the lack of
cross-resistance with antibiotics.

The practical use of phages for phage therapy requires an understanding of the
structural bases of interactions of the host receptor and phage receptor-binding proteins
(RBPs); the latter can include tail fibre and tail spike proteins (TFP and TSP). In addition,
phage RBPs, as well as endolysins and ectolysins, the proteins that cause cell lysis, can be
used as antibacterial agents by themselves [45,102]. The analysis of the structural features
of phage RBPs and lysins can use modern deep-learning techniques, including AlphaFold.
Together with experimental studies, AlphaFold predictions can be used to elucidate the
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domain organisation of TFP, TSP and cell-wall degrading enzymes, to reveal the sites of
phage particle binding and enzymatic domains (Figure 4) [45–47,52].
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As well as in the case of eukaryotic viruses mentioned above, AlphaFold predictions
can contribute to building the model of the viral particle [48,103] or the virion parts,
including the attachment apparatus [46,50] and phage egress machinery [51]. All the steps
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of phage infection are accompanied by macromolecular interactions that include proteins,
so AlphaFold’s highly accurate structural predictions can assist in the elucidation of the
mechanisms of the formation of the phage nucleus [49], lysogeny maintenance [53] or anti-
phage defence [44,54]. AlphaFold can also be useful in the trivial but relevant task of phage
genome annotation, assisting the prediction of genes’ functionality. As of January 2023,
19,499 GenBank sequences, assigned to class Caudoviricetes, contained 1,731,815 coding
regions, 67% of which were annotated as hypothetical proteins. In some cases, BLAST
search and HMM-HMM motif comparisons fail to assign a function to proteins encoded
in phage genomes, but analysis of fold of AF2-derived structures can assist to clarify this
function [55].

It seems that no large-scale studies have been published on the accuracy of modelling
using AF2 compared with the predictions of other algorithms. However, comparing the
predicted average local distance difference test (lDDT) score of the 54 AF2-derived models
of the major capsid protein and ATPase subunit of phage terminase indicated an impressive
level of accuracy of the predictions [55]. Interestingly, structural predictions of more
conserved terminase were more accurate than those of major capsid protein, (terminase
lDDT mean: 0.988, median: 0.996; major capsid protein lDDT mean: 0.907, median: 0.929).
The average lDDT of the ATPase domains extracted from the ATPase subunit of phage
terminase models was even higher (mean: 0.998, median: 0.999). An evaluation of models
of the same major capsid proteins, carried out using a different deep-learning algorithm,
RoseTTAFold, showed a lower accuracy of prediction (lDDT mean: 0.634, median: 0.649)
than with the AlphaFold models (Figure 5).
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4. Application of AlphaFold for Evolutionary and Taxonomic Studies

Comparing structural similarity and specific structural features can clarify the evolu-
tionary relationships between proteins. Furthermore, the emergence of new high-precision
algorithms for predicting the structure of proteins, including AlphaFold, can enable the
identification of evolutionary relationships between highly divergent discovered proteins,



Curr. Issues Mol. Biol. 2023, 45 3722

using the results of structural modelling. The evolution of proteins may be accompanied
by the appearance of new domains, and comparative analysis of AF2-derived structures
can help reveal patterns of protein evolution. Studies of bacteriophage tail sheath proteins,
an important part of phages’ contractile injection system, have enabled the identification of
the common core domain, including both N-terminal and C-terminal parts. The remaining
variable parts consisting of one or more moderately conserved domains have, presumably,
been added during phage evolution (Figure 6) [58].
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Curr. Issues Mol. Biol. 2023, 45 3723

Structural similarity is widely used to evaluate evolutionary relationships between
proteins whose amino acid sequence homology level is low or cannot be determined
at all [104,105]. The structural similarity between two proteins can be assessed using
root-mean-square deviation (RMSD) or other metrics such as template modelling score
(TM-score) and DALI Z-score; the latter two metrics have a number of advantages over
RMSD [84,106]. Clustering of experimentally determined structures of major capsid pro-
teins using the DALI Z-score has already been used to illustrate the common origin of some
viral groups and to cluster prokaryotic viruses [56,104]. Integrated use of both experimental
structures and AF2-derived structures can be used for elucidation of evolutionary relation-
ships and taxonomic classification of bacteriophages and eukaryotic viruses [57,59,107].
AlphaFold modelling and subsequent clustering have been used in taxonomic studies
of archaeal viruses [56]. Clustering using AlphaFold showed interesting and often bi-
ologically meaningful results [55]. Clustering using structures predicted by AlphaFold
showed interesting and often biologically meaningful results (Figure 7). It should also be
noted that the native state of viral proteins can change according to the state of the viral
particle (e.g., empty, full, expanded capsids) and according to the stage of viral particle
assembly [108–111]. The correlation between structural similarity and sequence identity is
not absolute due to conformational plasticity, solvent effects and ligand binding [112]. Most
of these limitations apply to studies that involve experimentally determined structures,
but, hypothetically, they could be exacerbated by structural prediction errors. Therefore,
predicting the effectiveness of using AlphaFold for the analysis of structural similarity and
evolutionary history, based only on the similarity of the predicted structures, seems to be a
difficult task [55].
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bacteria. Groups correspond to clusters found as a result of structural comparison. 
Reprinted/adapted with permission from Ref. [55]. © 2023 by the authors. 
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5. Further Development of AlphaFold and Machine Learning Techniques
5.1. AlphaFold-Multimer and Prediction of Multi-Chain Protein Complexes

Originally, AF2 was designed to predict monomeric protein structures. Consequently,
interactions between different proteins, subunits and domains in multimers were not
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described in the AlphaFold database [61]. As a result, some large multi-domain protein
complexes may not have been modelled accurately enough. Several publications have,
however, explored how AF2 could be used for predicting both homo- and heteromeric
complexes [62–64]. Moreover, it has been pointed out that an AI system outperforms
standard docking methods in as much as it does not require starting protein structures [62].

In addition, a number of approaches have been developed to make AlphaFold work
well for complicated protein structures with multiple bindings. Recent versions of AF2,
such as those incorporated into ColabFold, enable multimer structures to be uploaded [63].
They include AlphaFold-Multimer, the extension developed by the DeepMind team, which
significantly improves the accuracy of predicting multimeric interactions [19]. This new
instrument is an AlphaFold algorithm that is specially modified to use multimeric data and
trained on oligomeric proteins. However, there is evidence that this multimeric modification
has not succeeded in predicting the key features of some protein complexes [65]. Currently,
AlphaFold-Multimer does not include the self-distillation of multimer predictions, so the
authors believe there is potential for future accuracy enhancements.

To overcome the limitation described above, combining AF2 with experimental
methods, e.g., cryo-electron tomography and/or other computer-based tools such as
RoseTTAFold, provides more robust results [64,66]. Other authors have suggested com-
bining AlphaFold models of protein complexes with differential covalent labelling mass
spectrometry data by applying RosettaDock [67]. The use of cryo-electron microscopy maps,
integrated with AlphaFold, for multi-chain protein complex prediction also encourages the
creation of accurate and reliable models [68].

Other approaches include the use of optimised multiple sequence alignment together
with AF2 [69] and the application of a Monte Carlo tree search [70]. The latter works well but
only with symmetric protein complexes and when the stoichiometry of the subcomponents
is known.

5.2. AlphaFill

A study from Massachusetts Institute of Technology, which mainly focused on the
limitations of AF2 in the drug industry [74], showed that the use of AF2 together with
molecular docking simulations to predict protein-ligand bindings demonstrated poor
performance that, in some cases, was comparable to pure chance. At the same time,
this study indicated how prediction accuracy might be improved with the integration of
machine-learning-based approaches. The authors of the study expected their research
to encourage the development of machine-learning methods that would complement
AlphaFold.

AlphaFill is a new tool that has been developed to solve the problem with ligands and
cofactors in the AlphaFold protein structure database [75]. AlphaFill uses an algorithm
that employs sequence and structure similarity analysis to graft missing molecules and
ions from experimental data into predicted protein structures. The algorithm has been
successfully validated against experimental structures.

6. Critique of AlphaFold

AlphaFold has probably revolutionised the determination of protein molecular struc-
ture. Today, AF2 is a state-of-the-art deep-learning tool that demonstrates an accuracy in
predicting protein folding that was previously unattainable using computational tools. The
quality of its predictions is, however, not consistent. Furthermore, in some cases, Artificial
Intelligence (AI) systems are unable to provide highly accurate results. As reported by
the EMBL’s European Bioinformatics Institute, 35% of the more than 214 million AF2
predictions have been found to be very accurate [60], which indicates that its predictions
are often not inferior to those obtained experimentally. It should also be pointed out that
45% of these predictions still could be used for some applications, in spite of their accuracy
being inferior to that of experimentally retrieved structures. Therefore, although AF2 is
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an outstanding tool, it is important to consider its limitations to ensure that investigations
provide reliable results.

6.1. Intrinsically Disordered Proteins and Intrinsically Disordered Protein Regions

When AlphaFold encounters difficulties with obtaining highly accurate predictions,
the problem very often relates to intrinsically disordered proteins (IDPs) or intrinsically
disordered protein regions (IDRs) [71]. AI systems perform excellently when predicting
well-folded proteins, but about a third of eukaryotic proteins are intrinsically disordered or
contain disordered regions [72]. Moreover, IDPs play an important role in physiological
functions, such as in protein signalling networks.

The reason for AlphaFold encountering difficulties when predicting IDRs may be that
these proteins and regions are often not solved by X-ray crystallography; AF2 is mainly
designed to use X-ray data [62]. There is a database, DisProt, that contains consolidated
information on IDPs [72]. If AF2 or another AI system could be tailored so that it can extract
conformational features from DisProt or some other experiment-based databases, then this
might enable prediction of IDPs/IDRs in the future.

6.2. Protein Interactions with Metal Ions, DNA, RNA, Cofactors, Ligands and
Post-Translational Modifications

Many proteins can physiologically function only in the form of complexes with various
ions and molecules, such as hemoglobin. Such interactions are especially crucial for drug
discovery. It is to be expected, therefore, that much of AlphaFold’s criticism is related to
the fact that it omits protein-ligand interactions in its predictions [18,73].

AlphaFold is not designed for the prediction of post-translational modifications (PTMs)
of proteins, such as protein glycosylation. This fact has attracted the attention of the
scientific community, with recent studies demonstrating the relevance and importance
of glycosylation in the SARS-CoV-2 spike protein or in human proteins. According to
research, between 50% and 70% of the 20,000 predicted human proteins are thought to be
glycosylated [113]. Bagdonas et al. suggested that the use of sequence- and structure-based
studies might address not only the ligand and cofactor interactions problem but also issues
related to PTMs [76]. The authors presented an example of glycosylation to demonstrate
the potential of their proposed approach, developing an algorithm integrated into Privateer
software. This tool ‘transfers’ protein glycosylation from a library of structurally balanced
glycan blocks to the protein folding from AlphaFold.

6.3. Protein Conformations

Proteins are not static; they take on various structures, depending on their surround-
ings or the stage in the functional cycle. Conformational changes in proteins are closely
related to their functions and regulations. They can be caused by binding to other molecules,
by PTMs or by changes at the pH and temperature levels, for example. AlphaFold provides
a static picture of protein folding and does not incorporate information about its dynam-
ics [77]. There is also no clarity as to which conformation of the protein will be predicted
by AlphaFold [61]. Consequently, this AI system offers only partial information about the
key features of the relationship between protein structure and function.

The situation is complicated by the fact that data on these conformations obtained
under experimental conditions also have limitations. Nevertheless, at the moment, it
seems that predictions of conformations and the dynamics of protein structures are only
possible using experimental methods, such as time-resolved crystallography and structural
distributions from cryo-EM data [78].

6.4. Mutations

According to some studies, it appears that AF2 is unable to predict defects in protein
structures caused by mutations [79]. One investigation showed that differences between
mutated and wild-type structures predicted by AlphaFold were extremely small [80]. Other
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researchers have found that it is impossible to obtain a reliable evaluation of the impact
of mutation on protein stability with the direct application of AI predictions [81]. Thus,
predicting the effect of mutations on protein stability should be carried out as a specific
task, although this will be hampered by the limited amount of data available for training
deep-learning models.

6.5. Database Loopholes

As a deep neural network, AF2 cannot correctly predict absolutely unknown structures
on which it was not trained. It is based on MSA and experimentally obtained structures
stored in the database. Similarly, AF2 also lacks predictive accuracy where fewer sequences
are available for alignment [65]. Accordingly, the AI’s quality performance will depend on
how much experimental and previous computational data have been collected and stored
in databases. This is not really a limitation, since it may be considered as an opportunity,
given that the more data that are collected, the more accurate predictions will become.

7. Conclusions

Protein structure modelling is an important task that helps fundamental and applied
research in the field of virology. The AlphaFold deep-learning algorithm, which has been
proven to be a highly accurate prediction method, can be used in the design of new drugs
and in studies of viral pathogens and mechanisms of viral infection. In bacteriophage
research, AlphaFold predictions can also be used to model receptor-binding proteins and
glycopolymer-degrading enzymes, helping to develop new antibacterials and biocontrol
agents.
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2. Marcu, Ş.-B.; Tăbîrcă, S.; Tangney, M. An Overview of Alphafold’s Breakthrough. Front. Artif. Intell. 2022, 5, 875587. [CrossRef]

[PubMed]
3. Anfinsen, C.B. The Formation and Stabilization of Protein Structure. Biochem. J. 1972, 128, 737–749. [CrossRef] [PubMed]
4. Richardson, J.S. The Anatomy and Taxonomy of Protein Structure. In Advances in Protein Chemistry; Anfinsen, C.B., Edsall, J.T.,

Richards, F.M., Eds.; Academic Press: Cambridge, USA, 1981; Volume 34, pp. 167–339.
5. Rose, G.D.; Fleming, P.J.; Banavar, J.R.; Maritan, A. A Backbone-Based Theory of Protein Folding. Proc. Natl. Acad. Sci. USA 2006,

103, 16623–16633. [CrossRef]
6. Janin, J.; Bahadur, R.P.; Chakrabarti, P. Protein–Protein Interaction and Quaternary Structure. Q. Rev. Biophys. 2008, 41, 133–180.

[CrossRef]
7. Xu, C.; Wang, Y.; Liu, C.; Zhang, C.; Han, W.; Hong, X.; Wang, Y.; Hong, Q.; Wang, S.; Zhao, Q.; et al. Conformational Dynamics

of SARS-CoV-2 Trimeric Spike Glycoprotein in Complex with Receptor ACE2 Revealed by Cryo-EM. Sci. Adv. 2021, 7, eabe5575.
[CrossRef]
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